Advertisement

Space Science Reviews

, Volume 195, Issue 1–4, pp 153–172 | Cite as

The MAVEN Solar Energetic Particle Investigation

  • Davin E. Larson
  • Robert J. LillisEmail author
  • Christina O. Lee
  • Patrick A. Dunn
  • Kenneth Hatch
  • Miles Robinson
  • David Glaser
  • Jianxin Chen
  • David Curtis
  • Christopher Tiu
  • Robert P. Lin
  • Janet G. Luhmann
  • Bruce M. Jakosky
Article

Abstract

The MAVEN Solar Energetic Particle (SEP) instrument is designed to measure the energetic charged particle input to the Martian atmosphere. SEP consists of two sensors mounted on corners of the spacecraft deck, each utilizing a dual, double-ended solid-state detector telescope architecture to separately measure fluxes of electrons from 20 to 1000 keV and ions from 20–6000 keV, in four orthogonal look directions, each with a field of view of \(42^{\circ}\) by \(31^{\circ}\). SEP, along with the rest of the MAVEN instrument suite, allows the effects of high energy solar particle events on Mars’ upper atmospheric structure, temperatures, dynamics and atmospheric escape rates, to be quantified and understood. Given that solar activity was likely substantially higher in the early solar system, understanding the relationship between energetic particle input and atmospheric loss today will enable more confident estimates of total atmospheric loss over Mars’ history.

Keywords

Field Programmable Gate Array Solar Energetic Particle Dead Layer Martian Atmosphere Incident Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. 506, 250–303 (2003) CrossRefADSGoogle Scholar
  2. J. Allison, K. Amako, J. Apostolakis, H. Arauho, P. Arce Dubois et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270–278 (2006) CrossRefADSGoogle Scholar
  3. L. Andersson, R.E. Ergun, G. Delory, The Langmuir probe and waves experiment for MAVEN. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0194-3 Google Scholar
  4. V. Angelopoulos, D. Sibeck, C.W. Carlson et al., First results from the THEMIS mission. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9378-4 Google Scholar
  5. S. Barabash et al., The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars express mission. Space Sci. Rev. 126, 113–164 (2006). doi: 10.1007/s11214-006-9124-8 CrossRefADSGoogle Scholar
  6. J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435, 790–794 (2005). doi: 10.1038/nature03603 CrossRefADSGoogle Scholar
  7. M.W. Chevalier, W.B. Peter, U.S. Inan, T.F. Bell, M. Spasojevic, Remote sensing of ionospheric disturbances associated with energetic particle precipitation using the South Pole VLF beacon. J. Geophys. Res. 112, A11306 (2007). doi: 10.1029/2007JA012425 CrossRefADSGoogle Scholar
  8. J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, The Maven magnetic field investigation. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0169-4
  9. A.V. Dmitriev, H.-C. Yeh, Geomagnetic signatures of sudden ionospheric disturbances during extreme solar radiation events. J. Atmos. Sol.-Terr. Phys. 70, 1971–1984 (2008). doi: 10.1016/j.jastp.2008.05.008 CrossRefADSGoogle Scholar
  10. F. Eparvier, P.C. Chamberlin, T.N. Woods, E.M.B. Thiemann, The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0195-2
  11. J.R. Espley, W.M. Farrell, D.A. Brain, D.D. Morgan, B. Cantor, J.J. Plaut, M.H. Acuña, G. Picardi, Absorption of MARSIS radar signals: Solar energetic particles and the daytime ionosphere. Geophys. Res. Lett. 34, L09101 (2007). doi: 10.1029/2006GL028829 CrossRefADSGoogle Scholar
  12. Y. Futaana et al., Mars express and Venus express multi-point observations of geoeffective solar flare events in December 2006. Planet. Space Sci. 56(6), 873–880 (2008) CrossRefADSGoogle Scholar
  13. J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The solar wind ion analyzer for MAVEN. Space Sci. Rev. (2013). doi: 10.1007/s11214-013-0029-z Google Scholar
  14. D.M. Hassler et al., The radiation assessment detector (RAD) investigation. Space Sci. Rev. 170, 503–558 (2012). doi: 10.1007/s11214-012-9913-1 CrossRefADSGoogle Scholar
  15. D.M. Hassler et al., Mars’ surface radiation environment measured with the Mars science laboratory’s curiosity rover. Science 343 (2014). doi: 10.1126/science.1244797
  16. B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, G. Beutelschies et al., The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-015-0139-x Google Scholar
  17. M. Kaiser, The STEREO mission: An overview. Adv. Space Res. 36, 1483 (2005) CrossRefADSGoogle Scholar
  18. F. Leblanc, O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.-L. Blelly, R.A. Frahm, J.S. Halekas, J.L. Bertaux, Origins of the Martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of mars (SPICAM) on board Mars express. J. Geophys. Res. 111, A09313 (2006). doi: 10.1029/2006JA011763 ADSGoogle Scholar
  19. R.J. Lillis, D.A. Brain, G.T. Delory, D.L. Mitchell, J.G. Luhmann, R.P. Lin, Evidence for superthermal secondary electrons produced by SEP ionization in the Martian atmosphere. J. Geophys. Res. 117, E03004 (2012). doi: 10.1029/2011JE003932 ADSGoogle Scholar
  20. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, B.M. Jakosky, R. Modolo, J. Fox, J. Deighan, X. Fang, Y.C. Wang, Y. Lee, C. Dong, Y. Ma, T. Cravens, L. Andersson, S.M. Curry, N. Schneider, M. Combi, I. Stewart, J. Clarke, J. Grebowsky, D.L. Mitchell, R. Yelle, A.F. Nagy, D. Baker, R.P. Lin, Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. (2015). doi: 10.1007/s11214-015-0165-8
  21. R.P. Lin et al., A 3-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci. Rev. 71(1–4), 125–153 (1995) CrossRefADSGoogle Scholar
  22. R.P. Lin, D.W. Curtis, D.E. Larson, J.G. Luhmann, S.E. McBride, M.R. Maier, T. Moreau, C.S. Tindall, P. Turin, L. Wang, The STEREO IMPACT suprathermal electron (STE) instrument. Space Sci. Rev. (2008). doi: 10.1007/s11214-008-9330-7 Google Scholar
  23. P.R. Mahaffy, M. Benna, T. King et al., The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0091-1 zbMATHGoogle Scholar
  24. W.E. McClintock, N.M. Schneider, G.M. Holsclaw, J.T. Clarke, A.C. Hoskins, I. Stewart, F. Montmessin, R.V. Yelle, J. Deighan, The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0098-7 zbMATHGoogle Scholar
  25. J. McFadden, O. Kortmann, G.J. Dalton, R. Abiad, D. Curtis, R. Sterling, K. Hatch, P. Berg, C. Tiu, M. Marckwordt, R. Lin, B. Jakosky, The MAVEN suprathermal and thermal ion composition (STATIC) instrument. Space Sci. Rev. (2015) Google Scholar
  26. S.V. McKenna-Lawlor, V. Afonin, K.I. Gringauz, K. Kecskemety, E. Keppler, f.F. Kirsch, f.A. Richter, P. Rusznyak, K. Schwingenschuh, D. O’Sullivan, A.J. Somogyi, L. Szabo, A. Thompson, A. Varga, Ye. Yeroshenkoll, M. Witte, Energetic particle studies at Mars by SLED on Phobos-2. Adv. Space Res. 12(9), 231–241 (1992) CrossRefADSGoogle Scholar
  27. D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuna, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106(E10), 23419–23427 (2001). doi: 10.1029/2000JE001435 CrossRefADSGoogle Scholar
  28. D.D. Morgan, D.A. Gurnett, D.L. Kirchner, R.L. Huff, D.A. Brain, W.V. Boynton, M.H. Acuña, J.J. Plaut, G. Picardi, Solar control of radar wave absorption by the Martian ionosphere. Geophys. Res. Lett. 33, L13202 (2006). doi: 10.1029/2006GL026637 CrossRefADSGoogle Scholar
  29. R. Müller-Mellin, S. Böttcher, J. Falenski, E. Rode, L. Duvet, T. Sanderson, B. Butler, B. Johlander, H. Smit, The solar electron and proton telescope for the STEREO mission. Space Sci. Rev. 136(1–4), 363–389 (2008). doi: 10.1007/s11214-007-9204-4 CrossRefADSGoogle Scholar
  30. J.B. Reagan, T.M. Watt, Simultaneous satellite and radar studies of the D region ionosphere during the intense solar particle events of August 1972. J. Geophys. Res. 81(25), 4579–4596 (1976). doi: 10.1029/JA081i025p04579 CrossRefADSGoogle Scholar
  31. C. Zeitlin, T. Cleghorn, F. Cucinotta, P. Saganti, V. Andersen, K. Lee, L. Pinsky, W. Atwell, R. Turner, G. Badhwar, Overview of the Martian radiation environment experiment. Adv. Space Res. 33(12), 2204–2210 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Davin E. Larson
    • 1
  • Robert J. Lillis
    • 1
    Email author
  • Christina O. Lee
    • 1
  • Patrick A. Dunn
    • 1
  • Kenneth Hatch
    • 1
  • Miles Robinson
    • 1
  • David Glaser
    • 1
  • Jianxin Chen
    • 2
  • David Curtis
    • 1
  • Christopher Tiu
    • 1
  • Robert P. Lin
    • 1
  • Janet G. Luhmann
    • 1
  • Bruce M. Jakosky
    • 3
  1. 1.Space Science LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Baja Technology LLCTucsonUSA
  3. 3.Laboratory for Atmospheric and SpaceUniversity of ColoradoBoulderUSA

Personalised recommendations