Skip to main content

The Langmuir Probe and Waves (LPW) Instrument for MAVEN

Abstract

We describe the sensors, the sensor biasing and control, the signal-processing unit, and the operation of the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. The LPW instrument is designed to measure the electron density and temperature in the ionosphere of Mars and to measure spectral power density of waves (DC-2 MHz) in Mars’ ionosphere, including one component of the electric field. Low-frequency plasma waves can heat ions resulting in atmospheric loss. Higher-frequency waves are used to calibrate the density measurement and to study strong plasma processes. The LPW is part of the Particle and Fields (PF) suite on the MAVEN spacecraft. The LPW instrument utilizes two, 40 cm long by 0.635 cm diameter cylindrical sensors with preamplifiers, which can be configured to measure either plasma currents or plasma waves. The sensors are mounted on a pair of \({\sim}7\) meter long stacer booms. The sensors and nearby surfaces are controlled by a Boom Electronics Board (BEB). The Digital Fields Board (DFB) conditions the analog signals, converts the analog signals to digital, processes the digital signals including spectral analysis, and packetizes the data for transmission. The BEB and DFB are located inside of the Particle and Fields Digital Processing Unit (PFDPU).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • J.E. Allen, Probe theory—the orbital motion approach. Phys. Scr. 45, 497 (1992). doi:10.1088/0031-8949/45/5/013

    Article  ADS  Google Scholar 

  • S.D. Bale et al., The electric antennas for the STEREO/WAVES experiment. Space Sci. Rev. 136(1–4), 529–547 (2008). doi:10.1007/s11214-007-9251-x

    Article  ADS  Google Scholar 

  • J.W. Bonnell, F.S. Mozer, G.T. Delory, A.J. Hull, R.E. Ergun, C.M. Cully, V. Angelopoulos, P.R. Harvey, The Electric Field Instrument (EFI) for THEMIS. Space Sci. Rev. 141(1–4), 303–341 (2008). doi:10.1007/s11214-008-9469-2

    Article  ADS  Google Scholar 

  • L.H. Brace, R.F. Theis, A. Dalgarno, The cylindrical electrostatic probes for atmosphere explorer-C, -D, and -E. Radio Sci. 8(4), 341–348 (1973). doi:10.1029/RS008i004p00341

    Article  ADS  Google Scholar 

  • L.B. Brace, Langmuir probe measurements in the ionosphere measurement techniques in space plasmas—particles, in Geophysical Monograph 102, ed. by R.F. Pfaff, J.E. Borovsky, D.T. Young (Am. Geophys. Union, Washington, 1998), p. 23

    Google Scholar 

  • D.A. Brain, J.S. Halekas, L.M. Peticolas, R.P. Lin, J.G. Luhmann, D.L. Mitchell, G.T. Delory, S.W. Bougher, M.H. Acuña, H. Rème, On the origin of aurorae on Mars. Geophys. Res. Lett. 33, L01201 (1973). doi:10.1029/2005GL024782

    ADS  Google Scholar 

  • F.F. Chen, Saturation ion currents to Langmuir probes. J. Appl. Phys. 36, 675 (1965). doi:10.1063/1.1714200

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, The MAVEN magnetic field investigation. Space Sci. Rev. (2015). doi:10.1007/s11214-015-0169-4

    Google Scholar 

  • C.M. Cully, R.E. Ergun, K. Stevens, A. Nammari, J. Westfall, The THEMIS digital fields board. Space Sci. Rev. 141, 343–355 (2008)

    Article  ADS  Google Scholar 

  • F. Epavier et al., Space Sci. Rev. (2014, this issue)

  • R.E. Ergun et al., The FAST satellite field instrument. Space Sci. Rev. 98(1/2), 67–91 (2001)

    Article  ADS  Google Scholar 

  • R.E. Ergun, L. Andersson, W.K. Peterson, D. Brain, G.T. Delory, D.L. Mitchell, R.P. Lin, A.W. Yau, Role of plasma waves in Mars’ atmospheric loss. Geophys. Res. Lett. 33, L14103 (2006). doi:10.1029/2006GL025785

    Article  ADS  Google Scholar 

  • A.I. Eriksson, R. Boström, R. Gill, L. Åhlén, S.-E. Jansson, J.-E. Wahlund, M. André, A. Mälkki, J.A. Holtet, B. Lybekk RPC-LAP, The Rosetta Langmuir probe instrument. Space Sci. Rev. 128(1–4), 729–744 (2007)

    Article  ADS  Google Scholar 

  • J.R. Espley, P.A. Cloutier, D.A. Brain, D.H. Crider, M.H. Acuña, Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. 109, A07213 (2004). doi:10.1029/2003JA010193

    ADS  Google Scholar 

  • J. Etcheto, H. de Feraudy, J.G. Trotignon, Plasma resonance stimulation in space plasmas. Adv. Space Res. 1(2), 183–196 (1981). doi:10.1016/0273-1177(81)90289-1

    Article  ADS  Google Scholar 

  • U. Fahleson, Theory of electric field measurements conducted in the magnetosphere with electric probes. Space Sci. Rev. 7, 238–262 (1967). doi:10.1007/BF00215600

    Article  ADS  Google Scholar 

  • R. Grard, A. Pedersen, S. Klimov, S. Savin, A. Skalsky, J.G. Trotignon, C. Kennel, First measurements of plasma waves near Mars. Nature 341, 607–609 (1989). doi:10.1038/341607a0

    Article  ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu et al., The Cassini radio and plasma wave investigation. Space Sci. Rev. 114(1–4), 395–463 (2004)

    Article  ADS  Google Scholar 

  • D.A. Gurnett, D.L. Kirchner, R.L. Huff, D. Morgan, Radar soundings of the ionosphere of Mars. Science 310, 1929 (2005)

    Article  ADS  Google Scholar 

  • D.A. Gurnett et al., An overview of radar soundings of the martian ionosphere from the Mars express spacecraft. Adv. Space Res. 41, 1335–1346 (2008)

    Article  ADS  Google Scholar 

  • J.S. Halekas, E.R. Taylor, G. Dalton, G. Johnson, D.W. Curtis, J.P. McFadden, D.L. Mitchell, R.P. Lin, B.M. Jakosky, The solar wind ion analyzer for MAVEN. Space Sci. Rev. (2015). doi:10.1007/s11214-013-0029-z

    Google Scholar 

  • W.B. Hanson, S. Sanatani, D.R. Zuccaro, The Martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82(28), 4351–4363 (1977). doi:10.1029/JS082i028p04351

    Article  ADS  Google Scholar 

  • P. Harvey, F.S. Mozer, D. Pankow, J. Wygant, N.C. Maynard, H. Singer, W. Sullivan, P.B. Anderson, R. Pfaff, T. Aggson, A. Pedersen, C.-G. Fälthammar, P. Tanskannen, The electric field instrument on the polar satellite. Space Sci. Rev. 71(1–4), 583–596 (1995)

    Article  ADS  Google Scholar 

  • J.D. Jackson, Classical Electrodynamics, 2nd edn. (Wiley, New York, 1975), 92/12/31

    MATH  Google Scholar 

  • J.P. Krehbiel, L.H. Brace, R.F. Theis, W.H. Pinkus, R.B. Kaplan, The dynamics explorer Langmuir probe instrument. Space Sci. Instrum. 5, 493–502 (1981)

    ADS  Google Scholar 

  • D.E. Larson et al., Space Sci. Rev. (2014, this issue)

  • J.-.-P. Lebreton, S. Stverak, P. Travnicek, M. Maksimovic, D. Klinge, S. Merikallio, D. Lagoutte, B. Poirier, P.-L. Blelly, Z. Kozacek, M. Salaquarda, The ISL Langmuir probe experiment processing onboard DEMETER: scientific objectives, description and first results. Planet. Space Sci. 54, 472–486 (2006)

    Article  ADS  Google Scholar 

  • R. Lundin et al., Solar wind-induced atmospheric erosion at Mars: first results from ASPERA-3 on Mars express. Science 305, 1933–1936 (2004)

    Article  ADS  Google Scholar 

  • D.M. Malaspina, M. Horanyi, A. Zaslavsky, K. Goetz, L.B. Wilson III, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014). doi:10.1002/2013GL058786

    Article  ADS  Google Scholar 

  • J.P. McFadden et al., Space Sci. Rev. (2014, this issue)

  • N. Meyer-Vernet, A. Czechowski, I. Mann, M. Maksimovic, A. Lecacheux, K. Goetz, M.L. Kaiser, O.C.St. Cyr, S.D. Bale, G. Le Chat, Detection of fast nanoparticles in the solar wind. AIP Conf. Proc. 1216, 502 (2010). doi:10.1063/1.3395912

    Article  ADS  Google Scholar 

  • D.L. Mitchell, C. Mazelle, J.A. Sauvaud, D. Toublanc, J.J. Thocaven, J. Rouzaud, A. Federov, E.R. Taylor, M. Robinson, P. Turin, D.W. Curtis, The MAVEN solar wind electron analyzer (SWEA). Space Sci. Rev. (2014, this issue)

  • H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28(4), 727–763 (1926). doi:10.1103/PhysRev.28.727

    Article  ADS  Google Scholar 

  • D. Pankow, R. Besuner, R. Wilkes, R. Ullrich, Deployment mechanisms on the fast satellite: magnetometer, radial wire, and axial booms. Space Sci. Rev. 98(1/2), 93–111 (2001)

    Article  ADS  Google Scholar 

  • C.M.C. Nairn, R. Grard, A. Skalsky, J.G. Trotignon, Waves and cold plasma observations near Mars. Adv. Space Res. 11(9), 87–91 (1991)

    Article  ADS  Google Scholar 

  • M.K. Wahlström, E. Johansson, E. Veszelei, P. Bennich, M. Olsson, S. Hogmark, Improved Langmuir probe surface coatings for the Cassini satellite. Thin Solid Films 220(1–2), 315–320 (1992). doi:10.1016/0040-6090(92)90591-X

    Article  ADS  Google Scholar 

  • J.-E. Wahlund, R. Boström Gustafsson, D.A. Gurnett, W.S. Kurth, A. Pedersen, T.F. Averkamp, G.B. Hospodarsky, A.M. Persoon, P. Canu, F.M. Neubauer, M.K. Dougherty, A.I. Eriksson, M.W. Morooka, R. Gill, M. André, L. Eliasson, I. Müller-Wodarg, Cassini measurements of cold plasma in the ionosphere of Titan. Science 308(5724), 986–989 (2005). doi:10.1126/science.1109807

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the large number of people who have contributed to the success of this project. In particular we want to acknowledge all the engineers working on the LPW instrument for their creativity and professionalism. The work was made under NASA MAVEN contract (NNH10CC04C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Andersson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersson, L., Ergun, R.E., Delory, G.T. et al. The Langmuir Probe and Waves (LPW) Instrument for MAVEN. Space Sci Rev 195, 173–198 (2015). https://doi.org/10.1007/s11214-015-0194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0194-3

Keywords

  • Mars
  • Langmuir Probe
  • Waves instrument
  • Ionosphere
  • Electron temperature