Skip to main content
Log in

Sources of Local Time Asymmetries in Magnetodiscs

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The rapidly rotating magnetospheres at Jupiter and Saturn contain a near-equatorial thin current sheet over most local times known as the magnetodisc, resembling a wrapped-up magnetotail. The Pioneer, Voyager, Ulysses, Galileo, Cassini and New Horizons spacecraft at Jupiter and Saturn have provided extensive datasets from which to observationally identify local time asymmetries in these magnetodiscs. Imaging in the infrared and ultraviolet from ground- and space-based instruments have also revealed the presence of local time asymmetries in the aurora which therefore must map to local time asymmetries in the magnetosphere. Asymmetries are found in (i) the configuration of the magnetic field and magnetospheric currents, where a thicker disc is found in the noon and dusk sectors; (ii) plasma flows where the plasma flow has local time-dependent radial components; (iii) a thicker plasma sheet in the dusk sector. Many of these features are also reproduced in global MHD simulations. Several models have been developed to interpret these various observations and typically fall into two groups: ones which invoke coupling with the solar wind (via reconnection or viscous processes) and ones which invoke internal rotational processes operating inside an asymmetrical external boundary. In this paper we review these observational in situ findings, review the models which seek to explain them, and highlight open questions and directions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • M. Andriopoulou, E. Roussos, N. Krupp, C. Paranicas, M. Thomsen, S. Krimigis, M.K. Dougherty, K.-H. Glassmeier, A noon-to-midnight electric field and nightside dynamics in Saturn’s inner magnetosphere, using microsignature observations. Icarus 220, 503–513 (2012). doi:10.1016/j.icarus.2012.05.010

    Article  ADS  Google Scholar 

  • C.S. Arridge, Large-scale structure in the magnetospheres of Jupiter and Saturn, in The Dynamic Magnetosphere, ed. by W. Lui, M. Fujimoto. IAGA Special Sopron Book Series, vol. 3 (Springer, Berlin, 2011). ISBN 978-94-007-0500-5

    Google Scholar 

  • C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, N. André, A.M. Rymer, M.K. Dougherty, A.J. Coates, Mass of Saturn’s magnetodisc: Cassini observations. Geophys. Res. Lett. 34, L09108 (2007). doi:10.1029/2006GL028921

    Article  ADS  Google Scholar 

  • C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. 113, A08217 (2008a). doi:10.1029/2007JA012963

    ADS  Google Scholar 

  • C.S. Arridge, C.T. Russell, K.K. Khurana, N. Achilleos, S.W.H. Cowley, M.K. Dougherty, D.J. Southwood, E.J. Bunce, Saturn’s magnetodisc current sheet. J. Geophys. Res. 113, A04214 (2008b). doi:10.1029/2007JA012540

    ADS  Google Scholar 

  • C.S. Arridge, N. André, K.K. Khurana, C.T. Russell, S.W.H. Cowley, G. Provan, D.J. Andrews, C.M. Jackman, A.J. Coates, E.C. Sittler Jr., M.K. Dougherty, D.T. Young, Periodic motion of Saturn’s nightside plasma sheet. J. Geophys. Res. 116, A11205 (2011). doi:10.1029/2011JA016827

    Article  ADS  Google Scholar 

  • W.I. Axford, C.O. Hines, A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433 (1961). doi:10.1139/p61-172

    Article  ADS  MathSciNet  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007)

    Article  ADS  Google Scholar 

  • F. Bagenal, R.J. Wilson, J.D. Richardson, W.R. Paterson, Jupiter’s plasmasheet: Voyager and Galileo observations, abstract SM11A-2001 presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. (2011)

  • D.D. Barbosa, M.G. Kivelson, Dawn-dusk electric field asymmetry of the Io plasma torus. Geophys. Res. Lett. 10, 210–213 (1983). doi:10.1029/GL010i003p00210

    Article  ADS  Google Scholar 

  • N.M. Brice, G.A. Ioannidis, The magnetospheres of Jupiter and Earth. Icarus 13, 173 (1970). doi:10.1016/0019-1035(70)90048-5

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, Local time asymmetry of the equatorial current sheet in Jupiter’s magnetosphere. Planet. Space Sci. 49, 261–274 (2001a)

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, Divergence of the equatorial current in the dawn sector of Jupiter’s magnetosphere: analysis of Pioneer and Voyager magnetic field data. Planet. Space Sci. 49, 1089–1113 (2001b)

    Article  ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, J.A. Wild, Azimuthal magnetic fields in Saturn’s magnetosphere: effects associated with plasma sub-corotation and the magnetopause-tail current system. Ann. Geophys. 21, 1709–1722 (2003). doi:10.5194/angeo-21-1709-2003

    Article  ADS  Google Scholar 

  • H. Cao, C.T. Russell, U.R. Christensen, M.K. Dougherty, M.E. Burton, Saturn’s very axisymmetric magnetic field: no detectable secular variation or tilt. Earth Planet. Sci. Lett. 304(1–2), 22–28 (2011). doi:10.1016/j.epsl.2011.02.035

    Article  ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, Periodicities in Saturn’s magnetosphere. Rev. Geophys. 51(1), 1–30 (2013). doi:10.1002/rog.20006

    Article  ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, P. Brandt, E.C. Roelof, S.M. Krimigis, Statistical morphology of ENA emissions at Saturn. J. Geophys. Res. 113, A05210 (2008a). doi:10.1029/2007JA012873

    ADS  Google Scholar 

  • J.F. Carbary, D.G. Mitchell, C. Paranicas, E.C. Roelof, S.M. Krimigis, Direct observation of warping in the plasma sheet of Saturn. Geophys. Res. Lett. 35, L24201 (2008b). doi:10.1029/2008GL035970

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, A. Balogh, M.K. Dougherty, M.W. Dunlop, T.M. Edwards, R.J. Forsyth, R.J. Hynds, N.F. Laxton, K. Staines, Plasma flow in the Jovian magnetosphere and related magnetic effects: Ulysses observations. J. Geophys. Res. 101(A7), 15197–15210 (1996)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30(5), 1220 (2003). doi:10.1029/2002GL016030

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. Gérard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. 110, A02201 (2005). doi:10.1029/2004JA010796

    ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101 (2008). doi:10.1029/2007GL032645

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, A10201 (2010). doi:10.1029/2010JA015347

    Article  ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. 118, 7045–7053 (2013). doi:10.1002/2013JA019179

    Article  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. 117, A07202 (2012). doi:10.1029/2012JA017621

    Article  ADS  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the magnetopause of Saturn and implications for the solar wind interaction. J. Geophys. Res. Space Phys. 118(6), 3087–3095 (2013). doi:10.1002/jgra.50294

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961). doi:10.1103/PhysRevLett.6.47

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. 111, A10207 (2006). doi:10.1029/2006JA011874

    Article  ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. 115, A09219 (2010). doi:10.1029/2009JA015228

    Article  ADS  Google Scholar 

  • G. Giampieri, M.K. Dougherty, Modelling of the ring current in Saturn’s magnetosphere. Ann. Geophys. 22, 653–659 (2004). doi:10.5194/angeo-22-653-2004

    Article  ADS  Google Scholar 

  • C.K. Goertz, The Jovian magnetodisk. Space Sci. Rev. 23, 319–343 (1979)

    Article  ADS  Google Scholar 

  • P.G. Hanlon, M.K. Dougherty, N. Krupp, K.C. Hansen, F.J. Crary, D.T. Young, G. Tóth, Dual spacecraft observations of a compression event within the Jovian magnetosphere: signatures of externally triggered supercorotation? J. Geophys. Res. 109, A09S09 (2004). doi:10.1029/2003JA010116

    Google Scholar 

  • T.W. Hill, F.C. Michel, Heavy ions from the Galilean satellites and the centrifugal distortion of the Jovian magnetosphere. J. Geophys. Res. 81, 4561–4565 (1976). doi:10.1029/JA081i02504561

    Article  ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, H.J. McAndrews, M.G. Henderson, R.J. Wilson, Northward field excursions in Saturn’s magnetotail and their relationship to magnetospheric periodicities. Geophys. Res. Lett. 36, L16101 (2009). doi:10.1029/2009GL039149

    Article  ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: magnetotail response to dual sources. J. Geophys. Res. 117, A11219 (2012). doi:10.1029/2012JA018183

    Article  ADS  Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombis, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. 117, A05225 (2012). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • M. Kane, D.G. Mitchell, J.F. Carbary, S.M. Krimigis, Plasma convection in the nightside magnetosphere of Saturn determined from energetic ion anisotropies. Planet. Space Sci. 91, 1–13 (2014)

    Article  ADS  Google Scholar 

  • S. Kellett, C.S. Arridge, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, A.M. Persoon, N. Sergis, R.J. Wilson, Nature of the ring current in Saturn’s dayside magnetosphere. J. Geophys. Res. 115, A08201 (2010). doi:10.1029/2009JA015146

    Article  ADS  Google Scholar 

  • S. Kellett, C.S. Arridge, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, A.M. Persoon, N. Sergis, R.J. Wilson, Saturn’s ring current: local time dependence and temporal variability. J. Geophys. Res. 116, A05220 (2011). doi:10.1029/2010JA016216

    Article  ADS  Google Scholar 

  • K.K. Khurana, Influence of solar wind on Jupiter’s magnetosphere deduced from currents in the equatorial plane. J. Geophys. Res. 106(A11), 25999–26016 (2001)

    Article  ADS  Google Scholar 

  • K.K. Khurana, M.G. Givelson, On Jovian plasma sheet structure. J. Geophys. Res. 94(A9), 11791–11803 (1989). doi:10.1029/JA094iA09p11791

    Article  ADS  Google Scholar 

  • K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, A07227 (2005). doi:10.1029/2004JA010757

    Article  ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005). doi:10.1029/2005JA011176

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, R.J. Walker, Sheared magnetic field structure in Jupiter’s dusk magnetosphere: implications for return currents. J. Geophys. Res. 107(A6), 1116 (2002). doi:10.1029/2001JA000251

    Article  Google Scholar 

  • S.M. Krimigis, N. Sergis, D.G. Mitchell, D.C. Hamilton, N. Krupp, A dynamic, rotating ring current around Saturn. Nature 450, 1050–1053 (2007). doi:10.1038/nature06425

    Article  ADS  Google Scholar 

  • N. Krupp, M.K. Dougherty, J. Woch, R. Seidel, E. Keppler, Energetic particles in the duskside Jovian magnetosphere. J. Geophys. Res. 104, 14867 (1999)

    Article  Google Scholar 

  • N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, Global flows of energetic ions in Jupiter’s equatorial plane: first-order approximation. J. Geophys. Res. 106(A11), 26017–26032 (2001)

    Article  ADS  Google Scholar 

  • A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, L08103 (2012). doi:10.1029/2012GL051372

    Article  ADS  Google Scholar 

  • S. Maurice, M. Blanc, R. Prangé, E.C. Sittler Jr., The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet. Space Sci. 45(11), 1449–1465 (1997)

    Article  ADS  Google Scholar 

  • H.J. McAndrews, M.F. Thomsen, C.S. Arridge, C.M. Jackman, R.J. Wilson, M.G. Henderson, R.L. Tokar, K.K. Khurana, E.C. Sittler, A.J. Coates, M.K. Dougherty, Plasma in Saturn’s nightside magnetosphere and the implications for global circulation. Planet. Space Sci. 57(14–15), 1714–1722 (2009). doi:10.1016/j.pss.2009.03.003

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, L20106 (2007). doi:10.1029/2007GL031078

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Reply to comment by S.W.H. Cowley et al. on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind”. Geophys. Res. Lett. 35, L10103 (2008). doi:10.1029/2008GL034351

    Article  ADS  Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-down quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57(14–15), 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    Article  ADS  Google Scholar 

  • A.L. Müller, J. Saur, N. Krupp, E. Roussos, B.H. Mauk, A.M. Rymer, D.G. Mitchell, S.M. Krimigis, Azimuthal plasma flow in the Kronian magnetosphere. J. Geophys. Res. 115, A08203 (2010). doi:10.1029/2009JA015122

    ADS  Google Scholar 

  • T.G. Northrop, C.K. Goertz, M.F. Thomsen, The magnetosphere of Jupiter as observed with Pioneer 10: 2. Non-rigid rotation of the magnetodisc. J. Geophys. Res. 79, 3579 (1974)

    Article  ADS  Google Scholar 

  • C.P. Paranicas, B.H. Mauk, S.M. Krimigis, Pressure anisotropy and radial stress balance in the Jovian neutral sheet. J. Geophys. Res. 96(A12), 21135–21140 (1991). doi:10.1029/91JA01647

    Article  ADS  Google Scholar 

  • J.H. Piddington, Cosmic Electrodynamics (Wiley-Interscience, New York, 1969)

    Google Scholar 

  • N. Sergis, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, B.H. Mauk, E.C. Roelof, M.K. Dougherty, Energetic particle pressure in Saturn’s magnetosphere measured with the magnetospheric imaging instrument on Cassini. J. Geophys. Res. 114, A02214 (2009). doi:10.1029/2008JA013774

    Article  ADS  Google Scholar 

  • N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, L02102 (2010). doi:10.1029/2009GL041920

    Article  ADS  Google Scholar 

  • N. Sergis, C.S. Arridge, S.M. Krimigis, D.G. Mitchell, A.M. Rymer, D.C. Hamilton, N. Krupp, M.K. Dougherty, A.J. Coates, Dynamics and seasonal variations in Saturn’s magnetospheric plasma sheet, as measured by Cassini. J. Geophys. Res. 116, A04203 (2011). doi:10.1029/2010JA016180

    Article  ADS  Google Scholar 

  • E.J. Smith, L. Davis, D.E. Jones, P.J. Coleman, D.S. Colburn, P. Dyal, C.P. Sonett, Saturn’s magnetosphere and its interaction with the solar wind. J. Geophys. Res. 85, 5655–5674 (1980). doi:10.1029/JA085iA11p05655

    Article  ADS  Google Scholar 

  • D.J. Southwood, S.W.H. Cowley, The origin of Saturn’s magnetic periodicities: northern and southern current systems. J. Geophys. Res. Space Phys. 119(3), 1563–1571 (2014). doi:10.1002/2013JA019632

    Article  ADS  Google Scholar 

  • A.J. Steffl, A.B. Shinn, G.R. Gladstone, J.W. Parker, K.D. Retherford, D.C. Slater, M.H. Versteeg, S.A. Stern, MeV electrons detected by the Alice UV spectrograph during the New Horizons flyby of Jupiter. J. Geophys. Res. 117, A10222 (2012). doi:10.1029/2012JA017869

    Article  ADS  Google Scholar 

  • M.F. Thomsen, D.B. Reisenfeld, D.M. Delapp, R.L. Tokar, D.T. Young, F.J. Crary, E.C. Sittler, M.A. McGraw, J.D. Williams, Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010). doi:10.1029/2010JA015267

    Article  ADS  Google Scholar 

  • M.F. Thomsen, E. Roussos, M. Andriopoulou, P. Kollmann, C.S. Arridge, C.P. Paranicas, D.A. Gurnett, R.L. Powell, R.L. Tokar, D.T. Young, Saturn’s inner magnetospheric convection pattern; further evidence. J. Geophys. Res. 117, A09208 (2012). doi:10.1029/2011JA017482

    Article  ADS  Google Scholar 

  • M.F. Thomsen, C.M. Jackman, R.L. Tokar, R.J. Wilson, Plasma flows in Saturn’s nightside magnetosphere. J. Geophys. Res. Space Phys. 119, 4521–4535 (2014). doi:10.1002/2014JA019912

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, V.A. Andreeva, On the “bowl-shaped” deformation of planetary equatorial current sheets. Geophys. Res. Lett. 41(4), 1079–1084 (2014). doi:10.1002/2014GL059295

    Article  ADS  Google Scholar 

  • N.A. Tsyganenko, D.H. Fairfield, Global shape of the magnetotail current sheet as derived from Geotail and Polar data. J. Geophys. Res. 109, A03218 (2004)

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Desler (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  • V.M. Vasyliūnas, Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys. Res. Lett. 21(6), 401–404 (1994)

    Article  ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. 115, A06219 (2010). doi:10.1029/2009JA015098

    ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, M. Ashour-Abdalla, E.J. Bunce, Simulating the effect of centrifugal forces in Jupiter’s magnetosphere. J. Geophys. Res. Space Phys. 119, 1925–1950 (2014). doi:10.1002/2013JA019381

    Article  ADS  Google Scholar 

  • L.S. Waldrop, T.A. Fritz, M.G. Kivelson, K. Khurana, N. Krupp, A. Lagg, Jovian plasma sheet morphology: particle and field observations by the Galileo spacecraft. Planet. Space Sci. 53, 681–692 (2005). doi:10.1016/j.pss.2004.11.003

    Article  ADS  Google Scholar 

  • R.J. Walker, T. Ogino, A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003)

    Article  ADS  Google Scholar 

  • D.R. Went, M.G. Kivelson, N. Achilleos, C.S. Arridge, M.K. Dougherty, Outer magnetospheric structure: Jupiter and Saturn compared. J. Geophys. Res. 116, A04224 (2011). doi:10.1029/2010JA016045

    ADS  Google Scholar 

  • D.J. Williams, R.W. McEntire, S. Jaskulek, B. Wilken, The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992)

    Article  ADS  Google Scholar 

  • R.J. Wilson, F. Bagenal, P.A. Delamere, M. Desroche, B.L. Fleshman, V. Dols, Evidence from radial velocity measurements of a global electric field in Saturn’s inner magnetosphere. J. Geophys. Res. Space Phys. 118, 2122–2132 (2013). doi:10.1002/jgra.50251

    Article  ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29(7), 1138 (2002). doi:10.1029/2001GL014080

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of EUROPLANET RI project (Grant agreement No.: 228319) funded by EU; and also the support of the International Space Science Institute (Bern). The authors thank M.G. Kivelson for access to Galileo magnetometer data and M.K. Dougherty for access to Cassini magnetometer data, accessed via the NASA Planetary Data System. CSA was supported by a Royal Society Research Fellowship. CMJ was supported by a Science and Technology Facilities Council Ernest Rutherford Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Arridge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arridge, C.S., Kane, M., Sergis, N. et al. Sources of Local Time Asymmetries in Magnetodiscs. Space Sci Rev 187, 301–333 (2015). https://doi.org/10.1007/s11214-015-0145-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-015-0145-z

Keywords

Navigation