Skip to main content
Log in

Flux Transport Dynamos: From Kinematics to Dynamics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Over the past several decades, Flux-Transport Dynamo (FTD) models have emerged as a popular paradigm for explaining the cyclic nature of solar magnetic activity. Their defining characteristic is the key role played by the mean meridional circulation in transporting magnetic flux and thereby regulating the cycle period. Most FTD models also incorporate the so-called Babcock-Leighton (BL) mechanism in which the mean poloidal field is produced by the emergence and subsequent dispersal of bipolar active regions. This feature is well grounded in solar observations and provides a means for assimilating observed surface flows and fields into the models in order to forecast future solar activity, to identify model biases, and to clarify the underlying physical processes. Furthermore, interpreting historical sunspot records within the context of FTD models can potentially provide insight into why cycle features such as amplitude and duration vary and what causes extreme events such as Grand Minima. Though they are generally robust in a modeling sense and make good contact with observed cycle features, FTD models rely on input physics that is only partially constrained by observation and that neglects the subtleties of convective transport, convective field generation, and nonlinear feedbacks. Here we review the formulation and application of FTD models and assess our current understanding of the input physics based largely on complementary 3D MHD simulations of solar convection, dynamo action, and flux emergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The solutions are typically matched to an exterior potential field (Dikpati and Choudhuri 1995). A radial field surface boundary condition can also be used when matching with a surface flux transport model (see, e.g., Jiang et al. 2013).

  2. Note that Balbus and Schaan (2012) attribute the solar differential rotation to a meridional flow induced by centrifugal distortion of the base of the CZ. However, though this can influence the Ω profile, it cannot establish the equatorward Ω gradient observed in the Sun. For a discussion of this issue see the Appendix of Miesch et al. (2012).

References

  • K.C. Augustson, A.S. Brun, M.S. Miesch, J. Toomre, Cycling dynamo in a young sun: grand minima and equatorward propagation. Astrophys. J. (2014 submitted)

  • H.W. Babcock, The topology of the sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572 (1961)

    ADS  Google Scholar 

  • S.A. Balbus, E. Schaan, The stability of stratified, rotating systems and the generation of vorticity in the sun. Mon. Not. R. Astron. Soc. 426, 1546–1557 (2012)

    ADS  Google Scholar 

  • S.A. Balbus, J. Bonart, H.N. Latter, N.O. Weiss, Differential rotation and convection in the sun. Mon. Not. R. Astron. Soc. 400, 176–182 (2009)

    ADS  Google Scholar 

  • S.A. Balbus, H. Latter, N. Weiss, Global model of differential rotation in the sun. Mon. Not. R. Astron. Soc. 420, 2457–2466 (2012)

    ADS  Google Scholar 

  • T. Baranyi, L. Gyori, A. Ludmány, H.E. Coffey, Comparison of sunspot area data bases. Mon. Not. R. Astron. Soc. 323, 223–230 (2001)

    ADS  Google Scholar 

  • A.J. Barker, L.J. Silvers, M. Proctor, N. Weiss, Magnetic buoyancy instabilities in the presence of magnetic flux pumping at the base of the solar convection zone. Mon. Not. R. Astron. Soc. 424, 115–127 (2012)

    ADS  Google Scholar 

  • I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic field on the solar surface: a parameter study. Astron. Astrophys. 426, 1075–1091 (2004)

    ADS  Google Scholar 

  • P. Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional oscillations in a global solar dynamo. Sol. Phys. 282, 335–360 (2013)

    ADS  Google Scholar 

  • J. Beer, S. Tobias, N.O. Weiss, An active sun throughout the Maunder minimum. Sol. Phys. 181, 237–249 (1998)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory Phys. Rep. 417, 1–209 (2005)

    ADS  MathSciNet  Google Scholar 

  • A. Brandenburg, F. Krause, R. Meinel, D. Moss, I. Tuominen, The stability of nonlinear dynamos and the limited role of kinematic growth rates. Astron. Astrophys. 213, 411–422 (1989)

    ADS  Google Scholar 

  • A. Brandenburg, D. Moss, I. Tuominen, Turbulent pumping in the solar dynamo, in The Solar Cycle, vol. 27 (1992), p. 536

    Google Scholar 

  • A. Brandenburg, N. Kleeorin, I. Rogachevskii, Large-scale magnetic flux concentrations from turbulent stresses. Astron. Nachr. 331, 5–13 (2010)

    ADS  MATH  Google Scholar 

  • A. Brandenburg, K. Koen, N. Kleeorin, I. Rogachevskii, The negative effective magnetic pressure in stratified forced turbulence. Astrophys. J. 749, 179 (2012)

    ADS  Google Scholar 

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Persistent magnetic wreathes in a rapidly rotating sun. Astrophys. J. 711, 424–438 (2010)

    ADS  Google Scholar 

  • B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys. J. 731, 69 (2011)

    ADS  Google Scholar 

  • M.K. Browning, M.S. Miesch, A.S. Brun, J. Toomre, Dynamo action in the solar convection zone and tachocline: pumping and organization of toroidal fields. Astrophys. J. Lett. 648, L157–L160 (2006)

    ADS  Google Scholar 

  • A.S. Brun, J. Toomre, Turbulent convection under the influence of rotation: sustaining a strong differential rotation. Astrophys. J. 570, 865–885 (2002)

    ADS  Google Scholar 

  • A.S. Brun, M.S. Miesch, J. Toomre, Modeling the dynamical coupling of the solar convection zone to the radiative interior. Astrophys. J. 742, 79 (2011)

    ADS  Google Scholar 

  • P. Caligari, F. Moreno-Insertis, M. Schüssler, Emerging flux tubes in the solar convection zone. 1: Asymmetry, tilt, and emergence latitude. Astrophys. J. 441, 886–902 (1995)

    ADS  Google Scholar 

  • R. Cameron, M. Schüssler, Solar cycle prediction using precursors and flux transport models. Astrophys. J. 659, 801–811 (2007)

    ADS  Google Scholar 

  • R.H. Cameron, D. Schmitt, J. Jiang, E. Işık, Surface flux evolution constraints for flux transport dynamos. Astron. Astrophys. 542, A127 (2012)

    ADS  Google Scholar 

  • R.H. Cameron, M. Dasi-Espuig, J. Jiang, E. Işık, D. Schmitt, M. Schüssler, Limits to solar cycle predictability: cross-equatorial flux plumes. Astron. Astrophys. 557, A141 (2013)

    ADS  Google Scholar 

  • S. Chakraborty, P. Chatterjee, A.R. Choudhuri, Why does the sun’s torsional oscillation begin before the sunspot cycle? Phys. Rev. Lett. 102, 041102 (2009)

    ADS  Google Scholar 

  • P. Charbonneau, Multiperiodicity, chaos and intermittency in a reduced model of the solar cycle. Sol. Phys. 199, 385 (2001)

    ADS  Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010)

    ADS  Google Scholar 

  • P. Charbonneau, Where is the solar dynamo? J. Phys. Conf. Ser. 440, 012014 (2013)

    ADS  Google Scholar 

  • P. Charbonneau, M. Dikpati, Stochastic fluctuations in a Babcock-Leighton model of the solar cycle. Astrophys. J. 543, 1027–1043 (2000)

    ADS  Google Scholar 

  • P. Charbonneau, G. Blais-Laurier, C. St-Jean, Intermittency and phase persistence in a Babcock-Leighton model of the solar cycle. Astrophys. J. 616, L183–L186 (2004)

    ADS  Google Scholar 

  • P. Charbonneau, C. St-Jean, P. Zacharias, Fluctuations in Babcock-Leighton dynamos. I. Period doubling and transition to chaos. Astrophys. J. 619, 613–622 (2005)

    ADS  Google Scholar 

  • P. Charbonneau, G. Beaubien, C. St-Jean, Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J. 658, 657–662 (2007)

    ADS  Google Scholar 

  • P. Chatterjee, A.R. Choudhuri, On magnetic coupling between the two hemispheres in solar dynamo models. Sol. Phys. 239, 29–39 (2006)

    ADS  Google Scholar 

  • P. Chatterjee, D. Nandy, A.R. Choudhuri, Full-sphere simulations of a circulation-dominated solar dynamo: exploring the parity issue. Astron. Astrophys. 427, 1019–1030 (2004)

    ADS  Google Scholar 

  • M. Cheung, M. Rempel, A.M. Title, M. Schüssler, Simulation of the formation of a solar active region. Astrophys. J. 720, 233–244 (2010)

    ADS  Google Scholar 

  • D.-Y. Chou, D.-C. Dai, Solar cycle variations of subsurface meridional flows in the sun. Astrophys. J. 559, L175–L178 (2001)

    ADS  Google Scholar 

  • A.R. Choudhuri, The evolution of loop structures in flux rings within the solar convection zone. Sol. Phys. 123, 217–239 (1989)

    ADS  Google Scholar 

  • A.R. Choudhuri, A correction to Spruit’s equation for the dynamics of thin flux tubes. Astron. Astrophys. 239, 335–339 (1990)

    ADS  MathSciNet  Google Scholar 

  • A.R. Choudhuri, Stochastic fluctuations of the solar dynamo. Sol. Phys. 253, 277–285 (1992)

    MATH  Google Scholar 

  • A.R. Choudhuri, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge, 1998). QB466.F58 C46

    Google Scholar 

  • A.R. Choudhuri, On the connection between mean field dynamo theory and flux tubes. Sol. Phys. 215, 31–55 (2003)

    ADS  Google Scholar 

  • A.R. Choudhuri, The origin of the solar magnetic cycle. Pramana 77, 77–96 (2011)

    ADS  Google Scholar 

  • A.R. Choudhuri, P.A. Gilman, The influence of the Coriolis force on flux tubes rising through the solar convection zone. Astrophys. J. 316, 788–800 (1987)

    ADS  Google Scholar 

  • A.R. Choudhuri, B.B. Karak, A possible explanation of the Maunder minimum from a flux transport dynamo model. Res. Astron. Astrophys. 9, 953–958 (2009)

    ADS  Google Scholar 

  • A.R. Choudhuri, B.B. Karak, Origin of grand minima in sunspot cycles. Phys. Rev. Lett. 109, 171103 (2012)

    ADS  Google Scholar 

  • A.R. Choudhuri, M. Schüssler, M. Dikpati, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29 (1995)

    ADS  Google Scholar 

  • A.R. Choudhuri, D. Nandy, P. Chatterjee, Reply to the comments of Dikpati et al.. Astron. Astrophys. 437, 703–704 (2005)

    ADS  Google Scholar 

  • A.R. Choudhuri, P. Chatterjee, J. Jiang, Predicting solar cycle 24 with a solar dynamo model. Phys. Rev. Lett. 98, 131103 (2007)

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, Helioseismology. Rev. Mod. Phys. 74, 1073–1129 (2002)

    ADS  Google Scholar 

  • C. Cincunegui, R.F. Diaz, P.J.D. Mauas, A possible activity cycle in Proxima Centauri. Astron. Astrophys. 461, 1107–1113 (2007)

    ADS  Google Scholar 

  • M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, K. Peñuela, Sunspot group tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, A7 (2010)

    ADS  Google Scholar 

  • M. Dikpati, Generating the suns global meridional circulation from differential rotation and turbulent Reynolds stresses. Astrophys. J. 438, 2380–2394 (2014)

    ADS  Google Scholar 

  • M. Dikpati, P. Charbonneau, A Babcock-Leighton flux transport dynamo with solar-like differential rotation. Astron. Astrophys. 518, 508–520 (1999)

    ADS  Google Scholar 

  • M. Dikpati, A.R. Choudhuri, On the large-scale diffuse magnetic field of the sun. Sol. Phys. 161, 9–27 (1995)

    ADS  Google Scholar 

  • M. Dikpati, P.A. Gilman, Simulating and predicting solar cycles using a flux-transport dynamo. Astrophys. J. 649, 498–514 (2006)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, C.N. Arge, O.R. White, Diagnostics of polar field reversal in solar cycle 23 using a flux transport dynamo model. Astrophys. J. 601, 1136–1151 (2004)

    ADS  Google Scholar 

  • M. Dikpati, G. de Toma, P.A. Gilman, Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys. Res. Lett. 33, 5102 (2006)

    ADS  Google Scholar 

  • S. D’Silva, A.R. Choudhuri, A theoretical model for tilts of bipolar magnetic regions. Astron. Astrophys. 272, 621 (1993)

    ADS  Google Scholar 

  • B.R. Durney, On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field. Sol. Phys. 160, 213–235 (1995)

    ADS  Google Scholar 

  • B.R. Durney, On a Babcock-Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV. Astrophys. J. 724, 1065 (1997)

    ADS  Google Scholar 

  • B.R. Durney, On the differences between odd and even solar cycles. Sol. Phys. 196, 421 (2000)

    ADS  Google Scholar 

  • J.R. Elliott, M.S. Miesch, J. Toomre, Turbulent solar convection and its coupling with rotation: the effect of Prandtl number and thermal boundary conditions on the resulting differential rotation. Astrophys. J. 533, 546–556 (2000)

    ADS  Google Scholar 

  • Y. Fan, Magnetic fields in the solar convection zone. Living Rev. Sol. Phys. 6, 4 (2009). http://www.livingreviews.org/lrsp-2009-4

    ADS  Google Scholar 

  • Y. Fan, F. Fang, A simulation of convective dynamo in the solar convective envelope: maintenance of the solar-like differential rotation and emerging flux. Astrophys. J. 789, 35 (2014)

    ADS  Google Scholar 

  • Y. Fan, G.H. Fisher, E.E. Deluca, The origin of morphological asymmetries in bipolar active regions. Astrophys. J. 405, 390–401 (1993)

    ADS  Google Scholar 

  • N.A. Featherstone, M.S. Miesch, Meridional circulation in solar and stellar convection zones. Astrophys. J. (2014 submitted)

  • A. Ferriz-Mas, M. Schüssler, Instabilities of magnetic flux tubes in a stellar convection zone II. Flux rings outside the equatorial plane. Geophys. Astrophys. Fluid Dyn. 81, 233–265 (1995)

    ADS  Google Scholar 

  • P. Foukal, An explanation of the differences between the sunspot area scales of the Royal Greenwich and Mt. Wilson Observatories, and the SOON program. Sol. Phys. 289(5), 1517–1529 (2014)

    ADS  Google Scholar 

  • D.J. Galloway, N.O. Weiss, Convection and magnetic fields in stars. Astrophys. J. 243, 945–953 (1981)

    ADS  Google Scholar 

  • T. Gastine, J. Wicht, J.M. Aurnou, Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156–172 (2013)

    ADS  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett. 715, L133–L137 (2010)

    ADS  Google Scholar 

  • P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II—Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. Ser. 53, 243–268 (1983)

    ADS  Google Scholar 

  • P.A. Gilman, M. Miesch, Limits to penetration of meridional circulation below the solar convection zone. Astrophys. J. 611, 568–574 (2004)

    ADS  Google Scholar 

  • L. Gizon, Helioseismology of time-varying flows through the solar cycle. Sol. Phys. 224, 217–228 (2004)

    ADS  Google Scholar 

  • G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. I. The model and method. J. Comput. Phys. 55, 461–484 (1984)

    ADS  Google Scholar 

  • G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone. Astrophys. J. 291, 300–307 (1985)

    ADS  Google Scholar 

  • G.A. Glatzmaier, P.H. Roberts, A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter. 91, 63–75 (1995)

    ADS  Google Scholar 

  • A. Goel, A.R. Choudhuri, The hemispheric asymmetry of solar activity during the last century and the solar dynamo. Res. Astron. Astrophys. 9, 115–126 (2009)

    ADS  Google Scholar 

  • I. González-Hernandez, R. Komm, F. Hill, R. Howe, T. Corbard, D.A. Haber, Meridional circulation variability from large-aperture ring-diagram analysis of global oscillation network group and Michelson Doppler Imager data. Astrophys. J. 638, 576–583 (2006)

    ADS  Google Scholar 

  • G.A. Guerrero, E.M. de Gouveia Dal Pino, Turbulent magnetic pumping in a Babcock-Leighton solar dynamo model. Astron. Astrophys. 485, 267–273 (2008)

    ADS  Google Scholar 

  • G.A. Guerrero, J.D. Muñoz, Kinematic solar dynamo models with a deep meridional flow. Mon. Not. R. Astron. Soc. 350, 317–322 (2004)

    ADS  Google Scholar 

  • S.M. Hanasoge, T. Duvall, M.L. DeRosa, Seismic constraints on interior solar convection. Astrophys. J. Lett. 712, L98–L102 (2010)

    ADS  Google Scholar 

  • S.M. Hanasoge, T. Duvall, K.R. Sreenivasan, Anomalously weak solar convection. Proc. Natl. Acad. Sci. USA (2012). doi:10.1073/pnas.1206570109

    Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010)

    ADS  Google Scholar 

  • D.H. Hathaway, Supergranules as probes of the sun’s meridional circulation. Astrophys. J. 760, 84 (2012), 6pp.

    ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the sun’s meridional flow over a solar cycle. Science 327, 1350 (2010)

    ADS  Google Scholar 

  • D.H. Hathaway, L. Rightmire, Variations in the axisymmetric transport of magnetic elements on the sun: 1996–2010. Astrophys. J. 729, 80 (2011)

    ADS  Google Scholar 

  • P.H. Haynes, C.J. Marks, M.E. McIntyre, T.G. Shepherd, K.P. Shine, On the downward control of extratropical diabatic circulations by eddy-induced mean zonal flows. J. Atmos. Sci. 48, 651–678 (1991)

    ADS  Google Scholar 

  • G. Hazra, B.B. Karak, A.R. Choudhuri, Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 782, 93 (2014)

    ADS  Google Scholar 

  • H. Hotta, T. Yokoyama, Solar parity issue with flux-transport dynamo. Astrophys. J. 714, L308–L312 (2010)

    ADS  Google Scholar 

  • H. Hotta, M. Rempel, T. Yokoyama, High-resolution calculation of the solar global convection with the reduced sound speed technique: II. Near surface shear layer with the rotation. Astrophys. J. 786, 24 (2014)

    ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009). http://www.livingreviews.org/lrsp-2009-1

    ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm et al., Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000)

    ADS  Google Scholar 

  • P. Hoyng, Turbulent transport of magnetic fields. III. Stochastic excitation of global magnetic modes. Astrophys. J. 332, 857–871 (1988)

    ADS  Google Scholar 

  • P. Hoyng, Helicity fluctuations in mean field theory: an explanation for the variability of the solar cycle? Astron. Astrophys. 272, 321 (1993)

    ADS  MathSciNet  Google Scholar 

  • J. Jiang, P. Chatterjee, A.R. Choudhuri, Solar activity forecast with a dynamo model. Mon. Not. R. Astron. Soc. 381, 1527–1542 (2007)

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, D. Schmitt, E. Işık, Modeling solar cycles 15 to 21 using a flux transport dynamo. Astron. Astrophys. 553, A128 (2013)

    ADS  Google Scholar 

  • J. Jiang, R.H. Cameron, M. Schüssler, Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface. Astrophys. J. 791, 5 (2014a)

    ADS  Google Scholar 

  • J. Jiang, D.H. Hathaway, R.H. Cameron, S.K. Solanki, L. Upton, Magnetic flux transport at the solar surface. Space Sci. Rev. (2014b). doi:10.1007/s11214-014-0083-1

  • L. Jouve, A.S. Brun, On the role of meridional flows in flux transport dynamo models. Astron. Astrophys. 474, 239–250 (2007)

    ADS  Google Scholar 

  • P.J. Käpyla, M.J. Mantere, A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. 755, L22 (2012)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, E. Cole, J. Warnecke, A. Brandenburg, Effects of enhanced stratification on equatorward dynamo wave propagation. Astrophys. J. 778, 41 (2013)

    ADS  Google Scholar 

  • P.J. Käpylä, M. Mantere, A. Brandenburg, Confirmation of bistable stellar differential rotation profiles. Astron. Astrophys. (2014 accepted)

  • B.B. Karak, Importance of meridional circulation in flux transport dynamo: the possibility of a Maunder-like grand minimum. Astrophys. J. 724, 1021–1029 (2010)

    ADS  Google Scholar 

  • B.B. Karak, A.R. Choudhuri, The Waldmeier effect and the flux transport solar dynamo. Mon. Not. R. Astron. Soc. 410, 1503–1512 (2011)

    ADS  Google Scholar 

  • B.B. Karak, A.R. Choudhuri, Quenching of meridional circulation in flux transport dynamo models. Sol. Phys. 278, 137–148 (2012)

    ADS  Google Scholar 

  • B.B. Karak, A.R. Choudhuri, Studies of grand minima in sunspot cycles by using a flux transport solar dynamo model. Res. Astron. Astrophys. 13, 1339–1357 (2013)

    ADS  Google Scholar 

  • B.B. Karak, D. Nandy, Turbulent pumping of magnetic flux reduces solar cycle memory and thus impacts predictability of the sun’s activity. Astrophys. J. 761, L13 (2012)

    ADS  Google Scholar 

  • B.B. Karak, P.J. Käpyla, M.J. Käpyla, A. Brandenburg, Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles. Astron. Astrophys. (2014a submitted). arXiv:1407.0984

  • B.B. Karak, M. Rheinhardt, A. Brandenburg, P.J. Käpylä, M.J. Käpylä, Quenching and anisotropy of hydromagnetic turbulent transport. Astrophys. J. (2014b accepted). arXiv:1406.4521

  • K. Kemel, A. Brandenburg, N. Kleeorin, D. Mitra, I. Rogachevskii, Active region formation through the negative effective magnetic pressure instability. Sol. Phys. 287, 293–313 (2013)

    ADS  Google Scholar 

  • L.L. Kitchatinov, Turbulent transport of magnetic fields in a highly conducting rotating fluid and the solar cycle. Astron. Astrophys. 243, 483–491 (1991)

    ADS  Google Scholar 

  • L.L. Kitchatinov, Theory of differential rotation and meridional circulation, in Solar and Astrophysical Dynamos and Magnetic Activity, ed. by A.G. Kosovichev, E.M. de Gouveia Dal Pino, Y. Yan. Proc. IAU Symposium, vol. 294 (2013), pp. 399–410

    Google Scholar 

  • L.L. Kitchatinov, S.V. Olemskoy, Does the Babcock-Leighton mechanism operate on the sun? Astron. Lett. 37, 656–658 (2011)

    ADS  Google Scholar 

  • L.L. Kitchatinov, G. Rüdiger, Differential rotation in solar-type stars: revisiting the Taylor-number puzzle. Astron. Astrophys. 299, 446–452 (1995)

    ADS  Google Scholar 

  • F. Krause, R. Meinel, Stability of simple nonlinear 2-dynamos. Geophys. Astrophys. Fluid Dyn. 43, 95–117 (1988)

    ADS  Google Scholar 

  • M. Küker, G. Rüdiger, M. Schultz, Circulation-dominated solar shell dynamo models with positive alpha-effect. Astron. Astrophys. 374, 301–308 (2001)

    ADS  Google Scholar 

  • R.B. Leighton, A magneto-kinematic model of the solar cycle. Astrophys. J. 156, 1–26 (1969)

    ADS  Google Scholar 

  • D.W. Longcope, A.R. Choudhuri, The orientational relaxation of bipolar active regions. Astrophys. J. 205, 63–92 (2002)

    Google Scholar 

  • I. Lopes, D. Passos, Solar variability induced in a dynamo code by realistic meridional circulation variations. Sol. Phys. 257, 1–12 (2009)

    ADS  Google Scholar 

  • M.S. Miesch, The solar dynamo. Philos. Trans. R. Soc. Lond. A 370, 3049–3069 (2012)

    ADS  Google Scholar 

  • M.S. Miesch, B.P. Brown, Convective Babcock-Leighton dynamo models. Astrophys. J. Lett. 746, L26 (2012)

    ADS  Google Scholar 

  • M.S. Miesch, M. Dikpati, A three-dimensional Babcock-Leighton solar dynamo model. Astrophys. J. Lett. 785, L8 (2014), 5pp

    ADS  Google Scholar 

  • M.S. Miesch, B.W. Hindman, Gyroscopic pumping in the solar near-surface shear layer. Astrophys. J. 743, 79 (2011)

    ADS  Google Scholar 

  • M.S. Miesch, J. Toomre, Turbulence, magnetism and shear in stellar interiors. Annu. Rev. Fluid Mech. 41, 317–345 (2009)

    ADS  Google Scholar 

  • M.S. Miesch, A.S. Brun, J. Toomre, Solar differential rotation influenced by latitudinal entropy variations in the tachocline. Astrophys. J. 641, 618–625 (2006)

    ADS  Google Scholar 

  • M.S. Miesch, N.A. Featherstone, M. Rempel, R. Trampedach, On the amplitude of convective velocities in the deep solar interior. Astrophys. J. 757, 128 (2012)

    ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge University Press, Cambridge, 1978)

    Google Scholar 

  • D. Moss, A. Brandenburg, R. Tavakol, I. Tuominen, Stochastic effects in mean-field dynamos. Astron. Astrophys. 265, 843–849 (1992)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, D. Nandy, P.C.H. Martens, A.R. Yeates, A double-ring algorithm for modeling solar active regions: unifying kinematic dynamo models and flux transport simulations. Astrophys. J. Lett. 720, L20–25 (2010)

    ADS  Google Scholar 

  • A. Munoz-Jaramillo, D. Nandy, P.C.H. Martens, Magnetic quenching of turbulent diffusivity: reconciling mixing-length theory estimates with kinematic dynamo models of the solar cycle. Astrophys. J. Lett. 727, L23 (2011)

    ADS  Google Scholar 

  • A. Muñoz-Jaramillo, N.R. Sheeley Jr., J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012)

    ADS  Google Scholar 

  • D. Nandy, A.R. Choudhuri, Toward a mean field formulation of the Babcock-Leighton type solar dynamo. I. α-Coefficient versus Durney’s double-ring approach. Astrophys. J. 551, 576–585 (2001)

    ADS  Google Scholar 

  • D. Nandy, A.R. Choudhuri, Explaining the latitudinal distribution of sunspots with deep meridional flow. Science 296, 1671–1673 (2002)

    ADS  Google Scholar 

  • N.J. Nelson, M.S. Miesch, Generating buoyant magnetic flux ropes in solar-like convective dynamos. Plasma Phys. Control. Fusion 56, 064004 (2014)

    ADS  Google Scholar 

  • N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Buoyant magnetic loops generated by global convective dynamo action. Sol. Phys. 289, 441–458 (2013a)

    ADS  Google Scholar 

  • N.J. Nelson, B.P. Brown, A.S. Brun, M.S. Miesch, J. Toomre, Magnetic wreathes and cycles in convective dynamos. Astrophys. J. 762, 73 (2013b)

    ADS  Google Scholar 

  • A.A. Norton, P. Charbonneau, D. Passos, Hemispheric coupling: comparing dynamo simulations and observations. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0100-4

  • S.V. Olemskoy, L.L. Kitchatinov, Grand minima and North-South asymmetry of solar activity. Astrophys. J. 777, 71 (2013)

    ADS  Google Scholar 

  • S.V. Olemskoy, A.R. Choudhuri, L.L. Kitchatinov, Fluctuations in the alpha-effect and grand solar minima. Astron. Rep. 57, 458–468 (2013)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, P. Hoyng, D. Schmitt, Stochastic excitation and memory of the solar dynamo. Astrophys. J. 313, 938–948 (1996)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Magnetoconvection and dynamo coefficients. Dependence of the alpha effect on rotation and magnetic field. Astron. Astrophys. 376, 713–726 (2001)

    ADS  Google Scholar 

  • A.J.H. Ossendrijver, M. Stix, A. Brandenburg, G. Rüdiger, Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field. Astron. Astrophys. 394, 735–745 (2002)

    ADS  MATH  Google Scholar 

  • E.N. Parker, Hydromagnetic dynamo models. Astrophys. J. 122, 293–314 (1955)

    ADS  MathSciNet  Google Scholar 

  • E.N. Parker, Solar magnetism: the state of our knowledge and ignorance. Space Sci. Rev. 144, 15–24 (2009)

    ADS  Google Scholar 

  • D. Passos, P. Charbonneau, Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection. Astron. Astrophys. 568, A113 (2014)

    ADS  Google Scholar 

  • D. Passos, I. Lopes, A low-order solar dynamo model: inferred meridional circulation variations since 1750. Astrophys. J. 686, 1420–1425 (2008)

    ADS  Google Scholar 

  • D. Passos, I. Lopes, Grand minima under the light of a low order dynamo model. J. Atmos. Sol.-Terr. Phys. 73, 191–197 (2011)

    ADS  Google Scholar 

  • D. Passos, P. Charbonneau, P. Beaudoin, An exploration of non-kinematic effects in flux transport dynamos. Sol. Phys. 279, 1–22 (2012)

    ADS  Google Scholar 

  • D. Passos, D. Nandy, S. Hazra, I. Lopes, A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 563, A18 (2014)

    ADS  Google Scholar 

  • J. Pedlosky, Geophysical Fluid Dynamics, 2nd edn. (Springer, New York, 1987)

    MATH  Google Scholar 

  • K. Petrovay, Topological pumping in the lower overshoot layer, in IAU Colloq. 130: The Sun and Cool Stars. Activity, Magnetism, Dynamos, ed. by I. Tuominen, D. Moss, G. Rüdiger. Lecture Notes in Physics, vol. 380 (Springer, Berlin, 1991), p. 67

    Google Scholar 

  • M. Priyal, D. Banerjee, B.B. Karak, A. Muñoz-Jaramillo, B. Ravindra, A.R. Choudhuri, J. Singh, Polar network index as a magnetic proxy for the solar cycle studies. Astrophys. J. 793, L4 (2014)

    ADS  Google Scholar 

  • E. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46 (2011)

    ADS  Google Scholar 

  • K.H. Rädler, On the electrodynamics of conducting fluids in turbulent motion. II. Turbulent conductivity and turbulent permeability. Z. Naturforsch. Teil A, Phys. Phys. Chem. Kosmophys. 23, 1851–1860 (1968)

    ADS  Google Scholar 

  • M. Rempel, Solar differential rotation and meridional flow: the role of a subadiabatic tachocline for the Taylor-Proudman balance. Astrophys. J. 622, 1320–1332 (2005)

    ADS  Google Scholar 

  • M. Rempel, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. 647, 662–667 (2006)

    ADS  Google Scholar 

  • M. Rempel, Subsurface magnetic field and flow structure of simulated sunspots. Astrophys. J. 740, 15 (2011)

    ADS  Google Scholar 

  • M. Rempel, M. Schüssler, Intensification of magnetic fields by conversion of potential energy. Astrophys. J. 552, L171–L174 (2001)

    ADS  Google Scholar 

  • F.J. Robinson, K.L. Chan, A large-eddy simulation of turbulent compressible convection: differential rotation in the solar convection zone. Mon. Not. R. Astron. Soc. 321, 723–732 (2001)

    ADS  Google Scholar 

  • I. Rogachevskii, N. Kleeorin, Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection. Phys. Rev. E 76, 056307 (2007)

    ADS  MathSciNet  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, R. Arlt, The penetration of meridional flow into the tachocline and its meaning for the solar dynamo. Astron. Astrophys. 444, L53–L56 (2005)

    ADS  Google Scholar 

  • A. Schad, J. Timmer, M. Roth, Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells. Astrophys. J. Lett. 778, L38 (2013)

    ADS  Google Scholar 

  • J. Schou, R. Howe, S. Basu, J. Christensen-Dalsgaard et al., A comparison of solar p-mode parameters from the Michelson Doppler Imager and the global oscillation network group: splitting coefficients and rotation inversions. Astrophys. J. 567, 1234–1249 (2002)

    ADS  Google Scholar 

  • C. Simard, P. Charbonneau, A. Bouchat, Magnetohydrodynamics simulation-driven kinematic mean-field models of the solar cycle. Astrophys. J. 768, 16 (2013)

    ADS  Google Scholar 

  • H.C. Spruit, Motion of magnetic flux tubes in the solar convection zone and chromosphere. Astron. Astrophys. 98, 155–160 (1981). In: The Sun, the Solar Wind, and the Heliosphere: Proc. IAGA

    ADS  MATH  Google Scholar 

  • M. Steenbeck, F. Krause, On the dynamo theory of stellar and planetary magnetic fields. I. AC dynamos of solar type. Astron. Nachr. 291, 49–84 (1969)

    ADS  MATH  Google Scholar 

  • M. Steenbeck, F. Krause, K.-H. Rädler, Berechnung der mittleren Lorentz-Feldstärke v×B Für ein elektrisch leitendes medium in turbulenter, durch Coriolis-Kräfte beeinflußter bewegung Z(0). Z. Naturforsch. Teil A, Phys. Phys. Chem. Kosmophys. 21, 369 (1966)

    ADS  Google Scholar 

  • R.F. Stein, A. Nordlund, On the formation of active regions. Astrophys. J. 753, L13 (2012)

    ADS  Google Scholar 

  • J.O. Stenflo, A.G. Kosovichev, Bipolar magnetic regions on the sun: global analysis of the SOHO/MDI data set. Astrophys. J. 745, 129 (2012)

    ADS  Google Scholar 

  • M. Stix, Differential rotation and the solar dynamo. Astron. Astrophys. 47, 243–254 (1976)

    ADS  Google Scholar 

  • J.L. Tassoul, Theory of Rotating Stars (Princeton University Press, Princeton, 1978)

    Google Scholar 

  • M.J. Thompson, J. Christensen-Dalsgaard, M.S. Miesch, J. Toomre, The internal rotation of the sun. Annu. Rev. Astron. Astrophys. 41, 599–643 (2003)

    ADS  Google Scholar 

  • A.G. Tlatov, V.V. Vasil’eva, A.A. Pevtsov, Distribution of magnetic bipoles on the sun over three solar cycles. Astrophys. J. 717, 357–362 (2010)

    ADS  Google Scholar 

  • S.M. Tobias, N.H. Brummell, T.L. Clune, J. Toomre, Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 1183–1203 (2001)

    ADS  Google Scholar 

  • S.M. Tobias, F. Cattaneo, S. Boldyrev, MHD dynamos and turbulence, in Ten Chapters in Turbulence, ed. by P. Davidson, Y. Kaneda, K. Sreenivasan (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  • R. Trampedach, R.F. Stein, The mass mixing length in convective stellar envelopes. Astrophys. J. 731, 78 (2011)

    ADS  Google Scholar 

  • R.K. Ulrich, Solar meridional circulation from Doppler shifts of the FeI line at 5250 a as measured by the 150-foot solar tower telescope at the Mt. Wilson Observatory. Astrophys. J. 725, 658–669 (2010)

    ADS  Google Scholar 

  • I.G. Usoskin, S.K. Solanki, G.A. Kovaltsov, Grand minima and maxima of solar activity: new observational constraints. Astron. Astrophys. 471, 301–309 (2007)

    ADS  Google Scholar 

  • A.A. van Ballegooijen, The overshoot layer at the base of the solar convection zone and the problem of magnetic flux storage. Astron. Astrophys. 113, 99–112 (1982)

    ADS  MATH  Google Scholar 

  • G. Vasil, N. Brummell, Constraints on the magnetic buoyancy instabilities of a shear-generated magnetic layer. Astrophys. J. 690, 783–794 (2009)

    ADS  Google Scholar 

  • M. Waldmeier, Mitt. Eidgenöss. Sternwarte Zür. 14, 105 (1935)

    Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., Magnetic flux transport and the sun’s dipole moment—new twists to the Babcock-Leighton model. Astrophys. J. 375, 761–770 (1991)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., The solar wind and interplanetary field during very low amplitude sunspot cycles. Astrophys. J. 764, 90 (2013)

    ADS  Google Scholar 

  • Y.-M. Wang, A.G. Nash, N.R. Sheeley Jr., Magnetic flux transport on the sun. Science 245, 712–718 (1989)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., A.G. Nash, A new solar cycle model including meridional circulation. Astrophys. J. 383, 431–442 (1991)

    ADS  Google Scholar 

  • M.A. Weber, Y. Fan, M.S. Miesch, The rise of active region flux tubes in the turbulent solar convective envelope. Astrophys. J. 741, 11 (2011)

    ADS  Google Scholar 

  • N.O. Weiss, Modulation of the sunspot cycle. Astron. Geophys. 51, 3.09–3.15 (2010)

    Google Scholar 

  • A.R. Yeates, A. Muñoz-Jaramillo, Kinematic active region formation in a three-dimensional solar dynamo model. Mon. Not. R. Astron. Soc. 436, 3366–3379 (2013)

    ADS  Google Scholar 

  • A.R. Yeates, D. Nandy, D.H. Mackay, Exploring the physical basis of solar cycle predictions: flux transport dynamics and the persistence of memory in advection versus diffusion dominated solar convection zones. Astrophys. J. 673, 544–556 (2008)

    ADS  Google Scholar 

  • H. Yoshimura, Solar-cycle dynamo wave propagation. Astrophys. J. 201, 740–748 (1975)

    ADS  MathSciNet  Google Scholar 

  • J. Zhao, A.G. Kosovichev, Torsional oscillation, meridional flows, and vorticity inferred in the upper convection zone of the sun by time-distance helioseismology. Astrophys. J. 603, 776–784 (2004)

    ADS  Google Scholar 

  • J. Zhao, R.S. Bogart, A.G. Kosovichev, T.L. Duvall, T. Hartlep, Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun. Astrophys. J. Lett. 774, L29 (2013)

    ADS  Google Scholar 

  • U. Ziegler, G. Rüdiger, Box simulations of rotating magnetoconvection. Effects of penetration and turbulent pumping. Astron. Astrophys. 401, 433–442 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank ISSI and its staff for their hospitality and a most stimulating workshop in November 2013. J.J. acknowledges the financial support by the National Natural Science Foundations of China (No. 11173033). M.S.M. is supported in part through grants MMH09AK14I, NNX11AJ36G, and NNX13AG18G. The National Center for Atmospheric Research is sponsored by the National Science Foundation of the U.S.A. P.C. is supported by the National Sciences and Engineering Research Council of Canada. The research of A.R.C. is supported by a JC Bose Fellowship awarded by the Department of Science and Technology of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Charbonneau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karak, B.B., Jiang, J., Miesch, M.S. et al. Flux Transport Dynamos: From Kinematics to Dynamics. Space Sci Rev 186, 561–602 (2014). https://doi.org/10.1007/s11214-014-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0099-6

Keywords

Navigation