Skip to main content

Advertisement

Log in

Relativistic Magnetic Reconnection in Pair Plasmas and Its Astrophysical Applications

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This review discusses the physics of magnetic reconnection—a process in which the magnetic field topology changes and magnetic energy is converted to kinetic energy—in pair plasmas in the relativistic regime. We focus on recent progress in the field driven by theory advances and the maturity of particle-in-cell codes. This work shows that fragmentation instabilities at the current sheet can play a critical role in setting the reconnection speed and affect the resulting particle acceleration, anisotropy, bulk flows, and radiation. Then, we discuss how this novel understanding of relativistic reconnection can be applied to high-energy astrophysical phenomena, with an emphasis on pulsars, pulsar wind nebulae, and active galactic nucleus jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. If w n ≫1 but σ<1, the plasma is initially relativistic but reconnection is typically weak, so the relativistic reconnection discussed in this review typically fulfills condition (1).

  2. The presence of a strong guide field orthogonal to the reconnecting plane guarantees that the 3D physics will resemble the 2D results, see Guo et al. (2014).

  3. Particle acceleration in magnetic islands (as opposed to X-lines or X-points) is also widely discussed in the literature, both in non-relativistic reconnection (e.g., Drake et al. 2006; Oka et al. 2010)—where the particles are adiabatic, and they bounce several times between the two edges of an island—and relativistic reconnection (Liu et al. 2011; Guo et al. 2014), where the energy gain might come just from a single bounce. However, the inflowing particles interact at first with the X-points, where they get energy from the dissipating fields. It is this first acceleration episode (that we describe below) which will establish the spectral slope and strongly affect the future history of the inflowing particles. In fact, particles accelerated to high energies at the X-point are likely to experience further acceleration via reflection off of moving magnetic disturbances (e.g., in contracting islands or in between two merging islands), which might eventually dominate the overall energy gain.

  4. Several hours is the event-horizon light-crossing time of a billion solar-mass black hole—mass typically inferred for the central engine in blazars: t cross=2GM BH/c 3≃104 M 9 s.

  5. Including Mrk 421, Mrk 501, PKS 2155-304, PKS 1222-216, and BL Lac.

  6. In practice the blazar emission is likely to result of ultrarelativistic electrons cooling via synchrotron radiation and Compton scattering. As discussed in previous sections, relativistic reconnection is an effective means of accelerating particles to such extreme energies.

  7. We assume that the plasmoid instability operates across the whole length of the current sheet, as opposed to a situation where central, very compact, dissipation region forms and is surrounded by extended magnetic separatrices (the slow shocks in Petscheck model) across which most of the plasma flows. In the latter case, the monster plasmoids may be smaller.

References

  • A.A. Abdo, M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, B. Berenji, R.D. Blandford, E.D. Bloom, E. Bonamente, A.W. Borgland, A. Bouvier, T.J. Brandt, J. Bregeon, A. Brez, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, A. Cannon, P.A. Caraveo, J.M. Casandjian, Ö. Çelik, E. Charles, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, L. Costamante, S. Cutini, F. D’Ammando, C.D. Dermer, A. de Angelis, A. de Luca, F. de Palma, S.W. Digel, E. do Couto e Silva, P.S. Drell, A. Drlica-Wagner, R. Dubois, D. Dumora, C. Favuzzi, S.J. Fegan, E.C. Ferrara, W.B. Focke, P. Fortin, M. Frailis, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, M.-H. Grondin, J.E. Grove, S. Guiriec, D. Hadasch, Y. Hanabata, A.K. Harding, K. Hayashi, M. Hayashida, E. Hays, D. Horan, R. Itoh, G. Jóhannesson, A.S. Johnson, T.J. Johnson, D. Khangulyan, T. Kamae, H. Katagiri, J. Kataoka, M. Kerr, J. Knödlseder, M. Kuss, J. Lande, L. Latronico, S.-H. Lee, M. Lemoine-Goumard, F. Longo, F. Loparco, P. Lubrano, G.M. Madejski, A. Makeev, M. Marelli, M.N. Mazziotta, J.E. McEnery, P.F. Michelson, W. Mitthumsiri, T. Mizuno, A.A. Moiseev, C. Monte, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, T. Nakamori, M. Naumann-Godo, P.L. Nolan, J.P. Norris, E. Nuss, T. Ohsugi, A. Okumura, N. Omodei, J.F. Ormes, M. Ozaki, D. Paneque, D. Parent, V. Pelassa, M. Pepe, M. Pesce-Rollins, M. Pierbattista, F. Piron, T.A. Porter, S. Rainò, R. Rando, P.S. Ray, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, R.W. Romani, H.F.-W. Sadrozinski, D. Sanchez, P.M.S. Parkinson, J.D. Scargle, T.L. Schalk, C. Sgrò, E.J. Siskind, P.D. Smith, G. Spandre, P. Spinelli, M.S. Strickman, D.J. Suson, H. Takahashi, T. Takahashi, T. Tanaka, J.B. Thayer, D.J. Thompson, L. Tibaldo, D.F. Torres, G. Tosti, A. Tramacere, E. Troja, Y. Uchiyama, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, P. Wang, K.S. Wood, Z. Yang, M. Ziegler, Gamma-ray flares from the Crab Nebula. Science 331, 739 (2011). doi:10.1126/science.1199705

    Article  ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, B. Behera, M. Beilicke, W. Benbow, D. Berge, K. Bernlöhr, C. Boisson, O. Bolz, V. Borrel, T. Boutelier, I. Braun, E. Brion, A.M. Brown, R. Bühler, I. Büsching, T. Bulik, S. Carrigan, P.M. Chadwick, A.C. Clapson, L.-M. Chounet, G. Coignet, R. Cornils, L. Costamante, B. Degrange, H.J. Dickinson, A. Djannati-Ataï, W. Domainko, L.O. Drury, G. Dubus, J. Dyks, K. Egberts, D. Emmanoulopoulos, P. Espigat, C. Farnier, F. Feinstein, A. Fiasson, A. Förster, G. Fontaine, S. Funk, S. Funk, M. Füßling, Y.A. Gallant, B. Giebels, J.F. Glicenstein, B. Glück, P. Goret, C. Hadjichristidis, D. Hauser, M. Hauser, G. Heinzelmann, G. Henri, G. Hermann, J.A. Hinton, A. Hoffmann, W. Hofmann, M. Holleran, S. Hoppe, D. Horns, A. Jacholkowska, O.C. de Jager, E. Kendziorra, M. Kerschhaggl, B. Khélifi, N. Komin, K. Kosack, G. Lamanna, I.J. Latham, R. Le Gallou, A. Lemière, M. Lemoine-Goumard, J.-P. Lenain, T. Lohse, J.M. Martin, O. Martineau-Huynh, A. Marcowith, C. Masterson, G. Maurin, T.J.L. McComb, R. Moderski, E. Moulin, M. de Naurois, D. Nedbal, S.J. Nolan, J.-P. Olive, K.J. Orford, J.L. Osborne, M. Ostrowski, M. Panter, G. Pedaletti, G. Pelletier, P.-O. Petrucci, S. Pita, G. Pühlhofer, M. Punch, S. Ranchon, B.C. Raubenheimer, M. Raue, S.M. Rayner, M. Renaud, J. Ripken, L. Rob, L. Rolland, S. Rosier-Lees, G. Rowell, B. Rudak, J. Ruppel, V. Sahakian, A. Santangelo, L. Saugé, S. Schlenker, R. Schlickeiser, R. Schröder, U. Schwanke, S. Schwarzburg, S. Schwemmer, A. Shalchi, H. Sol, D. Spangler, Ł. Stawarz, R. Steenkamp, C. Stegmann, G. Superina, P.H. Tam, J.-P. Tavernet, R. Terrier, C. van Eldik, G. Vasileiadis, C. Venter, J.P. Vialle, P. Vincent, M. Vivier, H.J. Völk, F. Volpe, S.J. Wagner, M. Ward, A.A. Zdziarski, An exceptional very high energy gamma-ray flare of PKS 2155-304. Astrophys. J. Lett. 664, 71–74 (2007). doi:10.1086/520635

    Article  ADS  Google Scholar 

  • J. Albert, E. Aliu, H. Anderhub, P. Antoranz, A. Armada, C. Baixeras, J.A. Barrio, H. Bartko, D. Bastieri, J.K. Becker, W. Bednarek, K. Berger, C. Bigongiari, A. Biland, R.K. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz, I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, J.A. Coarasa, S. Commichau, J.L. Contreras, J. Cortina, M.T. Costado, V. Curtef, V. Danielyan, F. Dazzi, A. De Angelis, C. Delgado, R. de los Reyes, B. De Lotto, E. Domingo-Santamaría, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc, E. Fernández, R. Firpo, J. Flix, M.V. Fonseca, L. Font, M. Fuchs, N. Galante, R.J. García-López, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan, M. Hayashida, T. Hengstebeck, A. Herrero, D. Höhne, J. Hose, D. Hrupec, C.C. Hsu, P. Jacon, T. Jogler, R. Kosyra, D. Kranich, R. Kritzer, A. Laille, E. Lindfors, S. Lombardi, F. Longo, J. López, M. López, E. Lorenz, P. Majumdar, G. Maneva, K. Mannheim, O. Mansutti, M. Mariotti, M. Martínez, D. Mazin, C. Merck, M. Meucci, M. Meyer, J.M. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo, D. Nieto, K. Nilsson, J. Ninkovic, E. Oña-Wilhelmi, N. Otte, I. Oya, D. Paneque, M. Panniello, R. Paoletti, J.M. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna, M. Persic, L. Peruzzo, A. Piccioli, E. Prandini, N. Puchades, A. Raymers, W. Rhode, M. Ribó, J. Rico, M. Rissi, A. Robert, S. Rügamer, A. Saggion, T. Saito, A. Sánchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt, T. Schweizer, M. Shayduk, K. Shinozaki, S.N. Shore, N. Sidro, A. Sillanpää, D. Sobczynska, A. Stamerra, L.S. Stark, L. Takalo, F. Tavecchio, P. Temnikov, D. Tescaro, M. Teshima, D.F. Torres, N. Turini, H. Vankov, V. Vitale, R.M. Wagner, T. Wibig, W. Wittek, F. Zandanel, R. Zanin, J. Zapatero, Variable very high energy γ-ray emission from Markarian 501. Astrophys. J. 669, 862–883 (2007). doi:10.1086/521382

    Article  ADS  Google Scholar 

  • I. Arka, G. Dubus, Pulsed high-energy γ-rays from thermal populations in the current sheets of pulsar winds. Astron. Astrophys. 550, 101 (2013). doi:10.1051/0004-6361/201220110

    Article  ADS  Google Scholar 

  • G. Baumann, Å. Nordlund, Particle-in-cell simulation of electron acceleration in solar coronal jets. Astrophys. J. Lett. 759, 9 (2012). doi:10.1088/2041-8205/759/1/L9

    Article  ADS  Google Scholar 

  • M.C. Begelman, Instability of toroidal magnetic field in jets and plerions. Astrophys. J. 493, 291–300 (1998). doi:10.1086/305119

    Article  ADS  Google Scholar 

  • M.C. Begelman, A.C. Fabian, M.J. Rees, Implications of very rapid TeV variability in blazars. Mon. Not. R. Astron. Soc. 384, 19–23 (2008). doi:10.1111/j.1745-3933.2007.00413.x

    Article  ADS  Google Scholar 

  • N. Bessho, A. Bhattacharjee, Collisionless reconnection in an electron-positron plasma. Phys. Rev. Lett. 95(24), 245001 (2005). doi:10.1103/PhysRevLett.95.245001

    Article  ADS  Google Scholar 

  • N. Bessho, A. Bhattacharjee, Fast collisionless reconnection in electron-positron plasmas. Phys. Plasmas 14(5), 056503 (2007). doi:10.1063/1.2714020

    Article  ADS  Google Scholar 

  • N. Bessho, A. Bhattacharjee, Fast magnetic reconnection and particle acceleration in relativistic low-density electron-positron plasmas without guide field. Astrophys. J. 750, 129 (2012). doi:10.1088/0004-637X/750/2/129

    Article  ADS  Google Scholar 

  • A. Bhattacharjee, Y.-M. Huang, H. Yang, B. Rogers, Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009). doi:10.1063/1.3264103

    Article  ADS  Google Scholar 

  • C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (1991)

    Book  Google Scholar 

  • J. Birn, M. Hesse, Geospace Environment Modeling (GEM) magnetic reconnection challenge: resistive tearing, anisotropic pressure and Hall effects. J. Geophys. Res. 106, 3737–3750 (2001). doi:10.1029/1999JA001001

    Article  ADS  Google Scholar 

  • D. Biskamp, Magnetic Reconnection in Plasmas (2000)

    Book  MATH  Google Scholar 

  • R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    Article  ADS  MATH  Google Scholar 

  • B. Cerutti, D.A. Uzdensky, M.C. Begelman, Extreme particle acceleration in magnetic reconnection layers: application to the gamma-ray flares in the Crab Nebula. Astrophys. J. 746, 148 (2012a). doi:10.1088/0004-637X/746/2/148

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Beaming and rapid variability of high-energy radiation from relativistic pair plasma reconnection. Astrophys. J. Lett. 754, 33 (2012b). doi:10.1088/2041-8205/754/2/L33

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Simulations of particle acceleration beyond the classical synchrotron burnoff limit in magnetic reconnection: an explanation of the Crab Flares. Astrophys. J. 770, 147 (2013). doi:10.1088/0004-637X/770/2/147

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Gamma-ray flares in the Crab Nebula: a case of relativistic reconnection?. Phys. Plasmas 21(5), 056501 (2014a). doi:10.1063/1.4872024

    Article  ADS  Google Scholar 

  • B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula. Astrophys. J. 782, 104 (2014b). doi:10.1088/0004-637X/782/2/104

    Article  ADS  Google Scholar 

  • L.-J. Chen, A. Bhattacharjee, P.A. Puhl-Quinn, H. Yang, N. Bessho, S. Imada, S. Mühlbachler, P.W. Daly, B. Lefebvre, Y. Khotyaintsev, A. Vaivads, A. Fazakerley, E. Georgescu, Observation of energetic electrons within magnetic islands. Nat. Phys. 4, 19–23 (2008). doi:10.1038/nphys777

    Article  Google Scholar 

  • E. Clausen-Brown, M. Lyutikov, Crab Nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426, 1374–1384 (2012). doi:10.1111/j.1365-2966.2012.21349.x

    Article  ADS  Google Scholar 

  • L. Comisso, F.A. Asenjo, Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas. Phys. Rev. Lett. 113(4), 045001 (2014). doi:10.1103/PhysRevLett.113.045001

    Article  ADS  Google Scholar 

  • I. Contopoulos, The magnetic field topology in the reconnecting pulsar magnetosphere. Astron. Astrophys. 472, 219–223 (2007). doi:10.1051/0004-6361:20077167

    Article  ADS  MATH  Google Scholar 

  • F.V. Coroniti, Magnetically striped relativistic magnetohydrodynamic winds—the Crab Nebula revisited. Astrophys. J. 349, 538–545 (1990). doi:10.1086/168340

    Article  ADS  Google Scholar 

  • W. Daughton, H. Karimabadi, Collisionless magnetic reconnection in large-scale electron-positron plasmas. Phys. Plasmas 14(7), 072303 (2007). doi:10.1063/1.2749494

    Article  MathSciNet  ADS  Google Scholar 

  • O.C. de Jager, A.K. Harding, P.F. Michelson, H.I. Nel, P.L. Nolan, P. Sreekumar, D.J. Thompson, Gamma-ray observations of the Crab Nebula: a study of the synchro-Compton spectrum. Astrophys. J. 457, 253 (1996). doi:10.1086/176726

    Article  ADS  Google Scholar 

  • J.F. Drake, M. Swisdak, H. Che, M.A. Shay, Electron acceleration from contracting magnetic islands during reconnection. Nature 443, 553–556 (2006). doi:10.1038/nature05116

    Article  ADS  Google Scholar 

  • J.F. Drake, M. Opher, M. Swisdak, J.N. Chamoun, A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709, 963–974 (2010). doi:10.1088/0004-637X/709/2/963

    Article  ADS  Google Scholar 

  • J.D. Finke, C.D. Dermer, M. Böttcher, Synchrotron self-Compton analysis of TeV X-ray-selected BL Lacertae Objects. Astrophys. J. 686, 181–194 (2008). doi:10.1086/590900

    Article  ADS  Google Scholar 

  • G. Ghisellini, F. Tavecchio, Rapid variability in TeV blazars: the case of PKS2155-304. Mon. Not. R. Astron. Soc. 386, 28–32 (2008). doi:10.1111/j.1745-3933.2008.00454.x

    Article  ADS  Google Scholar 

  • D. Giannios, UHECRs from magnetic reconnection in relativistic jets. Mon. Not. R. Astron. Soc. 408, 46–50 (2010). doi:10.1111/j.1745-3933.2010.00925.x

    Article  ADS  Google Scholar 

  • D. Giannios, Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. Mon. Not. R. Astron. Soc. 431, 355–363 (2013). doi:10.1093/mnras/stt167

    Article  ADS  Google Scholar 

  • D. Giannios, H.C. Spruit, Spectra of Poynting-flux powered GRB outflows. Astron. Astrophys. 430, 1–7 (2005). doi:10.1051/0004-6361:20047033

    Article  ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability in blazars: jets in a jet. Mon. Not. R. Astron. Soc. 395, 29–33 (2009). doi:10.1111/j.1745-3933.2009.00635.x

    Article  ADS  Google Scholar 

  • D. Giannios, D.A. Uzdensky, M.C. Begelman, Fast TeV variability from misaligned minijets in the jet of M87. Mon. Not. R. Astron. Soc. 402, 1649–1656 (2010). doi:10.1111/j.1365-2966.2009.16045.x

    Article  ADS  Google Scholar 

  • J. Goodman, D. Uzdensky, Reconnection in marginally collisionless accretion disk coronae. Astrophys. J. 688, 555–558 (2008). doi:10.1086/592345

    Article  ADS  Google Scholar 

  • J. Graf von der Pahlen, D. Tsiklauri, The effect of guide-field and boundary conditions on collisionless magnetic reconnection in a stressed X-point collapse. Phys. Plasmas 21(1), 012901 (2014). doi:10.1063/1.4861258

    Article  ADS  Google Scholar 

  • P.W. Guilbert, A.C. Fabian, M.J. Rees, Spectral and variability constraints on compact sources. Mon. Not. R. Astron. Soc. 205, 593–603 (1983)

    Article  ADS  Google Scholar 

  • F. Guo, H. Li, W. Daughton, Y.-H. Liu, Formation of hard power-laws in the energetic particle spectra resulting from relativistic magnetic reconnection. ArXiv e-prints, 2014

  • E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962)

    Article  MATH  Google Scholar 

  • K. Higashimori, M. Hoshino, The relation between ion temperature anisotropy and formation of slow shocks in collisionless magnetic reconnection. J. Geophys. Res. Space Sci. 117, 1220 (2012). doi:10.1029/2011JA016817

    ADS  Google Scholar 

  • Y.-M. Huang, A. Bhattacharjee, Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime. Phys. Plasmas 17(6), 062104 (2010). doi:10.1063/1.3420208

    Article  ADS  Google Scholar 

  • C.H. Jaroschek, H. Lesch, R.A. Treumann, Relativistic kinetic reconnection as the possible source mechanism for high variability and flat spectra in extragalactic radio sources. Astrophys. J. Lett. 605, 9–12 (2004). doi:10.1086/420767

    Article  ADS  Google Scholar 

  • C.H. Jaroschek, M. Hoshino, H. Lesch, R.A. Treumann, Stochastic particle acceleration by the forced interaction of relativistic current sheets. Adv. Space Res. 41, 481–490 (2008). doi:10.1016/j.asr.2007.07.001

    Article  ADS  Google Scholar 

  • H. Ji, W. Daughton, Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18(11), 111207 (2011). doi:10.1063/1.3647505

    Article  ADS  Google Scholar 

  • D. Kagan, M. Milosavljević, A. Spitkovsky, A flux rope network and particle acceleration in three-dimensional relativistic magnetic reconnection. Astrophys. J. 774, 41 (2013). doi:10.1088/0004-637X/774/1/41

    Article  ADS  Google Scholar 

  • M. Karlický, B. Kliem, Reconnection of a kinking flux rope triggering the ejection of a microwave and hard X-ray source I. Observations and interpretation. Sol. Phys. 266, 71–89 (2010). doi:10.1007/s11207-010-9606-4

    Article  ADS  Google Scholar 

  • J.G. Kirk, Particle acceleration in relativistic current sheets. Phys. Rev. Lett. 92(18), 181101 (2004). doi:10.1103/PhysRevLett.92.181101

    Article  ADS  Google Scholar 

  • J.G. Kirk, O. Skjæraasen, Dissipation in Poynting-flux-dominated flows: the σ-problem of the Crab Pulsar wind. Astrophys. J. 591, 366–379 (2003). doi:10.1086/375215

    Article  ADS  Google Scholar 

  • J.G. Kirk, O. Skjæraasen, Y.A. Gallant, Pulsed radiation from neutron star winds. Astron. Astrophys. 388, 29–32 (2002). doi:10.1051/0004-6361:20020599

    Article  ADS  Google Scholar 

  • S.S. Komissarov, Magnetic dissipation in the Crab Nebula. Mon. Not. R. Astron. Soc. 428, 2459–2466 (2013). doi:10.1093/mnras/sts214

    Article  ADS  Google Scholar 

  • D.A. Larrabee, R.V.E. Lovelace, M.M. Romanova, Lepton acceleration by relativistic collisionless magnetic reconnection. Astrophys. J. 586, 72–78 (2003). doi:10.1086/367640

    Article  ADS  Google Scholar 

  • J. Lin, Y.-K. Ko, L. Sui, J.C. Raymond, G.A. Stenborg, Y. Jiang, S. Zhao, S. Mancuso, Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys. J. 622, 1251–1264 (2005). doi:10.1086/428110

    Article  ADS  Google Scholar 

  • M.L. Lister, M.H. Cohen, D.C. Homan, M. Kadler, K.I. Kellermann, Y.Y. Kovalev, E. Ros, T. Savolainen, J.A. Zensus, MOJAVE: monitoring of jets in active galactic nuclei with VLBA experiments. VI. Kinematics analysis of a complete sample of blazar jets. Astron. J. 138, 1874–1892 (2009). doi:10.1088/0004-6256/138/6/1874

    Article  ADS  Google Scholar 

  • W. Liu, H. Li, L. Yin, B.J. Albright, K.J. Bowers, E.P. Liang, Particle energization in 3D magnetic reconnection of relativistic pair plasmas. Phys. Plasmas 18(5), 052105 (2011). doi:10.1063/1.3589304

    Article  ADS  Google Scholar 

  • Y.-H. Liu, J.F. Drake, M. Swisdak, The structure of the magnetic reconnection exhaust boundary. Phys. Plasmas 19(2), 022110 (2012). doi:10.1063/1.3685755

    Article  ADS  Google Scholar 

  • N.F. Loureiro, A.A. Schekochihin, S.C. Cowley, Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14(10), 100703 (2007). doi:10.1063/1.2783986

    Article  ADS  Google Scholar 

  • N.F. Loureiro, R. Samtaney, A.A. Schekochihin, D.A. Uzdensky, Magnetic reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Phys. Plasmas 19(4), 042303 (2012). doi:10.1063/1.3703318

    Article  ADS  Google Scholar 

  • Y.E. Lyubarskij, Energy release in strongly magnetized relativistic winds. Sov. Astron. Lett. 18, 356 (1992)

    ADS  Google Scholar 

  • Y.E. Lyubarskii, A model for the energetic emission from pulsars. Astron. Astrophys. 311, 172–178 (1996)

    ADS  Google Scholar 

  • Y.E. Lyubarsky, The termination shock in a striped pulsar wind. Mon. Not. R. Astron. Soc. 345, 153–160 (2003). doi:10.1046/j.1365-8711.2003.06927.x

    Article  ADS  Google Scholar 

  • Y.E. Lyubarsky, On the relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 358, 113–119 (2005). doi:10.1111/j.1365-2966.2005.08767.x

    Article  ADS  Google Scholar 

  • Y.E. Lyubarsky, Transformation of the Poynting flux into kinetic energy in relativistic jets. Mon. Not. R. Astron. Soc. 402, 353–361 (2010). doi:10.1111/j.1365-2966.2009.15877.x

    Article  ADS  Google Scholar 

  • Y.E. Lyubarsky, Highly magnetized region in pulsar wind nebulae and origin of the Crab gamma-ray flares. Mon. Not. R. Astron. Soc. 427, 1497–1502 (2012). doi:10.1111/j.1365-2966.2012.22097.x

    Article  ADS  Google Scholar 

  • Y. Lyubarsky, J.G. Kirk, Reconnection in a striped pulsar wind. Astrophys. J. 547, 437–448 (2001). doi:10.1086/318354

    Article  ADS  Google Scholar 

  • Y. Lyubarsky, M. Liverts, Particle acceleration in the driven relativistic reconnection. Astrophys. J. 682, 1436–1442 (2008). doi:10.1086/589640

    Article  ADS  Google Scholar 

  • M. Lyutikov, The electromagnetic model of gamma-ray bursts. New J. Phys. 8, 119 (2006). doi:10.1088/1367-2630/8/7/119

    Article  ADS  Google Scholar 

  • J.C. McKinney, D.A. Uzdensky, A reconnection switch to trigger gamma-ray burst jet dissipation. Mon. Not. R. Astron. Soc. 419, 573–607 (2012). doi:10.1111/j.1365-2966.2011.19721.x

    Article  ADS  Google Scholar 

  • M. Melzani, C. Winisdoerffer, R. Walder, D. Folini, J.M. Favre, S. Krastanov, P. Messmer, Apar-T: code, validation, and physical interpretation of particle-in-cell results. Astron. Astrophys. 558, 133 (2013). doi:10.1051/0004-6361/201321557

    Article  ADS  Google Scholar 

  • M. Melzani, R. Walder, D. Folini, C. Winisdoerffer, J.M. Favre, The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. ArXiv e-prints, 2014

  • F.C. Michel, Magnetic structure of pulsar winds. Astrophys. J. 431, 397–401 (1994). doi:10.1086/174493

    Article  ADS  Google Scholar 

  • A. Mignone, E. Striani, M. Tavani, A. Ferrari, Modelling the kinked jet of the Crab Nebula. Mon. Not. R. Astron. Soc. 436, 1102–1115 (2013). doi:10.1093/mnras/stt1632

    Article  ADS  Google Scholar 

  • Y. Mizuno, Y. Lyubarsky, K.-I. Nishikawa, P.E. Hardee, Three-dimensional relativistic magnetohydrodynamic simulations of current-driven instability. II. Relaxation of pulsar wind nebula. Astrophys. J. 728, 90 (2011). doi:10.1088/0004-637X/728/2/90

    Article  ADS  Google Scholar 

  • K. Nalewajko, D. Giannios, M.C. Begelman, D.A. Uzdensky, M. Sikora, Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 413, 333–346 (2011). doi:10.1111/j.1365-2966.2010.18140.x

    Article  ADS  Google Scholar 

  • R. Narayan, T. Piran, Variability in blazars: clues from PKS 2155-304. Mon. Not. R. Astron. Soc. 420, 604–612 (2012). doi:10.1111/j.1365-2966.2011.20069.x

    Article  ADS  Google Scholar 

  • C. Nodes, G.T. Birk, H. Lesch, R. Schopper, Particle acceleration in three-dimensional tearing configurations. Phys. Plasmas 10, 835–844 (2003). doi:10.1063/1.1542612

    Article  ADS  Google Scholar 

  • M. Øieroset, T.D. Phan, J.P. Eastwood, M. Fujimoto, W. Daughton, M.A. Shay, V. Angelopoulos, F.S. Mozer, J.P. McFadden, D.E. Larson, K.-H. Glassmeier, Direct evidence for a three-dimensional magnetic flux rope flanked by two active magnetic reconnection X lines at Earth’s magnetopause. Phys. Rev. Lett. 107(16), 165007 (2011). doi:10.1103/PhysRevLett.107.165007

    Article  ADS  Google Scholar 

  • M. Oka, T.-D. Phan, S. Krucker, M. Fujimoto, I. Shinohara, Electron acceleration by multi-island coalescence. Astrophys. J. 714, 915–926 (2010). doi:10.1088/0004-637X/714/1/915

    Article  ADS  Google Scholar 

  • V. Olshevsky, G. Lapenta, S. Markidis, Energetics of kinetic reconnection in a three-dimensional null-point cluster. Phys. Rev. Lett. 111, 045002 (2013). doi:10.1103/PhysRevLett.111.045002. http://link.aps.org/doi/10.1103/PhysRevLett.111.045002

    Article  ADS  Google Scholar 

  • H.K. Park, N.C. Luhmann Jr., A.J.H. Donné, I.G.J. Classen, C.W. Domier, E. Mazzucato, T. Munsat, M.J. van de Pol, Z. Xia, Observation of high-field-side crash and heat transfer during sawtooth oscillation in magnetically confined plasmas. Phys. Rev. Lett. 96(19), 195003 (2006). doi:10.1103/PhysRevLett.96.195003

    Article  ADS  Google Scholar 

  • J. Pétri, High-energy emission from the pulsar striped wind: a synchrotron model for gamma-ray pulsars. Mon. Not. R. Astron. Soc. 424, 2023–2027 (2012). doi:10.1111/j.1365-2966.2012.21350.x

    Article  ADS  Google Scholar 

  • J. Pétri, J.G. Kirk, Growth rates of the Weibel and tearing mode instabilities in a relativistic pair plasma. Plasma Phys. Control. Fusion 49, 1885–1896 (2007). doi:10.1088/0741-3335/49/11/009

    Article  ADS  Google Scholar 

  • J. Pétri, Y. Lyubarsky, Magnetic reconnection at the termination shock in a striped pulsar wind. Astron. Astrophys. 473, 683–700 (2007). doi:10.1051/0004-6361:20066981

    Article  ADS  MATH  Google Scholar 

  • H.E. Petschek, Magnetic field annihilation. NASA Spec. Publ. 50, 425 (1964)

    ADS  Google Scholar 

  • B.G. Piner, A.B. Pushkarev, Y.Y. Kovalev, C.J. Marvin, J.G. Arenson, P. Charlot, A.L. Fey, A. Collioud, P.A. Voitsik, Relativistic jets in the radio reference frame image database. II. Blazar jet accelerations from the first 10 years of data (1994–2003). Astrophys. J. 758, 84 (2012). doi:10.1088/0004-637X/758/2/84

    Article  ADS  Google Scholar 

  • D.I. Pontin, Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47, 1508–1522 (2011). doi:10.1016/j.asr.2010.12.022

    Article  ADS  Google Scholar 

  • O. Porth, S.S. Komissarov, R. Keppens, Solution to the sigma problem of pulsar wind nebulae. Mon. Not. R. Astron. Soc. 431, 48–52 (2013). doi:10.1093/mnrasl/slt006

    Article  ADS  Google Scholar 

  • O. Porth, S.S. Komissarov, R. Keppens, Three-dimensional magnetohydrodynamic simulations of the Crab Nebula. Mon. Not. R. Astron. Soc. 438, 278–306 (2014). doi:10.1093/mnras/stt2176

    Article  ADS  Google Scholar 

  • A.B. Pushkarev, Y.Y. Kovalev, M.L. Lister, T. Savolainen, Jet opening angles and gamma-ray brightness of AGN. Astron. Astrophys. 507, 33–36 (2009). doi:10.1051/0004-6361/200913422

    Article  ADS  Google Scholar 

  • R. Samtaney, N.F. Loureiro, D.A. Uzdensky, A.A. Schekochihin, S.C. Cowley, Formation of plasmoid chains in magnetic reconnection. Phys. Rev. Lett. 103(10), 105004 (2009). doi:10.1103/PhysRevLett.103.105004

    Article  ADS  Google Scholar 

  • T. Savolainen, D.C. Homan, T. Hovatta, M. Kadler, Y.Y. Kovalev, M.L. Lister, E. Ros, J.A. Zensus, Relativistic beaming and gamma-ray brightness of blazars. Astron. Astrophys. 512, 24 (2010). doi:10.1051/0004-6361/200913740

    Article  ADS  Google Scholar 

  • L. Sironi, A. Spitkovsky, Acceleration of particles at the termination shock of a relativistic striped wind. Astrophys. J. 741, 39 (2011a). doi:10.1088/0004-637X/741/1/39

    Article  ADS  Google Scholar 

  • L. Sironi, A. Spitkovsky, Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 726, 75 (2011b). doi:10.1088/0004-637X/726/2/75

    Article  ADS  Google Scholar 

  • L. Sironi, A. Spitkovsky, Particle-in-cell simulations of shock-driven reconnection in relativistic striped winds. Comput. Sci. Discov. 5(1), 014014 (2012). doi:10.1088/1749-4699/5/1/014014

    Article  Google Scholar 

  • L. Sironi, A. Spitkovsky, Relativistic reconnection: an efficient source of non-thermal particles. Astrophys. J. Lett. 783, 21 (2014). doi:10.1088/2041-8205/783/1/L21

    Article  ADS  Google Scholar 

  • L. Sironi, A. Spitkovsky, J. Arons, The maximum energy of accelerated particles in relativistic collisionless shocks. Astrophys. J. 771, 54 (2013). doi:10.1088/0004-637X/771/1/54

    Article  ADS  Google Scholar 

  • T.W. Speiser, Particle trajectories in model current sheets. 1. Analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965). doi:10.1029/JZ070i017p04219

    Article  ADS  Google Scholar 

  • Y.T. Tanaka, Ł. Stawarz, D.J. Thompson, F. D’Ammando, S.J. Fegan, B. Lott, D.L. Wood, C.C. Cheung, J. Finke, S. Buson, L. Escande, S. Saito, M. Ohno, T. Takahashi, D. Donato, J. Chiang, M. Giroletti, F.K. Schinzel, G. Iafrate, F. Longo, S. Ciprini, Fermi large area telescope detection of bright γ-ray outbursts from the peculiar quasar 4C +21.35. Astrophys. J. 733, 19 (2011). doi:10.1088/0004-637X/733/1/19

    Article  ADS  Google Scholar 

  • M. Tavani, A. Bulgarelli, V. Vittorini, A. Pellizzoni, E. Striani, P. Caraveo, M.C. Weisskopf, A. Tennant, G. Pucella, A. Trois, E. Costa, Y. Evangelista, C. Pittori, F. Verrecchia, E. Del Monte, R. Campana, M. Pilia, A. De Luca, I. Donnarumma, D. Horns, C. Ferrigno, C.O. Heinke, M. Trifoglio, F. Gianotti, S. Vercellone, A. Argan, G. Barbiellini, P.W. Cattaneo, A.W. Chen, T. Contessi, F. D’Ammando, G. DeParis, G. Di Cocco, G. Di Persio, M. Feroci, A. Ferrari, M. Galli, A. Giuliani, M. Giusti, C. Labanti, I. Lapshov, F. Lazzarotto, P. Lipari, F. Longo, F. Fuschino, M. Marisaldi, S. Mereghetti, E. Morelli, E. Moretti, A. Morselli, L. Pacciani, F. Perotti, G. Piano, P. Picozza, M. Prest, M. Rapisarda, A. Rappoldi, A. Rubini, S. Sabatini, P. Soffitta, E. Vallazza, A. Zambra, D. Zanello, F. Lucarelli, P. Santolamazza, P. Giommi, L. Salotti, G.F. Bignami, Discovery of powerful gamma-ray flares from the Crab Nebula. Science 331, 736 (2011). doi:10.1126/science.1200083

    Article  ADS  Google Scholar 

  • F. Tavecchio, J. Becerra-Gonzalez, G. Ghisellini, A. Stamerra, G. Bonnoli, L. Foschini, L. Maraschi, On the origin of the γ-ray emission from the flaring blazar PKS 1222+216. Astron. Astrophys. 534, 86 (2011). doi:10.1051/0004-6361/201117204

    Article  ADS  Google Scholar 

  • C.M. Urry, P. Padovani, Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 107, 803 (1995). doi:10.1086/133630

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, R.M. Kulsrud, Two-dimensional numerical simulation of the resistive reconnection layer. Phys. Plasmas 7, 4018–4030 (2000). doi:10.1063/1.1308081

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, A. Spitkovsky, Physical conditions in the reconnection layer in pulsar magnetospheres. Astrophys. J. 780, 3 (2014). doi:10.1088/0004-637X/780/1/3

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, B. Cerutti, M.C. Begelman, Reconnection-powered linear accelerator and gamma-ray flares in the Crab Nebula. Astrophys. J. Lett. 737, 40 (2011). doi:10.1088/2041-8205/737/2/L40

    Article  ADS  Google Scholar 

  • D.A. Uzdensky, N.F. Loureiro, A.A. Schekochihin, Fast magnetic reconnection in the plasmoid-dominated regime. Phys. Rev. Lett. 105(23), 235002 (2010). doi:10.1103/PhysRevLett.105.235002

    Article  ADS  Google Scholar 

  • G.R. Werner, D.A. Uzdensky, B. Cerutti, K. Nalewajko, M.C. Begelman, The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. ArXiv e-prints, 2014

  • L. Yin, W. Daughton, H. Karimabadi, B.J. Albright, K.J. Bowers, J. Margulies, Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas. Phys. Rev. Lett. 101(12), 125001 (2008). doi:10.1103/PhysRevLett.101.125001

    Article  ADS  Google Scholar 

  • O. Zanotti, M. Dumbser, Numerical simulations of high Lundquist number relativistic magnetic reconnection. Mon. Not. R. Astron. Soc. 418, 1004–1011 (2011). doi:10.1111/j.1365-2966.2011.19551.x

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hesse, Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection. Astrophys. J. 684, 1477–1485 (2008). doi:10.1086/590425

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. Lett. 562, 63–66 (2001). doi:10.1086/337972

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, Relativistic particle acceleration in a folded current sheet. Astrophys. J. Lett. 618, 111–114 (2005). doi:10.1086/427873

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, Particle acceleration and magnetic dissipation in relativistic current sheet of pair plasmas. Astrophys. J. 670, 702–726 (2007). doi:10.1086/522226

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hoshino, The role of the guide field in relativistic pair plasma reconnection. Astrophys. J. 677, 530–544 (2008). doi:10.1086/528708

    Article  ADS  Google Scholar 

  • B. Zhang, H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. Astrophys. J. 726, 90 (2011). doi:10.1088/0004-637X/726/2/90

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the referees for useful comments that helped to improve the manuscript. L.S. is supported by NASA through Einstein Postdoctoral Fellowship grant number PF1-120090 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060. B.C. acknowledges support from the Lyman Spitzer Jr. Fellowship awarded by the Department of Astrophysical Sciences at Princeton University, and the Max-Planck/Princeton Center for Plasma Physics. D.G. acknowledges support from the NASA grant NNX13AP13G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kagan.

Additional information

All authors contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, D., Sironi, L., Cerutti, B. et al. Relativistic Magnetic Reconnection in Pair Plasmas and Its Astrophysical Applications. Space Sci Rev 191, 545–573 (2015). https://doi.org/10.1007/s11214-014-0132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0132-9

Keywords

Navigation