Space Science Reviews

, Volume 196, Issue 1–4, pp 137–166 | Cite as

The Importance of Long-Term Synoptic Observations and Data Sets for Solar Physics and Helioseismology

  • Yvonne Elsworth
  • Anne-Marie Broomhall
  • Sanjay Gosain
  • Markus Roth
  • Stuart M. Jefferies
  • Frank Hill
Article

Abstract

A casual single glance at the Sun would not lead an observer to conclude that it varies. The discovery of the 11-year sunspot cycle was only made possible through systematic daily observations of the Sun over 150 years and even today historic sunspot drawings are used to study the behavior of past solar cycles. The origin of solar activity is still poorly understood as shown by the number of different models that give widely different predictions for the strength and timing of future cycles. Our understanding of the rapid transient phenomena related to solar activity, such as flares and coronal mass ejections (CMEs) is also insufficient and making reliable predictions of these events, which can adversely impact technology, remains elusive. There is thus still much to learn about the Sun and its activity that requires observations over many solar cycles. In particular, modern helioseismic observations of the solar interior currently span only 1.5 cycles, which is far too short to adequately sample the characteristics of the plasma flows that govern the dynamo mechanism underlying solar activity. In this paper, we review some of the long-term solar and helioseismic observations and outline some future directions.

Keywords

Sun Observations Helioseismology 

References

  1. G. Agnelli, A. Cacciani, M. Fofi, The magneto-optical filter. I—preliminary observations in Na D lines. Sol. Phys. 44, 509–518 (1975). doi:10.1007/BF00153229 ADSCrossRefGoogle Scholar
  2. J. Allison, I. Barnes, A.-M. Broomhall, W. Chaplin, G. Davies, Y. Elsworth, S. Hale, B. Jackson, B. Miller, R. New, S. Fletcher, BiSON update, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416 (2009), pp. 227–229 Google Scholar
  3. E.R. Anderson, T.L. Duvall Jr., S.M. Jefferies, Modeling of solar oscillation power spectra. Astrophys. J. 364, 699–705 (1990). doi:10.1086/169452 ADSCrossRefGoogle Scholar
  4. H.M. Antia, S. Basu, Temporal variations of the rotation rate in the solar interior. Astrophys. J. 541, 442–448 (2000). doi:10.1086/309421 ADSCrossRefGoogle Scholar
  5. H.M. Antia, S. Basu, Revisiting the solar tachocline: average properties and temporal variations. Astrophys. J. Lett. 735, 45 (2011). doi:10.1088/2041-8205/735/2/L45 ADSCrossRefGoogle Scholar
  6. T. Appourchaux, J. Leibacher, P. Boumier, On cross-spectrum capabilities for detecting stellar oscillation modes. Astron. Astrophys. 463, 1211–1214 (2007). doi:10.1051/0004-6361:20065271 ADSCrossRefGoogle Scholar
  7. K.T. Bachmann, O.R. White, Observations of hysteresis in solar cycle variations among seven solar activity indicators. Sol. Phys. 150, 347–357 (1994). doi:10.1007/BF00712896 ADSCrossRefGoogle Scholar
  8. C.S. Baldner, S. Basu, Solar cycle related changes at the base of the convection zone. Astrophys. J. 686, 1349–1361 (2008). doi:10.1086/591514 ADSCrossRefGoogle Scholar
  9. C.S. Baldner, J. Schou, Effects of asymmetric flows in solar convection on oscillation modes. Astrophys. J. Lett. 760, 1 (2012). doi:10.1088/2041-8205/760/1/L1 ADSCrossRefGoogle Scholar
  10. C.S. Baldner, H.M. Antia, S. Basu, T.P. Larson, Internal magnetic fields inferred from helioseismic data. Astron. Nachr. 331, 879–882 (2010). doi:10.1002/asna.201011418 ADSCrossRefGoogle Scholar
  11. B.R. Barkstrom, G.L. Smith, The Earth radiation budget experiment—science and implementation. Rev. Geophys. 24, 379–390 (1986). doi:10.1029/RG024i002p00379 ADSCrossRefGoogle Scholar
  12. S. Basu, A. Mandel, Does solar structure vary with solar magnetic activity? Astrophys. J. Lett. 617, 155–158 (2004). doi:10.1086/427435 ADSCrossRefGoogle Scholar
  13. S. Basu, H.M. Antia, R.S. Bogart, Structure of the near-surface layers of the Sun: asphericity and time variation. Astrophys. J. 654, 1146–1165 (2007). doi:10.1086/509251 ADSCrossRefGoogle Scholar
  14. S. Basu, A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, Thinning of the Sun’s magnetic layer: the peculiar solar minimum could have been predicted. Astrophys. J. 758, 43 (2012). doi:10.1088/0004-637X/758/1/43 ADSCrossRefGoogle Scholar
  15. S. Basu, A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, G.R. Davies, J. Schou, T.P. Larson, Comparing the internal structure of the Sun during the cycle 23 and cycle 24 minima, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), p. 161 Google Scholar
  16. J.M. Beckers, T.M. Brown, The history of the Fourier tachometer, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), p. 93 Google Scholar
  17. E.E. Benevolenskaya, Double magnetic cycle of solar activity. Sol. Phys. 161, 1–8 (1995). doi:10.1007/BF00732080 ADSCrossRefGoogle Scholar
  18. J.R. Brookes, G.R. Isaak, H.B. van der Raay, Observation of free oscillations of the Sun. Nature 259, 92–95 (1976). doi:10.1038/259092a0 ADSCrossRefGoogle Scholar
  19. J.R. Brookes, G.R. Isaak, H.B. van der Raay, A resonant-scattering solar spectrometer. Mon. Not. R. Astron. Soc. 185, 1–18 (1978) ADSCrossRefGoogle Scholar
  20. A. Broomhall, W.J. Chaplin, Y. Elsworth, S.T. Fletcher, R. New, Is the current lack of solar activity only skin deep? Astrophys. J. Lett. 700, 162–165 (2009). doi:10.1088/0004-637X/700/2/L162 ADSCrossRefGoogle Scholar
  21. A. Broomhall, S.T. Fletcher, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. Garcia, A. Jimenez, R. New, Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo? ArXiv e-prints (2010) Google Scholar
  22. A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, R. Simoniello, Quasi-biennial variations in helioseismic frequencies: can the source of the variation be localized? Mon. Not. R. Astron. Soc. 420, 1405–1414 (2012). doi:10.1111/j.1365-2966.2011.20123.x ADSCrossRefGoogle Scholar
  23. A.S. Brun, M.K. Browning, M. Dikpati, H. Hotta, A. Strugarek, Recent advances on solar global magnetism and variability. Space Sci. Rev. (2013). doi:10.1007/s11214-013-0028-0 Google Scholar
  24. A. Cacciani, M. Fofi, The magneto-optical filter. II—velocity field measurements. Sol. Phys. 59, 179–189 (1978). doi:10.1007/BF00154941 ADSCrossRefGoogle Scholar
  25. A. Cacciani, S.M. Jefferies, W. Finsterle, P. Rapex, A. Knox, C. Giebink, V. di Martino, A new instrument for sounding the solar atmosphere, in GONG+ 2002. Local and Global Helioseismology: The Present and Future, ed. by H. Sawaya-Lacoste. ESA Special Publication, vol. 517 (2003), pp. 243–245 Google Scholar
  26. P.S. Cally, Magnetic and thermal phase shifts in the local helioseismology of sunspots. Mon. Not. R. Astron. Soc. 395, 1309–1318 (2009). doi:10.1111/j.1365-2966.2009.14708.x ADSCrossRefGoogle Scholar
  27. W.J. Chaplin, Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, B.A. Miller, H.B. van der Raay, S.J. Wheeler, R. New, BiSON performance. Sol. Phys. 168, 1–18 (1996). doi:10.1007/BF00145821 ADSCrossRefGoogle Scholar
  28. W.J. Chaplin, Y. Elsworth, G.R. Isaak, R. Lines, C.P. McLeod, B.A. Miller, R. New, An analysis of solar p-mode frequencies extracted from BiSON data: 1991–1996. Mon. Not. R. Astron. Soc. 300, 1077–1090 (1998) ADSCrossRefGoogle Scholar
  29. W.J. Chaplin, Y. Elsworth, G.R. Isaak, B.A. Miller, R. New, Variations in the excitation and damping of low-l solar p modes over the solar activity cycle. Mon. Not. R. Astron. Soc. 313, 32–42 (2000). doi:10.1046/j.1365-8711.2000.03176.x ADSCrossRefGoogle Scholar
  30. W.J. Chaplin, T. Appourchaux, Y. Elsworth, G.R. Isaak, R. New, The phenomenology of solar-cycle-induced acoustic eigenfrequency variations: a comparative and complementary analysis of GONG, BiSON and VIRGO/LOI data. Mon. Not. R. Astron. Soc. 324, 910–916 (2001). doi:10.1046/j.1365-8711.2001.04357.x ADSCrossRefGoogle Scholar
  31. W.J. Chaplin, Y. Elsworth, G.R. Isaak, B.A. Miller, R. New, The solar cycle as seen by low-l p-mode frequencies: comparison with global and decomposed activity proxies. Mon. Not. R. Astron. Soc. 352, 1102–1108 (2004). doi:10.1111/j.1365-2966.2004.07998.x ADSCrossRefGoogle Scholar
  32. G.A. Chapman, A.M. Cookson, D.G. Preminger, Modeling total solar irradiance with San Fernando observatory ground-based photometry: comparison with ACRIM, PMOD, and RMIB composites. Sol. Phys. 283, 295–305 (2013). doi:10.1007/s11207-013-0233-8 ADSCrossRefGoogle Scholar
  33. D.-Y. Chou, M.-T. Sun, T.-Y. Huang, S.-P. Lai, P.-J. Chi, K.-T. Ou, C.-C. Wang, J.-Y. Lu, A.-L. Chu, C.-S. Niu, T.-M. Mu, K.-R. Chen, Y.-P. Chou, A. Jimenez, M.C. Rabello-Soares, H. Chao, G. Ai, G.-P. Wang, H. Zirin, W. Marquette, J. Nenow, Taiwan oscillation network. Sol. Phys. 160, 237–243 (1995). doi:10.1007/BF00732806 ADSCrossRefGoogle Scholar
  34. J. Christensen-Dalsgaard, G. Berthomieu, Theory of Solar Oscillations (Solar Interior and Atmosphere, 1991), pp. 401–478 Google Scholar
  35. M. Cimino, A. Cacciani, N. Sopranzi, An instrument to measure solar magnetic fields by an atomic-beam method. Sol. Phys. 3, 618–622 (1968). doi:10.1007/BF00151943 ADSCrossRefGoogle Scholar
  36. F. Clette, L. Svalgaard, E.W. Cliver, J.M. Vaquero, L. Lefèvre, The new sunspot and group numbers: a full recalibration, in IAU General Assembly, vol. 22 (2015), p. 49591 Google Scholar
  37. M. Dasi-Espuig, J. Jiang, N.A. Krivova, S.K. Solanki, Modelling total solar irradiance since 1878 from simulated magnetograms. Astron. Astrophys. 570, 23 (2014). doi:10.1051/0004-6361/201424290 ADSCrossRefGoogle Scholar
  38. G.R. Davies, W.J. Chaplin, Y. Elsworth, S.J. Hale, BiSON data preparation: a correction for differential extinction and the weighted averaging of contemporaneous data. Mon. Not. R. Astron. Soc. 441, 3009–3017 (2014). doi:10.1093/mnras/stu803 ADSCrossRefGoogle Scholar
  39. V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–37 (1995). doi:10.1007/BF00733425 ADSCrossRefGoogle Scholar
  40. Y. Elsworth, A.-M. Broomhall, W. Chaplin, Helioseismology—a clear view of the interior, in IAU Symposium, ed. by C.H. Mandrini, D.F. Webb. IAU Symposium, vol. 286 (2012), pp. 77–87. doi:10.1017/S174392131200467X Google Scholar
  41. Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, R. New, Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324 (1990). doi:10.1038/345322a0 ADSCrossRefGoogle Scholar
  42. Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, B.A. Miller, R. New, C.C. Speake, S.J. Wheeler, Solar p-mode frequencies and their dependence on solar activity recent results from the BISON network. Astrophys. J. 434, 801–806 (1994). doi:10.1086/174783 ADSCrossRefGoogle Scholar
  43. O. Espagnet, R. Muller, T. Roudier, N. Mein, P. Mein, Penetration of the solar granulation into the photosphere: height dependence of intensity and velocity fluctuations. Astron. Astrophys. Suppl. Ser. 109, 79–108 (1995) ADSGoogle Scholar
  44. W. Finsterle, S.M. Jefferies, A. Cacciani, P. Rapex, S.W. McIntosh, Helioseismic mapping of the magnetic canopy in the solar chromosphere. Astrophys. J. Lett. 613, 185–188 (2004a). doi:10.1086/424996 ADSCrossRefGoogle Scholar
  45. W. Finsterle, S.M. Jefferies, A. Cacciani, P. Rapex, C. Giebink, A. Knox, V. Dimartino, Seismology of the solar atmosphere. Sol. Phys. 220, 317–331 (2004b). doi:10.1023/B:SOLA.0000031397.73790.7b ADSCrossRefGoogle Scholar
  46. B. Fleck, F.-L. Deubner, Dynamics of the solar atmosphere. II—standing waves in the solar chromosphere. Astron. Astrophys. 224, 245–252 (1989) ADSGoogle Scholar
  47. S.T. Fletcher, W.J. Chaplin, Y. Elsworth, R. New, Efficient pseudo-global fitting for helioseismic data. Astrophys. J. 694, 144–150 (2009). doi:10.1088/0004-637X/694/1/144 ADSCrossRefGoogle Scholar
  48. S.T. Fletcher, A. Broomhall, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. García, R. New, A seismic signature of a second dynamo? Astrophys. J. Lett. 718, 19–22 (2010). doi:10.1088/2041-8205/718/1/L19 ADSCrossRefGoogle Scholar
  49. J.M. Fontenla, J. Harder, W. Livingston, M. Snow, T. Woods, High-resolution solar spectral irradiance from extreme ultraviolet to far infrared. J. Geophys. Res., Atmos. 116(D15), 20108 (2011). doi:10.1029/2011JD016032 ADSCrossRefGoogle Scholar
  50. J.M. Fontenla, E. Landi, M. Snow, T. Woods, Far- and extreme-UV solar spectral irradiance and radiance from simplified atmospheric physical models. Sol. Phys. 289, 515–544 (2014). doi:10.1007/s11207-013-0431-4 ADSCrossRefGoogle Scholar
  51. E. Fossat, I.R.I.S.: a network for full disk helioseismology, in Seismology of the Sun and Sun-Like Stars, ed. by E.J. Rolfe. ESA Special Publication, vol. 286 (1988), pp. 161–162 Google Scholar
  52. E. Fossat, Early South Pole observations and the IRIS network: the quarter century history of a small sodium cell, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), p. 73 Google Scholar
  53. P. Foukal, A new look at solar irradiance variation. Sol. Phys. 279, 365–381 (2012). doi:10.1007/s11207-012-0017-6 ADSCrossRefGoogle Scholar
  54. C. Fröhlich, Solar irradiance variability since 1978. Revision of the PMOD composite during solar cycle 21. Space Sci. Rev. 125, 53–65 (2006). doi:10.1007/s11214-006-9046-5 ADSCrossRefGoogle Scholar
  55. C. Fröhlich, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237–252 (2013). doi:10.1007/s11214-011-9780-1 ADSCrossRefGoogle Scholar
  56. C. Fröhlich, J. Romero, H. Roth, C. Wehrli, B.N. Andersen, T. Appourchaux, V. Domingo, U. Telljohann, G. Berthomieu, P. Delache, J. Provost, T. Toutain, D.A. Crommelynck, A. Chevalier, A. Fichot, W. Däppen, D. Gough, T. Hoeksema, A. Jiménez, M.F. Gómez, J.M. Herreros, T.R. Cortés, A.R. Jones, J.M. Pap, R.C. Willson, VIRGO: experiment for helioseismology and solar irradiance monitoring. Sol. Phys. 162, 101–128 (1995). doi:10.1007/BF00733428 ADSCrossRefGoogle Scholar
  57. A.H. Gabriel, G. Grec, J. Charra, J. Robillot, T. Roca Cortés, S. Turck-Chièze, R. Bocchia, P. Boumier, M. Cantin, E. Cespédes, B. Cougrand, J. Crétolle, L. Damé, M. Decaudin, P. Delache, N. Denis, R. Duc, H. Dzitko, E. Fossat, J. Fourmond, R.A. García, D. Gough, C. Grivel, J.M. Herreros, H. Lagardère, J. Moalic, P.L. Pallé, N. Pétrou, M. Sanchez, R. Ulrich, H.B. van der Raay, Global oscillations at low frequency from the SOHO mission (GOLF). Sol. Phys. 162, 61–99 (1995). doi:10.1007/BF00733427 ADSCrossRefGoogle Scholar
  58. R.A. García, S.J. Jiménez-Reyes, S. Turck-Chièze, S. Mathur, Helioseismology from the blue and red wings of the NA profile as seen by GOLF, in SOHO 14 Helio- and Asteroseismology: Towards a Golden Future, ed. by D. Danesy. ESA Special Publication, vol. 559 (2004), p. 432 Google Scholar
  59. R.A. García, S. Mathur, I. González Hernández, A. Jiménez, Spatial cross spectrum: reducing incoherent convective background of resolved helioseismic instruments, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416 (2009), p. 297 Google Scholar
  60. L. Gizon, A.C. Birch, Local helioseismology. Living Rev. Sol. Phys. 2, 6 (2005). doi:10.12942/lrsp-2005-6 ADSCrossRefGoogle Scholar
  61. I. González Hernández, R. Howe, R. Komm, F. Hill, Meridional circulation during the extended solar minimum: another component of the torsional oscillation? Astrophys. J. Lett. 713, 16–20 (2010). doi:10.1088/2041-8205/713/1/L16 ADSCrossRefGoogle Scholar
  62. G. Grec, E. Fossat, B. Gelly, F.X. Schmider, The IRIS sodium cell instrument. Sol. Phys. 133, 13–30 (1991). doi:10.1007/BF00149819 ADSCrossRefGoogle Scholar
  63. M. Haberreiter, S. Wedemeyer-Boehm, M. Rast, NLTE spectral synthesis based on 3D MHD convection simulations—understanding the role of the magnetic field in intensity variations, in 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38 (2010), p. 132 Google Scholar
  64. S.C. Hansen, P.S. Cally, Time-distance seismology and the solar transition region. Sol. Phys. 289, 4425–4432 (2014). doi:10.1007/s11207-014-0600-0 ADSCrossRefGoogle Scholar
  65. J. Harder, J. Fontenla, M. Rast, P. Pilewskie, T. Woods, Measured and modeled trends in solar spectral irradiance variability in the visible and infrared, in 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38 (2010), p. 16 Google Scholar
  66. J. Harvey, R. Tucker, L. Britanik, High resolution upgrade of the GONG instruments, in Structure and Dynamics of the Interior of the Sun and Sun-Like Stars, ed. by S. Korzennik. ESA Special Publication, vol. 418 (1998), p. 209 Google Scholar
  67. J.W. Harvey, Solar/stellar seismology instruments. Trans. Int. Astron. Union 19, 51–56 (1985) Google Scholar
  68. J.W. Harvey, F. Hill, R.P. Hubbard, J.R. Kennedy, J.W. Leibacher, J.A. Pintar, P.A. Gilman, R.W. Noyes, A.M. Title, J. Toomre, R.K. Ulrich, A. Bhatnagar, J.A. Kennewell, W. Marquette, J. Patron, O. Saa, E. Yasukawa, The Global Oscillation Network Group (GONG) project. Science 272, 1284–1286 (1996). doi:10.1126/science.272.5266.1284 ADSCrossRefGoogle Scholar
  69. J.R. Hickey, L.L. Stowe, H. Jacobowitz, P. Pellegrino, R.H. Maschhoff, F. House, T.H. Vonder Haar, Initial solar irradiance determinations from Nimbus 7 cavity radiometer measurements. Science 208, 281–283 (1980). doi:10.1126/science.208.4441.281 ADSCrossRefGoogle Scholar
  70. F. Hill, The future of helioseismology, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416 (2009), p. 557 Google Scholar
  71. F. Hill, G. Newkirk Jr., On the expected performance of a solar oscillation network. Sol. Phys. 95, 201–219 (1985). doi:10.1007/BF00152398 ADSCrossRefGoogle Scholar
  72. F. Hill, M.J. Thompson, M. Roth, Workshop report: a new synoptic solar observing network. Space Weather 11, 392–393 (2013). doi:10.1002/swe.20068 ADSCrossRefGoogle Scholar
  73. F. Hill, G. Fischer, J. Grier, J.W. Leibacher, H.B. Jones, P.P. Jones, R. Kupke, R.T. Stebbins, The global oscillation network group site survey. 1: data collection and analysis methods. Sol. Phys. 152, 321–349 (1994a). doi:10.1007/BF00680443 ADSCrossRefGoogle Scholar
  74. F. Hill, G. Fischer, S. Forgach, J. Grier, J.W. Leibacher, H.P. Jones, P.B. Jones, R. Kupke, R.T. Stebbins, D.W. Clay, The global oscillation network group site survey, 2: results. Sol. Phys. 152, 351–379 (1994b). doi:10.1007/BF00680444 ADSCrossRefGoogle Scholar
  75. F. Hill, C.S. Baldner, R.A. García, M. Roth, H. Schunker, Where to go from here: the future of helio- and astero-seismology, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), pp. 401–408 Google Scholar
  76. R. Howe, R. Komm, F. Hill, Solar cycle changes in GONG P-mode frequencies, 1995–1998. Astrophys. J. 524, 1084–1095 (1999). doi:10.1086/307851 ADSCrossRefGoogle Scholar
  77. R. Howe, R.W. Komm, F. Hill, Localizing the solar cycle frequency shifts in global p-modes. Astrophys. J. 580, 1172–1187 (2002). doi:10.1086/343892 ADSCrossRefGoogle Scholar
  78. R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000). doi:10.1126/science.287.5462.2456 ADSCrossRefGoogle Scholar
  79. R. Howe, R. Komm, F. Hill, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, J. Toomre, Rotation-rate variations at the tachocline: an update. J. Phys. Conf. Ser. 271(1), 012075 (2011). doi:10.1088/1742-6596/271/1/012075 ADSCrossRefGoogle Scholar
  80. R. Howe, G.R. Davies, W.J. Chaplin, Y.P. Elsworth, S.J. Hale, Validation of solar-cycle changes in low-degree helioseismic parameters from the Birmingham Solar-Oscillations Network. Mon. Not. R. Astron. Soc. 454, 4120–4141 (2015). doi:10.1093/mnras/stv2210 ADSCrossRefGoogle Scholar
  81. K. Jain, S.C. Tripathy, A. Bhatnagar, Solar cycle-induced variations in GONG P-mode frequencies and splittings. Astrophys. J. 542, 521–527 (2000). doi:10.1086/309508 ADSCrossRefGoogle Scholar
  82. K. Jain, S.C. Tripathy, F. Hill, Solar activity phases and intermediate-degree mode frequencies. Astrophys. J. 695, 1567–1576 (2009). doi:10.1088/0004-637X/695/2/1567 ADSCrossRefGoogle Scholar
  83. K. Jain, S.C. Tripathy, F. Hill, How peculiar was the recent extended minimum: a hint toward double minima. Astrophys. J. 739, 6 (2011). doi:10.1088/0004-637X/739/1/6 ADSCrossRefGoogle Scholar
  84. K. Jain, F. Hill, S.C. Tripathy, H.M. Antia, J.D. Armstrong, S.M. Jefferies, E.J. Rhodes Jr., P.J. Rose, A comparison of acoustic mode parameters using multi-spectral data, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624 (2006a), p. 103 Google Scholar
  85. K. Jain, F. Hill, I. González Hernández, C.G. Toner, S.C. Tripathy, J.D. Armstrong, S.M. Jefferies, Does the inference of solar subsurface flow change with choice of the spectral line?, in Proceedings of SOHO 18/GONG 2006/HELAS I, Beyond the Spherical Sun. ESA Special Publication, vol. 624 (2006b), p. 127 Google Scholar
  86. K. Jain, F. Hill, S.C. Tripathy, I. González-Hernández, J.D. Armstrong, S.M. Jefferies, E.J. Rhodes Jr., P. Rose, Multi-spectral analysis of acoustic mode characteristics in active regions, in Subsurface and Atmospheric Influences on Solar Activity, ed. by R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie. Astronomical Society of the Pacific Conference Series, vol. 383 (2008), p. 389 Google Scholar
  87. K. Jain, S. Tripathy, F. Hill, T. Larson, Solar oscillations in cycle 24 ascending. J. Phys. Conf. Ser. 440(1), 012023 (2013). doi:10.1088/1742-6596/440/1/012023 ADSCrossRefGoogle Scholar
  88. R. Jain, S.C. Tripathy, F.T. Watson, L. Fletcher, K. Jain, F. Hill, Variation of solar oscillation frequencies in solar cycle 23 and their relation to sunspot area and number. Astron. Astrophys. 545, 73 (2012). doi:10.1051/0004-6361/201219876 ADSCrossRefGoogle Scholar
  89. S.M. Jefferies, M. Hart, Deconvolution from wave front sensing using the frozen flow hypothesis. Opt. Express 19, 1975 (2011). doi:10.1364/OE.19.001975 ADSCrossRefGoogle Scholar
  90. S.M. Jefferies, M.A. Pomerantz, T.L. Duvall Jr., J.W. Harvey, D.B. Jaksha, Helioseismology from the South Pole: comparison of 1987 and 1981 results, in Seismology of the Sun and Sun-Like Stars, ed. by E.J. Rolfe. ESA Special Publication, vol. 286 (1988), pp. 279–284 Google Scholar
  91. S.M. Jefferies, S.W. McIntosh, J.D. Armstrong, T.J. Bogdan, A. Cacciani, B. Fleck, Magnetoacoustic portals and the basal heating of the solar chromosphere. Astrophys. J. Lett. 648, 151–155 (2006). doi:10.1086/508165 ADSCrossRefGoogle Scholar
  92. S.M. Jefferies, D.A. Hope, M. Hart, J.G. Nagy, High-resolution imaging through strong atmospheric turbulence, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8890 (2013a), p. 1. doi:10.1117/12.2028193 Google Scholar
  93. S.M. Jefferies, D. Hope, M. Hart, J. Nagy, High-resolution imaging through strong atmospheric turbulence and over wide fields of view, in Advanced Maui Optical and Space Surveillance Technologies Conference (2013b), p. 52 Google Scholar
  94. S.J. Jiménez-Reyes, T. Corbard, P.L. Pallé, T. Roca Cortés, S. Tomczyk, Analysis of the solar cycle and core rotation using 15 years of Mark-I observations: 1984–1999 . I. The solar cycle. Astron. Astrophys. 379, 622–633 (2001). doi:10.1051/0004-6361:20011374 ADSCrossRefGoogle Scholar
  95. S.J. Jiménez-Reyes, R.A. García, A. Jiménez, W.J. Chaplin, Excitation and damping of low-degree solar p-modes during activity cycle 23: analysis of GOLF and VIRGO Sun photometer data. Astrophys. J. 595, 446–457 (2003). doi:10.1086/377304 ADSCrossRefGoogle Scholar
  96. S.J. Jiménez-Reyes, W.J. Chaplin, Y. Elsworth, R.A. García, Tracing the “acoustic” solar cycle: a direct comparison of BiSON and GOLF low-l p-mode variations. Astrophys. J. 604, 969–976 (2004). doi:10.1086/381936 ADSCrossRefGoogle Scholar
  97. S.J. Jiménez-Reyes, W.J. Chaplin, Y. Elsworth, R.A. García, R. Howe, H. Socas-Navarro, T. Toutain, On the variation of the peak asymmetry of low-l solar p modes. Astrophys. J. 654, 1135–1145 (2007). doi:10.1086/509700 ADSCrossRefGoogle Scholar
  98. H.P. Jones, G.A. Chapman, K.L. Harvey, J.M. Pap, D.G. Preminger, M.J. Turmon, S.R. Walton, A comparison of feature classification methods for modeling solar irradiance variation. Sol. Phys. 248, 323–337 (2008). doi:10.1007/s11207-007-9069-4 ADSCrossRefGoogle Scholar
  99. S.L. Keil, S.P. Worden, Variations in the solar calcium K line 1976–1982. Astrophys. J. 276, 766–781 (1984). doi:10.1086/161663 ADSCrossRefGoogle Scholar
  100. C. Kiess, R. Rezaei, W. Schmidt, Properties of sunspot umbrae observed in cycle 24. Astron. Astrophys. 565, 52 (2014). doi:10.1051/0004-6361/201321119 ADSCrossRefGoogle Scholar
  101. R. Komm, R. Howe, F. Hill, Localizing width and energy of solar global p-modes. Astrophys. J. 572, 663–673 (2002). doi:10.1086/340196 ADSCrossRefGoogle Scholar
  102. R.W. Komm, R. Howe, F. Hill, Solar-cycle changes in GONG P-mode widths and amplitudes 1995–1998. Astrophys. J. 531, 1094–1108 (2000a). doi:10.1086/308518 ADSCrossRefGoogle Scholar
  103. R.W. Komm, R. Howe, F. Hill, Width and energy of solar p-modes observed by global oscillation network group. Astrophys. J. 543, 472–485 (2000b). doi:10.1086/317101 ADSCrossRefGoogle Scholar
  104. R. Komm, R. Howe, I. González Hernández, F. Hill, Solar-cycle variation of subsurface zonal flow. Sol. Phys. 289, 3435–3455 (2014). doi:10.1007/s11207-014-0490-1 ADSCrossRefGoogle Scholar
  105. R. Komm, I. González Hernández, R. Howe, F. Hill, Subsurface zonal and meridional flow derived from GONG and SDO/HMI: a comparison of systematics. Sol. Phys. 290, 1081–1104 (2015). doi:10.1007/s11207-015-0663-6 ADSCrossRefGoogle Scholar
  106. A. Kosovichev, J. Zhao, T. Sekii, K. Nagashima, U. Mitra-Kraev, New results of high-resolution helioseismology from Hinode, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416 (2009), p. 41 Google Scholar
  107. H.L. Kyle, D.V. Hoyt, J.R. Hickey, A review of the Nimbus-7 ERB solar dataset. Sol. Phys. 152, 9–12 (1994). doi:10.1007/BF01473176 ADSCrossRefGoogle Scholar
  108. J.L. Lean, J. Cook, W. Marquette, A. Johannesson, Magnetic sources of the solar irradiance cycle. Astrophys. J. 492, 390–401 (1998). doi:10.1086/305015 ADSCrossRefGoogle Scholar
  109. S. Lefebvre, R.A. García, S.J. Jiménez-Reyes, S. Turck-Chièze, S. Mathur, Variations of the solar granulation motions with height using the GOLF/SoHO experiment. Astron. Astrophys. 490, 1143–1149 (2008). doi:10.1051/0004-6361:200810344 ADSCrossRefGoogle Scholar
  110. K.G. Libbrecht, M.F. Woodard, Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782 (1990). doi:10.1038/345779a0 ADSCrossRefGoogle Scholar
  111. H. Lin, J.R. Kuhn, An imaging, tunable magneto-optical filter. Sol. Phys. 122, 365–380 (1989). doi:10.1007/BF00913002 ADSCrossRefGoogle Scholar
  112. W. Livingston, M.J. Penn, L. Svalgaard, Decreasing sunspot magnetic fields explain unique 10.7 cm radio flux. Astrophys. J. Lett. 757, 8 (2012). doi:10.1088/2041-8205/757/1/L8 ADSCrossRefGoogle Scholar
  113. W. Livingston, J. Harvey, O. Malanushenko, L. Webster, Sunspot magnetic fields measured up to 6000 Gauss, in IAU Joint Discussion. IAU Joint Discussion, vol. 3 (2006), p. 54 Google Scholar
  114. B. Löptien, A.C. Birch, L. Gizon, J. Schou, T. Appourchaux, J. Blanco Rodríguez, P.S. Cally, C. Dominguez-Tagle, A. Gandorfer, F. Hill, J. Hirzberger, P.H. Scherrer, S.K. Solanki, Helioseismology with Solar Orbiter. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0065-3 Google Scholar
  115. B.W. Mihalas, J. Toomre, Internal gravity waves in the solar atmosphere. I—adiabatic waves in the chromosphere. Astrophys. J. 249, 349–371 (1981). doi:10.1086/159293 ADSCrossRefGoogle Scholar
  116. U. Mitra-Kraev, A.G. Kosovichev, T. Sekii, Properties of high-degree oscillation modes of the Sun observed with Hinode/SOT. Astron. Astrophys. 481, 1–4 (2008). doi:10.1051/0004-6361:20079042 ADSCrossRefGoogle Scholar
  117. H. Moradi, P.S. Cally, Helioseismic implications of mode conversion, in Fifty Years of Seismology of the Sun and Stars, ed. by K. Jain, S.C. Tripathy, F. Hill, J.W. Leibacher, A.A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 478 (2013), p. 263 Google Scholar
  118. K. Mursula, B. Zieger, J.H. Vilppola, Mid-term quasi-periodicities in geomagnetic activity during the last 15 solar cycles: connection to solar dynamo strength to the memory of Karolen I. Paularena (1957–2001). Sol. Phys. 212, 201–207 (2003). doi:10.1023/A:1022980029618 ADSCrossRefGoogle Scholar
  119. K. Nagashima, T. Sekii, A.G. Kosovichev, J. Zhao, T.D. Tarbell, Helioseismic signature of chromospheric downflows in acoustic travel-time measurements from Hinode. Astrophys. J. Lett. 694, 115–119 (2009). doi:10.1088/0004-637X/694/2/L115 ADSCrossRefGoogle Scholar
  120. P.L. Pallé, C. Régulo, T. Roca Cortés, Solar cycle induced variations of the low L solar acoustic spectrum. Astron. Astrophys. 224, 253–258 (1989) ADSGoogle Scholar
  121. P.L. Pallé, F. Grundahl, A. Triviño Hage, J. Christensen-Dalsgaard, S. Frandsen, R.A. García, K. Uytterhoeven, M.F. Andersen, P.K. Rasmussen, A.N. Sørensen, H. Kjeldsen, P. Spano, H. Nilsson, H. Hartman, U.G. Jørgensen, J. Skottfelt, K. Harpsøe, M.I. Andersen, Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph: results from a 1-week campaign. J. Phys. Conf. Ser. 440(1), 012051 (2013). doi:10.1088/1742-6596/440/1/012051 ADSCrossRefGoogle Scholar
  122. J.M. Pap, H. Jones, D. Parker, G. Chapman, L. Floyd, Solar irradiance variations related to intensity and magnetic flux of solar features, in 38th COSPAR Scientific Assembly. COSPAR Meeting, vol. 38 (2010), p. 1783 Google Scholar
  123. W.D. Pesnell, Predictions of solar cycle 24. Sol. Phys. 252, 209–220 (2008). doi:10.1007/s11207-008-9252-2 ADSCrossRefGoogle Scholar
  124. G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: observations and models. Space Sci. Rev. 186, 325–357 (2014). doi:10.1007/s11214-014-0064-4 ADSCrossRefGoogle Scholar
  125. M.C. Rabello-Soares, Characterization of solar-cycle induced frequency shift of medium- and high-degree acoustic modes. J. Phys. Conf. Ser. 271(1), 012026 (2011). doi:10.1088/1742-6596/271/1/012026 ADSCrossRefGoogle Scholar
  126. M.C. Rabello-Soares, S.G. Korzennik, J. Schou, Variations of the solar acoustic high-degree mode frequencies over solar cycle 23. Adv. Space Res. 41, 861–867 (2008). doi:10.1016/j.asr.2007.03.014 ADSCrossRefGoogle Scholar
  127. E.J. Rhodes Jr., J. Reiter, J. Schou, Solar cycle variability of high-frequency and high-degree p-mode oscillation frequencies, in From Solar Min to Max: Half a Solar Cycle with SOHO, ed. by A. Wilson. ESA Special Publication, vol. 508 (2002), pp. 37–40 Google Scholar
  128. E.J. Rhodes, J. Reiter, J. Schou, T. Larson, P. Scherrer, J. Brooks, P. McFaddin, B. Miller, J. Rodriguez, J. Yoo, Temporal changes in the frequencies of the solar p-mode oscillations during solar cycle 23, in IAU Symposium, ed. by D. Prasad Choudhary, K.G. Strassmeier. IAU Symposium, vol. 273 (2011), pp. 389–393. doi:10.1017/S1743921311015614 Google Scholar
  129. M. Roth, The future of helioseismology. Contrib. Astron. Obs. Skaln. Pleso 41, 156–166 (2011) ADSGoogle Scholar
  130. D. Salabert, R.A. García, S. Turck-Chièze, Seismic sensitivity to sub-surface solar activity from 18 yr of GOLF/SoHO observations. Astron. Astrophys. 578, 137 (2015). doi:10.1051/0004-6361/201425236 ADSCrossRefGoogle Scholar
  131. D. Salabert, R.A. García, P.L. Pallé, S.J. Jiménez-Reyes, The onset of solar cycle 24. What global acoustic modes are telling us. Astron. Astrophys. 504, 1–4 (2009). doi:10.1051/0004-6361/200912736 ADSCrossRefGoogle Scholar
  132. J.D. Scargle, S.L. Keil, S.P. Worden, Solar cycle variability and surface differential rotation from Ca II K-line time series data. Astrophys. J. 771, 33 (2013). doi:10.1088/0004-637X/771/1/33 ADSCrossRefGoogle Scholar
  133. P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer, T.D. Tarbell, A. Title, C.J. Wolfson, I. Zayer, MDI Engineering Team, The solar oscillations investigation—Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995). doi:10.1007/BF00733429 ADSCrossRefGoogle Scholar
  134. R. Simoniello, W. Finsterle, D. Salabert, R.A. García, S. Turck-Chièze, A. Jiménez, M. Roth, The quasi-biennial periodicity (QBP) in velocity and intensity helioseismic observations. The seismic QBP over solar cycle 23. Astron. Astrophys. 539, 135 (2012). doi:10.1051/0004-6361/201118057 ADSCrossRefGoogle Scholar
  135. R. Simoniello, K. Jain, S.C. Tripathy, S. Turck-Chièze, C. Baldner, W. Finsterle, F. Hill, M. Roth, The Quasi-biennial Periodicity as a window on the solar magnetic dynamo configuration. Astrophys. J. 765, 100 (2013). doi:10.1088/0004-637X/765/2/100 ADSCrossRefGoogle Scholar
  136. S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084–1087 (2004). doi:10.1038/nature02995 ADSCrossRefGoogle Scholar
  137. J. Staiger, A multiline spectrometer for the analysis of solar atmospheric oscillations and flows at the VTT, Tenerife. Astron. Astrophys. 535, 83 (2011). doi:10.1051/0004-6361/201117500 ADSCrossRefGoogle Scholar
  138. T. Straus, B. Fleck, S.M. Jefferies, G. Cauzzi, S.W. McIntosh, K. Reardon, G. Severino, M. Steffen, The energy flux of internal gravity waves in the lower solar atmosphere. Astrophys. J. Lett. 681, 125–128 (2008). doi:10.1086/590495 ADSCrossRefGoogle Scholar
  139. L. Svalgaard, How well do we know the sunspot number?, in IAU Symposium, ed. by C.H. Mandrini, D.F. Webb. IAU Symposium, vol. 286 (2012), pp. 27–33. doi:10.1017/S1743921312004590 Google Scholar
  140. L. Svalgaard, Y. Kamide, Asymmetric solar polar field reversals. Astrophys. J. 763, 23 (2013). doi:10.1088/0004-637X/763/1/23 ADSCrossRefGoogle Scholar
  141. L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, 1104 (2005). doi:10.1029/2004GL021664 ADSCrossRefGoogle Scholar
  142. M.J. Thompson, Evidence for a thin perturbative layer near the base of the solar convection zone, in Seismology of the Sun and Sun-Like Stars, ed. by E.J. Rolfe. ESA Special Publication, vol. 286 (1988), pp. 321–324 Google Scholar
  143. S. Tomczyk, A. Cacciani, S.A. Veitzer, LOWL—an instrument to observe low-degree solar oscillations, in GONG 1992. Seismic Investigation of the Sun and Stars, ed. by T.M. Brown. Astronomical Society of the Pacific Conference Series, vol. 42 (1993), p. 469 Google Scholar
  144. S. Tomczyk, K. Streander, G. Card, D. Elmore, H. Hull, A. Cacciani, An instrument to observe low-degree solar oscillations. Sol. Phys. 159, 1–21 (1995). doi:10.1007/BF00733027 ADSCrossRefGoogle Scholar
  145. J. Toomre, M.J. Thompson, Prospects and challenges for helioseismology. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0147-x Google Scholar
  146. S.C. Tripathy, K. Jain, F. Hill, Acoustic mode frequencies of the Sun during the minimum phase between solar cycles 23 and 24. Sol. Phys. 282, 1–13 (2013). doi:10.1007/s11207-012-0130-6 ADSCrossRefGoogle Scholar
  147. S.C. Tripathy, K. Jain, F. Hill, Variations in high degree acoustic mode frequencies of the Sun during solar cycle 23 and 24. Astrophys. J. 812 (2015), article id. 20. doi:10.1088/0004-637X/812/1/20
  148. S.C. Tripathy, B. Kumar, K. Jain, A. Bhatnagar, Analysis of hysteresis effect in p-mode frequency shifts and solar activity indices. Sol. Phys. 200, 3–10 (2001). doi:10.1023/A:1010318428454 ADSCrossRefGoogle Scholar
  149. S.C. Tripathy, F. Hill, K. Jain, J.W. Leibacher, Solar oscillation frequency changes on time scales of nine days. Sol. Phys. 243, 105–120 (2007). doi:10.1007/s11207-007-9000-z ADSCrossRefGoogle Scholar
  150. S.C. Tripathy, K. Jain, F. Hill, J.W. Leibacher, Unusual trends in solar P-mode frequencies during the current extended minimum. Astrophys. J. Lett. 711, 84–88 (2010). doi:10.1088/2041-8205/711/2/L84 ADSCrossRefGoogle Scholar
  151. R.K. Ulrich, D. Parker, L. Bertello, J. Boyden, Modeling total solar irradiance variations using automated classification software on Mount Wilson data. Sol. Phys. 261, 11–34 (2010). doi:10.1007/s11207-009-9460-4 ADSCrossRefGoogle Scholar
  152. L. Upton, D.H. Hathaway, Predicting the Sun’s polar magnetic fields with a surface flux transport model. Astrophys. J. 780, 5 (2014). doi:10.1088/0004-637X/780/1/5 ADSCrossRefGoogle Scholar
  153. J.F. Valdés-Galicia, V.M. Velasco, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297–305 (2008). doi:10.1016/j.asr.2007.02.012 ADSCrossRefGoogle Scholar
  154. V.M. Velasco Herrera, B. Mendoza, G. Velasco Herrera, Reconstruction and prediction of the total solar irradiance: from the medieval warm period to the 21st century. New Astron. 34, 221–233 (2015). doi:10.1016/j.newast.2014.07.009 ADSCrossRefGoogle Scholar
  155. G.A. Verner, W.J. Chaplin, Y. Elsworth, Search for solar cycle changes in the signature of rapid variation in BiSON data. Mon. Not. R. Astron. Soc. 351, 311–316 (2004). doi:10.1111/j.1365-2966.2004.07788.x ADSCrossRefGoogle Scholar
  156. G.A. Verner, W.J. Chaplin, Y. Elsworth, BiSON data show change in solar structure with magnetic activity. Astrophys. J. Lett. 640, 95–98 (2006). doi:10.1086/503101 ADSCrossRefGoogle Scholar
  157. Y.-M. Wang, J.L. Lean, N.R. Sheeley Jr., Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys. J. 625, 522–538 (2005). doi:10.1086/429689 ADSCrossRefGoogle Scholar
  158. F.T. Watson, M.J. Penn, W. Livingston, A multi-instrument analysis of sunspot umbrae. Astrophys. J. 787, 22 (2014). doi:10.1088/0004-637X/787/1/22 ADSCrossRefGoogle Scholar
  159. R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981). doi:10.1126/science.211.4483.700 ADSCrossRefGoogle Scholar
  160. M.F. Woodard, R.W. Noyes, Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449 (1985) ADSCrossRefGoogle Scholar
  161. T.N. Woods, G.J. Rottman, J.W. Harder, G.M. Lawrence, W.E. McClintock, G.A. Kopp, C. Pankratz, Overview of the EOS SORCE mission, in Earth Observing Systems V, ed. by W.L. Barnes. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4135 (2000), pp. 192–203. doi:10.1117/12.494229 CrossRefGoogle Scholar
  162. K.L. Yeo, N.A. Krivova, S.K. Solanki, Solar cycle variation in solar irradiance. Space Sci. Rev. 186, 137–167 (2014a). doi:10.1007/s11214-014-0061-7 ADSCrossRefGoogle Scholar
  163. K.L. Yeo, N.A. Krivova, S.K. Solanki, K.H. Glassmeier, Reconstruction of total and spectral solar irradiance from 1974 to 2013 based on KPVT, SoHO/MDI, and SDO/HMI observations. Astron. Astrophys. 570, 85 (2014b). doi:10.1051/0004-6361/201423628 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yvonne Elsworth
    • 1
  • Anne-Marie Broomhall
    • 2
  • Sanjay Gosain
    • 3
  • Markus Roth
    • 4
  • Stuart M. Jefferies
    • 5
  • Frank Hill
    • 3
  1. 1.School of Physics and AstronomyU. BirminghamBirminghamUK
  2. 2.Institute of Advanced Study, U. Warwick, Millburn House, Millburn Hill RoadUniversity of Warwick Science ParkCoventryUK
  3. 3.National Solar ObservatoryTucsonUSA
  4. 4.Kiepenheuer-Institut für SonnenphysikFreiburgGermany
  5. 5.Institute for AstronomyU. HawaiiPukalaniUSA

Personalised recommendations