W.P. Abbett, The magnetic connection between the convection zone and corona in the quiet Sun. Astrophys. J. 665, 1469–1488 (2007). doi:10.1086/519788
ADS
Google Scholar
H. Alfvén, C.-G. Fälthammar, Cosmical Electrodynamics (Oxford University Press, Clarendon, 1963)
MATH
Google Scholar
T.D. Arber, G.J.J. Botha, C.S. Brady, Effect of solar chromospheric neutrals on equilibrium field structures. Astrophys. J. 705, 1183–1188 (2009). doi:10.1088/0004-637X/705/2/1183
ADS
Google Scholar
T.D. Arber, M. Haynes, J.E. Leake, Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666, 541–546 (2007). doi:10.1086/520046
ADS
Google Scholar
H.C. Aveiro, J.D. Huba, Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics. Ann. Geophys. 31, 2157-2162 (2013). doi:10.5194/angeo-31-2157-2013
ADS
Google Scholar
H.C. Aveiro, D.L. Hysell, Three-dimensional numerical simulation of equatorial F region plasma irregularities with bottomside shear flow. J. Geophys. Res. 115, 11321 (2010). doi:10.1029/2010JA015602
Google Scholar
H.C. Aveiro, D.L. Hysell, Implications of the equipotential field line approximation for equatorial spread F analysis. Geophys. Res. Lett. 39, 11106 (2012). doi:10.1029/2012GL051971
ADS
Google Scholar
E.H. Avrett, R. Loeser, Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008). doi:10.1086/523671
ADS
Google Scholar
R. Balescu, Transport Processes in Plasmas, 1 (1988).
Google Scholar
B. Basu, Characteristics of electromagnetic Rayleigh–Taylor modes in nighttime equatorial plasma. J. Geophys. Res. 110, 2303 (2005). doi:10.1029/2004JA010659
Google Scholar
T.E. Berger, G. Slater, N. Hurlburt, R. Shine, T. Tarbell, A. Title, B.W. Lites, T.J. Okamoto, K. Ichimoto, Y. Katsukawa, T. Magara, Y. Suematsu, T. Shimizu, Quiescent prominence dynamics observed with the hinode solar optical telescope. I. Turbulent upflow plumes. Astrophys. J. 716, 1288–1307 (2010). doi:10.1088/0004-637X/716/2/1288
ADS
Google Scholar
T. Berger, P. Testa, A. Hillier, P. Boerner, B.C. Low, K. Shibata, C. Schrijver, T. Tarbell, A. Title, Magneto-thermal convection in solar prominences. Nature 472, 197–200 (2011). doi:10.1038/nature09925
ADS
Google Scholar
L. Biermann, Zur Deutung der chromosphärischen Turbulenz und des Exzesses der UV-Strahlung der Sonne. Naturwissenschaften 33, 118–119 (1946). doi:10.1007/BF00738265
ADS
Google Scholar
S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965).
ADS
Google Scholar
L. Brower, J.P. Thayer, J.P. St. Maurice, Frictionally heated electrons in the high-latitude D region. J. Geophys. Res. 114, A12302 (2009). doi:10.1029/2009JA014421
ADS
Google Scholar
D. Brunt, The period of simple vertical oscillations in the atmosphere. Q. J. R. Meteorol. Soc. 53, 30–32 (1927)
ADS
Google Scholar
O. Buneman, Excitation of field-aligned sound waves by electron streams. Phys. Rev. Lett. 10, 285–287 (1963). doi:10.1103/PhysRevLett.10.285
ADS
Google Scholar
M. Carlsson, J. Leenaarts, Approximations for radiative cooling and heating in the solar chromosphere. Astron. Astrophys. 539, A39 (2012). doi:10.1051/0004-6361/201118366
ADS
Google Scholar
F. Cattaneo, On the origin of magnetic fields in the quiet photosphere. Astrophys. J. 515, L39–L42 (1999).
ADS
Google Scholar
F. Cattaneo, D Hughes, Solar dynamo theory: a new look at the origin of small-scale magnetic fields. Astron. Geophys. 42, 3.18–3.22 (2001).
Google Scholar
F. Cattaneo, T Emonet, N Weiss, On the interaction between convection and magnetic fields. Astrophys. J. 588, 1183–1198 (2003).
ADS
Google Scholar
P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi:10.12942/lrsp-2010-3
ADS
Google Scholar
J.R. Conrad, R.W. Schunk, Diffusion and heat flow equations with allowance for large temperature differences between interacting species. J. Geophys. Res. 84(A3), 811–822 (1979). doi:10.1029/JA084iA03p00811
ADS
Google Scholar
T.G. Cowling, The dissipation of magnetic energy in an ionized gas. Mon. Not. R. Astron. Soc. 116, 114–124 (1956)
MATH
MathSciNet
ADS
Google Scholar
S.R. Cranmer, S.R. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliospher. Mon. Not. R. Astron. Soc. 156, 265–293 (2005)
ADS
Google Scholar
R.B. Dahlburg, J.A. Klimchuk, S.K. Antiochos, Coronal energy release via ideal three-dimensional instability. Adv. Space Res. 32, 1029–1034 (2003). doi:10.1016/S0273-1177(03)00305-3
ADS
Google Scholar
R.B. Dahlburg, J.A. Klimchuk, S.K. Antiochos, An explanation for the “switch-on” nature of magnetic energy release and its application to coronal heating. Astrophys. J. 622, 1191 (2005)
ADS
Google Scholar
B. De Pontieu, Numerical simulations of spicules driven by weakly-damped Alfvén waves. I. WKB approach. Astron. Astrophys. 347, 696–710 (1999)
ADS
Google Scholar
B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, S. Nagata, Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007a). doi:10.1126/science.1151747
ADS
Google Scholar
B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, C.J. Schrijver, T.D. Tarbell, A. Title, SOT Team, Observational evidence for the ubiquity of strong Alfvén waves in the magnetized chromosphere, in American Astronomical Society Meeting Abstracts #210. Bull. Am. Astron. Soc., vol. 39, 2007b, p. 219
Google Scholar
B. De Pontieu, A.M. Title, J. Lemen, J. Wuelser, T.D. Tarbell, C.J. Schrijver, L. Golub, C. Kankelborg, M. Carlsson, V.H. Hansteen, S. Worden, IRIS team, The Interface Region Imaging Spectrograph (IRIS), in AAS/Solar Physics Division Meeting. AAS/Solar Physics Division Meeting, vol. 44, 2013, p. 3
Google Scholar
Y.S. Dimant, R.N. Sudan, Kinetic theory of the Farley–Buneman instability in the E region of the ionosphere. J. Geophys. Res. 100, 14605–14624 (1995). doi:10.1029/95JA00794
ADS
Google Scholar
Y.S. Dimant, M.M. Oppenheim, Magnetosphere-ionosphere coupling through E region turbulence: 1. Energy budget. J. Geophys. Res. 116, 9303 (2011). doi:10.1029/2011JA016648
Google Scholar
D.P. Drob, D. Broutman, M.A. Hedlin, N.W. Winslow, R.G. Gibson, A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J. Geophys. Res., Atmos. 118, 3933–3943 (2013). doi:10.1029/2012JD018077
ADS
Google Scholar
J.K. Edmondson, B.J. Lynch, C.R. DeVore, M. Velli, Reconnection-Driven Alfvén (RDA) Waves in the Solar Corona. AGU Fall Meeting Abstracts, 1990 (2011)
R.E. Erlandson, L.J. Zanetti, M.H. Acuña, A.I. Eriksson, L. Eliasson, M.H. Boehm, L.G. Blomberg, Freja observations of electromagnetic ion cyclotron ELF waves and transverse oxygen ion acceleration on auroral field lines. Geophys. Res. Lett. 21, 1855–1858 (1994). doi:10.1029/94GL01363
ADS
Google Scholar
D.T. Farley Jr., A plasma instability resulting in field-aligned irregularities in the ionosphere. J. Geophys. Res. 68, 6083 (1963)
MATH
ADS
Google Scholar
J.M. Fontenla, Chromospheric plasma and the Farley–Buneman instability in solar magnetic regions. Astron. Astrophys. 442, 1099–1103 (2005). doi:10.1051/0004-6361:20053669
ADS
Google Scholar
J.M. Fontenla, E.H. Avrett, R. Loeser, Energy balance in the solar transition region. III—Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophys. J. 406, 319–345 (1993). doi:10.1086/172443
ADS
Google Scholar
J.M. Fontenla, W.K. Peterson, J. Harder, Chromospheric heating by the Farley–Buneman instability. Astron. Astrophys. 480, 839–846 (2008). doi:10.1051/0004-6361:20078517
ADS
Google Scholar
J.M. Fontenla, E. Avrett, G. Thuillier, J. Harder, Semiempirical models of the solar atmosphere. I. The quiet- and active Sun photosphere at moderate resolution. Astrophys. J. 639, 441–458 (2006). doi:10.1086/499345
ADS
Google Scholar
A. Fossum, M. Carlsson, Are high frequency acoustic waves sufficient to heat the solar chromosphere? in The Dynamic Sun: Challenges for Theory and Observations. ESA Special Publication, vol. 600, 2005a
Google Scholar
A. Fossum, M. Carlsson, High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature 435, 919–921 (2005b). doi:10.1038/nature03695
ADS
Google Scholar
A. Fossum, M. Carlsson, Determination of the acoustic wave flux in the lower solar chromosphere. Astrophys. J. 646, 579–592 (2006). doi:10.1086/504887
ADS
Google Scholar
R. Fujii, S. Nozawa, S.C. Buchert, A. Brekke, Statistical characteristics of electromagnetic energy transfer between the magnetosphere, the ionosphere, and the thermosphere. J. Geophys. Res. 104, 2357–2366 (1999). doi:10.1029/98JA02750
ADS
Google Scholar
T. Fuller-Rowell, C.J. Schrijver, On the ionosphere and chromosphere, in Heliophysics I: Plasma Physics of the Local Cosmos, ed. by C. J. Schrijver, G. L. Siscoe (Cambridge University Press, New York, 2009), pp. 324–359
Google Scholar
T.J. Fuller-Rowell, D. Rees, S. Quegan, G.J. Bailey, R.J. Moffett, The effect of realistic conductivities on the high-latitude neutral thermospheric circulation. Planet. Space Sci. 32, 469–480 (1984). doi:10.1016/0032-0633(84)90126-0
ADS
Google Scholar
T.J. Fuller-Rowell, D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, A Coupled Thermosphere–Ionosphere Model (CTIM), STEP Handbook of Ionospheric Models 1996, pp. 217–238
H. Gilbert, G. Kilper, D. Alexander, Observational evidence supporting cross-field diffusion of neutral material in solar filaments. Astrophys. J. 671, 978–989 (2007). doi:10.1086/522884
ADS
Google Scholar
H.R. Gilbert, V.H. Hansteen, T.E. Holzer, Neutral atom diffusion in a partially ionized prominence plasma. Astrophys. J. 577, 464–474 (2002). doi:10.1086/342165
ADS
Google Scholar
G. Gogoberidze, Y. Voitenko, S. Poedts, M. Goossens, Farley–Buneman instability in the solar chromosphere. Astrophys. J. Lett. 706, 12–16 (2009). doi:10.1088/0004-637X/706/1/L12
ADS
Google Scholar
M.L. Goodman, On the mechanism of chromospheric network heating and the condition for its onset in the Sun and other solar-type stars. Astrophys. J. 533, 501–522 (2000). doi:10.1086/308635
ADS
Google Scholar
M.L. Goodman, The necessity of using realistic descriptions of transport processes in modeling the solar atmosphere, and the importance of understanding chromospheric heating*. Space Sci. Rev. 95, 70 (2001).
ADS
Google Scholar
M.L. Goodman, On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona. Astron. Astrophys. 416, 1159–1178 (2004). doi:10.1051/0004-6361:20031719
ADS
Google Scholar
M.L. Goodman, On the creation of the chromospheres of solar type stars. Astron. Astrophys. 424, 691–712 (2004). doi:10.1051/0004-6361:20040310
MATH
ADS
Google Scholar
M.L. Goodman, Conditions for photospherically driven Alfvénic oscillations to heat the solar chromosphere by Pedersen current dissipation. Astrophys. J. 735, 45 (2011). doi:10.1088/0004-637X/735/1/45
ADS
Google Scholar
M.L. Goodman, P.G. Judge, Radiating current sheets in the solar chromosphere. Astrophys. J. 751, 75 (2012). doi:10.1088/0004-637X/751/1/75
ADS
Google Scholar
G. Haerendel, Commonalities between ionosphere and chromosphere. Space Sci. Rev. 124, 317–331 (2006). doi:10.1007/s11214-006-9092-z
ADS
Google Scholar
M.E. Hagan, M.D. Burrage, J.M. Forbes, J. Hackney, W.J. Randel, X. Zhang, GSWM-98: results for migrating solar tides. J. Geophys. Res. 104, 6813–6828 (1999). doi:10.1029/1998JA900125
ADS
Google Scholar
A.M. Hamza, J.-P. St. Maurice, A fully self-consistent fluid theory of anomalous transport in Farley–Buneman turbulence. J. Geophys. Res. 100, 9653–9668 (1995). doi:10.1029/94JA03031
ADS
Google Scholar
S.S. Hasan, A.A. van Ballegooijen, Dynamics of the solar magnetic network. II. Heating the magnetized chromosphere. Astrophys. J. 680, 1542–1552 (2008). doi:10.1086/587773
ADS
Google Scholar
J.C. Henoux, B.V. Somov, The photospheric dynamo. I. Magnetic flux-tube generation. Astron. Astrophys. 241, 613–617 (1991)
ADS
Google Scholar
J.C. Henoux, B.V. Somov, The photospheric dynamo. I. Physics of thin magnetic flux tubes. Astron. Astrophys. 318, 947–956 (1997)
ADS
Google Scholar
A. Hillier, H. Isobe, K. Shibata, T. Berger, Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. Astrophys. J. Lett. 736, 1 (2011). doi:10.1088/2041-8205/736/1/L1
ADS
Google Scholar
A. Hillier, T. Berger, H. Isobe, K. Shibata, Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. I. Formation of upflows. Astrophys. J. 746, 120 (2012a). doi:10.1088/0004-637X/746/2/120
ADS
Google Scholar
A. Hillier, H. Isobe, K. Shibata, T. Berger, Numerical simulations of the magnetic Rayleigh–Taylor instability in the Kippenhahn–Schlüter prominence model. II. Reconnection-triggered downflows. Astrophys. J. 756, 110 (2012b). doi:10.1088/0004-637X/756/2/110
ADS
Google Scholar
J.D. Huba, G. Joyce, Global modeling of equatorial plasma bubbles. Geophys. Res. Lett. 37 17104 (2013). doi:10.1029/2010GL044281. http://adsabs.harvard.edu/abs/2010GeoRL..3717104H
ADS
Google Scholar
H. Isobe, T. Miyagoshi, K. Shibata, T. Yokoyama, Filamentary structure on the Sun from the magnetic Rayleigh–Taylor instability. Nature 434, 478–481 (2005). doi:10.1038/nature03399
ADS
Google Scholar
H. Isobe, T. Miyagoshi, K. Shibata, T. Yokoyama, Three-dimensional simulation of solar emerging flux using the Earth simulator I. Magnetic Rayleigh–Taylor instability at the top of the emerging flux as the origin of filamentary structure. Publ. Astron. Soc. Jpn. 58, 423–438 (2006)
ADS
Google Scholar
W. Kalkofen, Is the solar chromosphere heated by acoustic waves? Astrophys. J. 671, 2154–2158 (2007). doi:10.1086/523259
ADS
Google Scholar
Y. Kamide, The relationship between field-aligned currents and the auroral electrojets—a review. Space Sci. Rev. 31, 127–243 (1982). doi:10.1007/BF00215281
ADS
Google Scholar
A. Keiling, J.R. Wygant, C.A. Cattell, F.S. Mozer, C.T. Russell, The global morphology of wave poynting flux: powering the aurora. Science 299, 383–386 (2003). doi:10.1126/science.1080073
ADS
Google Scholar
M.C Kelley, D.J Knudsen, J.F Vickrey, Poynting flux measurements on a satellite. A diagnostic tool for space research. J. Geophys. Res. 96, 201–207 (1991).
ADS
Google Scholar
M.C. Kelley, R.A. Hellis, The Earth’s Ionosphere: Plasma Physics and Electrodynamics (second Addition) (Academic Press, New York, 2009)
Google Scholar
E. Khomenko, M. Collados, Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747, 87 (2012). doi:10.1088/0004-637X/747/2/87
ADS
Google Scholar
H. Kigure, K. Takahashi, K. Shibata, T. Yokoyama, S. Nozawa, Generation of Alfvén waves by magnetic reconnection. Publ. Astron. Soc. Jpn. 62, 993 (2010)
ADS
Google Scholar
J.A. Klimchuk, On solving the coronal heating problem. Sol. Phys. 234, 41–77 (2006). doi:10.1007/s11207-006-0055-z
ADS
Google Scholar
D.J. Knipp, W.K. Tobiska, B. Emery, Direct and indirect thermospheric heating sources for solar cycles 21–23. Sol. Phys. 224, 495–505 (2004).
ADS
Google Scholar
V. Krasnoselskikh, G. Vekstein, H.S. Hudson, S.D. Bale, W.P. Abbett, Generation of electric currents in the chromosphere via neutral-ion drag. Astrophys. J. 724, 1542–1550 (2010). doi:10.1088/0004-637X/724/2/1542
ADS
Google Scholar
A.P. Kropotkin, The generation of magnetic field via convective motions in the photosphere, Alfvén waves, and the origin of chromospheric spicules. Astron. Rep. 55, 1132–1143 (2011). doi:10.1134/S1063772911120079
ADS
Google Scholar
J.E. Leake, T.D. Arber, The emergence of magnetic flux through a partially ionised solar atmosphere. Astron. Astrophys. 450, 805–818 (2006). doi:10.1051/0004-6361:20054099
ADS
Google Scholar
J.E. Leake, M.G. Linton, Effect of ion-neutral collisions in simulations of emerging active regions. Astrophys. J. 764, 54 (2013). doi:10.1088/0004-637X/764/1/54
ADS
Google Scholar
J.E. Leake, T.D. Arber, M.L. Khodachenko, Collisional dissipation of Alfvén waves in a partially ionised solar chromosphere. Astron. Astrophys. 442, 1091–1098 (2005). doi:10.1051/0004-6361:20053427
ADS
Google Scholar
J.E. Leake, V.S. Lukin, M.G. Linton, Magnetic reconnection in a weakly ionized plasma. Phys. Plasmas 20(6), 061202 (2013)
ADS
Google Scholar
J.E. Leake, V.S. Lukin, M.G. Linton, E.T. Meier, Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760, 109 (2012). doi:10.1088/0004-637X/760/2/109
ADS
Google Scholar
J. Lei, R.G. Noble, B.A. Wang, S.R. Zhang, Electron temperature climatology at Millstone Hill and Arecibo. J. Geophys. Res. 112, A02302 (2007). doi:10.1029/2006JA012041
ADS
Google Scholar
G. Lu, A.D. Richmond, B.A. Emery, R.G. Roble, Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res. 100, 19643–19660 (1995). doi:10.1029/95JA00766
ADS
Google Scholar
V.S. Lukin, Computational study of the internal kink mode evolution and associated magnetic reconnection phenomena, PhD thesis, Princeton University, 2008
S. Lundquist, Studies in magneto-hydrodynamics. Ark. Fys. 5, 297–347 (1952)
MATH
MathSciNet
Google Scholar
C.A. Madsen, Y.S. Dimant, M.M. Oppenheim, J.M. Fontenla, The Multi-Species Farley–Buneman Instability in the Solar Chromosphere. ArXiv e-prints (2013)
J.J. Makela, B.M. Ledvina, M.C. Kelley, P.M. Kintner, Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii. Ann. Geophys. 22, 3109–3121 (2004). doi:10.5194/angeo-22-3109-2004
ADS
Google Scholar
J. Martínez-Sykora, B. De Pontieu, V. Hansteen, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753, 161 (2012). doi:10.1088/0004-637X/753/2/161
ADS
Google Scholar
E.T. Meier, U. Shumlak, A general nonlinear fluid model for reacting plasma–neutral mixtures. Phys. Plasmas 19, 072508 (2012)
ADS
Google Scholar
G.H. Millward, R.J. Moffett, S. Quegan, T.J. Fuller-Rowell, A Coupled Thermosphere–Ionosphere Model (CTIM), STEP Handbook of Ionospheric Models 1996, pp. 239–280
M. Mitchner, C.H. Kruger, Partially Ionized Gases (Wiley, New York, 1973)
Google Scholar
V.M. Nakariakov, L. Ofman, E.E. Deluca, B. Roberts, J.M. Davila, TRACE observation of damped coronal loop oscillations: implications for coronal heating. Science 285, 862–864 (1999). doi:10.1126/science.285.5429.862
ADS
Google Scholar
U. Narain, P. Ulmschneider, Chromospheric and coronal heating mechanisms. Space Sci. Rev. 54, 377–445 (1990). doi:10.1007/BF00177801
ADS
Google Scholar
L. Ofman, Chromospheric leakage of Alfvén waves in coronal loops. Astrophys. J. Lett. 568, 135–138 (2002). doi:10.1086/340329
ADS
Google Scholar
M.M. Oppenheim, Y.S. Dimant, Kinetic simulations of 3-D Farley–Buneman turbulence and anomalous electron heating. J. Geophys. Res. 118, 1306–1318 (2013). doi:10.1002/jgra.50196
Google Scholar
S.L. Ossakow, Spread F theories: a review. J. Atmos. Terr. Phys. 43, 437–452 (1981)
ADS
Google Scholar
N.F. Otani, M. Oppenheim, Saturation of the Farley–Buneman instability via three-mode coupling. J. Geophys. Res. 111, 3302 (2006). doi:10.1029/2005JA011215
Google Scholar
E.N. Parker, Magnetic neutral sheets in evolving fields. I. General theory. Astrophys. J. 264, 635–647 (1983). doi:10.1086/160636
ADS
Google Scholar
E.N. Parker, Dynamical oscillation and propulsion of magnetic fields in the convective zone of a star. VI. Small flux bundles, network fields, and ephemeral active regions. Astrophys. J. 326, 407–411 (1988). doi:10.1086/166103
ADS
Google Scholar
E.N. Parker, The alternative paradigm for magnetospheric physics. J. Geophys. Res. 101, 10587–10626 (1996). doi:10.1029/95JA02866
ADS
Google Scholar
E.N. Parker, Conversations on Electric and Magnetic Fields in the Cosmos (Princeton University Press, Princeton, 2007)
Google Scholar
S.V. Poliakov, V.O. Rapoport, The ionospheric Alfvén resonator. Geomagn. Aeron. 21, 816–822 (1981)
ADS
Google Scholar
J.W.S. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170–177 (1882)
MathSciNet
Google Scholar
A.D. Richmond, J.P. Thayer, Ionospheric electrodynamics: a tutorial, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R. L. Lysak, Geophysical Monograph, vol. 118 (American Geophysical Union, Washington, 2000), pp. 131–146
Google Scholar
A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992). doi:10.1029/92GL00401
ADS
Google Scholar
H. Rishbeth, Thermospheric targets. Eos 88, 189–193 (2007). doi:10.1029/2007EO170002
ADS
Google Scholar
R.G. Roble, E.C. Ridley, A thermosphere–ionosphere-mesosphere-electrodynamics general circulation model (TIMEGCM): equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21, 417–420 (1994). doi:10.1029/93GL03391
ADS
Google Scholar
R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermosphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988). doi:10.1029/GL015i012p01325
ADS
Google Scholar
A.J.B Russell, L. Fletcher, Propagation of Alfvénic waves from corona to chromosphere and consequences for solar flares. Astrophys. J. 765, 81 (2013). doi:10.1088/0004-637X/765/2/81
ADS
Google Scholar
R.W. Schunk, Transport equations for aeronomy. Planet. Space Sci. 23, 437 (1975).
ADS
Google Scholar
R.W. Schunk, Mathematical structure of transport equations for multispecies flows. Rev. Geophys. 15, 429 (1977).
ADS
Google Scholar
R.W. Schunk, J.J. Sojka, Ion temperature variations in the daytime high-latitude F region. J. Geophys. Res. 87(A7), 5169-5183 (1982). doi:10.1029/JA087iA07p05169.
ADS
Google Scholar
R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge University Press, New York, 2000)
Google Scholar
M. Schwarzschild, On noise arising from the solar granulation. Astrophys. J. 107, 1 (1948). doi:10.1086/144983
ADS
Google Scholar
P. Song, V.M. Vasyliūnas, Heating of the solar atmosphere by strong damping of Alfvén waves. J. Geophys. Res. 116, 9104 (2011). doi:10.1029/2011JA016679
Google Scholar
P. Song, T.I. Gombosi, A.J. Ridley, Three-fluid Ohm’s law. J. Geophys. Res. 106, 8149–8156 (2001). doi:10.1029/2000JA000423
ADS
Google Scholar
P. Song, V.M. Vasyliūnas, L. Ma, Solar wind-magnetosphere-ionosphere coupling: neutral atmosphere effects on signal propagation. J. Geophys. Res. 110, 9309 (2005). doi:10.1029/2005JA011139
Google Scholar
B.U.O. Sonnerup, G. Paschmann, I. Papamastorakis, N. Sckopke, G. Haerendel, S.J. Barne, J.R. Asbridge, J.T. Gosling, C.T. Russelll, Evidence for magnetic field reconnection at the earth’s magnetopause. J. Geophys. Res. 86, 10049 (1981). doi:10.1029/JA086iA12p10049
ADS
Google Scholar
J.P. St. Maurice, R.W. Schunk, Ion-neutral momentum coupling near discrete high latitude ionospheric features. J. Geophys. Res. 86, 11299 (1981).
ADS
Google Scholar
J.P. St. Maurice, W.B. Hanson, Ion frictional heating at high latitudes and its possible use for an in situ determination of neutral thermospheric winds and temperatures. J. Geophys. Res. 87(A9), 7580 (1982). doi:10.1029/JA087iA09p07580.
ADS
Google Scholar
J.P. St. Maurice, W.B. Hanson, A statistical study of F region ion temperatures at high latitudes based on atmosphere explorer C data. J. Geophys. Res. 89(A2), 987 (1984). doi:10.1029/JA089iA02p00987.
ADS
Google Scholar
R.F. Stein, Solar surface magneto-convection. Living Rev. Sol. Phys. 9, 4 (2012). doi:10.12942/lrsp-2012-4
ADS
Google Scholar
P.J. Sultan, Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res. 101, 26875–26892 (1996)
ADS
Google Scholar
G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. Phys. Soc. Lond. 201, 192–196 (1950). doi:10.1098/rspa.1950.0052
MATH
ADS
Google Scholar
J.P. Thayer, High-latitude currents and their energy exchange with the ionosphere-thermosphere system. J. Geophys. Res. 105, 23015–23024 (2000). doi:10.1029/1999JA000409
ADS
Google Scholar
J.P. Thayer, J. Semeter, The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol.-Terr. Phys. 66, 807–824 (2004). doi:10.1016/j.jastp.2004.01.035
ADS
Google Scholar
J.P. Thayer, J.F. Vickrey, R.A. Heelis, J.B. Gary, Interpretation and modeling of the high-latitude electromagnetic energy flux. J. Geophys. Res. 100, 19715–19728 (1995). doi:10.1029/95JA01159
ADS
Google Scholar
W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, O.R. White, The SOLAR2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol.-Terr. Phys. 62, 1233–1250 (2000). doi:10.1016/S1364-6826(00)00070-5
ADS
Google Scholar
S. Tomczyk, S.W. McIntosh, S.L. Keil, P.G. Judge, T. Schad, D.H. Seeley, J. Edmondson, Alfvén waves in the solar corona. AGU Fall Meeting Abstracts, 289 (2007)
M.R. Torr, D.G. Torr, The seasonal behaviour of the F2 layer of the ionosphere. J. Atmos. Terr. Phys. 35, 2237–2251 (1973)
ADS
Google Scholar
J. Tu, P. Song, On the concept of penetration electric field. Radio Sound. Plasma Phys. 974, 81–85 (2008).
ADS
Google Scholar
J. Tu, P. Song, V.M. Vasyliūnas, Ionosphere/thermosphere heating determined from dynamic magnetosphere-ionosphere/thermosphere coupling. J. Geophys. Res. 116, 9311 (2011). doi:10.1029/2011JA016620
Google Scholar
J. Tu, P. Song, A study of Alfvén wave propagation and heating the chromosphere. Astrophys. J. 777, 53 (2013). doi:10.1088/0004-637X/777/1/53
ADS
Google Scholar
Y.-K. Tung, C.W. Carlson, J.P. McFadden, D.M. Klumpar, G.K. Parks, W.J. Peria, K. Liou, Auroral polar cap boundary ion conic outflow observed on FAST. J. Geophys. Res. 106, 3603–3614 (2001). doi:10.1029/2000JA900115
ADS
Google Scholar
P. Ulmschneider, Acoustic heating of stellar chromospheres and coronae, in Cool Stars, Stellar Systems, and the Sun, ed. by G. Wallerstein, Astron. Soc. Pac. Conf. Ser., vol. 9 (ASP, San Francisco, 1990), pp. 3–14
Google Scholar
V. Väisälä, Über die Wirkung der Windschwankungen auf die Pilotbeobachtungen. Soc. Sci. Fenn. Comment. Math. Phys. 2, 19–37 (1925)
Google Scholar
V.M. Vasyliūnas, Electric field and plasma flow: what drives what? Geophys. Res. Lett. 28, 2177–2180 (2001). doi:10.1029/2001GL013014
ADS
Google Scholar
V.M. Vasyliūnas, Time evolution of electric fields and currents and the generalized Ohm’s law. Ann. Geophys. 23, 1347–1354 (2005). doi:10.5194/angeo-23-1347-2005
ADS
Google Scholar
V.M. Vasyliūnas, P. Song, Meaning of ionospheric Joule heating. J. Geophys. Res. 110, 2301 (2005). doi:10.1029/2004JA010615
Google Scholar
V.M. Vasyliūnas, Physics of magnetospheric variability. J. Geophys. Res. 158, 91–118 (2011). doi:10.1007/s11214-010-9696-1
Google Scholar
V.M. Vasyliūnas, The physical basis of ionospheric electrodynamics. Ann. Geophys. 30, 3157–3369 (2012). doi:10.5194/angeo-30-357-2012
Google Scholar
J.E. Vernazza, E.H. Avrett, R. Loeser, Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophys. J. Suppl. Ser. 45, 635–725 (1981). doi:10.1086/190731
ADS
Google Scholar
Y. Voitenko, M. Goossens, Excitation of high-frequency Alfvén waves by plasma outflows from coronal reconnection events. Sol. Phys. 206, 285–313 (2002). doi:10.1023/A:1015090003136
ADS
Google Scholar
J. Vranjes, P.S. Krstic, Collisions, magnetization, and transport coefficients in the lower solar atmosphere. Astron. Astrophys. 554, 22 (2013). doi:10.1051/0004-6361/201220738
ADS
Google Scholar
W. Wang, A.G. Burns, M. Wiltberger, S.C. Solomon, T.L. Killeen, Altitude variations of the horizontal thermospheric winds during geomagnetic storms. J. Geophys. Res. 113, 2301 (2008). doi:10.1029/2007JA012374
Google Scholar
R.F. Woodman, Spread F—an old equatorial aeronomy problem finally resolved? Ann. Geophys. 27, 1915–1934 (2009). doi:10.5194/angeo-27-1915-2009
ADS
Google Scholar
T.V. Zaqarashvili, M.L. Khodachenko, H.O. Rucker, Magnetohydrodynamic waves in solar partially ionized plasmas: two-fluid approach. Astrophysics 529, 82 (2011). doi:10.1051/0004-6361/201016326
Google Scholar