Skip to main content
Log in

The Extended Cycle of Solar Activity and the Sun’s 22-Year Magnetic Cycle

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Sun has two characteristic migrations of surface features—the equatorward movement of sunspots and the poleward movement of high-latitude prominences. The first of these migrations is a defining aspect of the 11-yr Schwabe cycle and the second is a tracer of the process that culminates in solar polarity reversal, signaling the onset of the 22-yr magnetic cycle on the Sun. Zonal flows (torsional oscillations of the Sun’s differential rotation) have been identified for both of these migrations. Helioseismology observations of these zonal flows provide support for the extended (>11-yr cycle) of solar activity and offer promise of a long-term precursor for predicting the amplitude of the Schwabe cycle. We review the growth of observational evidence for the extended and 22-yr magnetic cycles and discuss: (1) the significance of latitude ∼50 on the Sun; (2) the “over-extended” cycle; and (3) the outlook for solar cycle 25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • R.C. Altrock, An ‘extended solar cycle’ as observed in FeXIV. Sol. Phys. 170, 411–423 (1997)

    ADS  Google Scholar 

  • R.C. Altrock, Forecasting the maxima of solar cycle 24 with coronal Fe XIV emission. Sol. Phys. 289, 623–629 (2014)

    ADS  Google Scholar 

  • R. Altrock, R. Howe, R. Ulrich, Solar torsional oscillations and their relationship to coronal activity, in Subsurface and Atmospheric Influences on Solar Activity, ed. by R. Howe, R.W. Komm, K.S. Balasubramaniam, G.J.D. Petrie. ASP Conference Series, vol. 383 (2008), pp. 335–342

    Google Scholar 

  • R. Ananthakrishnan, Prominence activity (1905–1952). Proc. Indian Acad. Sci. 40, 72–90 (1954)

    Google Scholar 

  • R. Ananthakrishnan, P.M. Nayar, Discussions of the results of observations of solar prominences made at Kodaikanal from 1905–1950. Bulletin No. 137 of Kodaikanal Observatory (1954)

  • H.M. Antia, S. Basu, Temporal variations of the rotation rate in the solar interior. Astrophys. J. 541, 442–448 (2000)

    ADS  Google Scholar 

  • H.M. Antia, S. Basu, Temporal variations of the solar rotation rate at high latitudes. Astrophys. J. Lett. 559, L67–L70 (2001)

    ADS  Google Scholar 

  • H.W. Babcock, The solar magnetograph. Astrophys. J. 118, 387–396 (1953)

    ADS  Google Scholar 

  • H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364–365 (1959)

    ADS  Google Scholar 

  • H.W. Babcock, The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J. 133, 572–587 (1961)

    ADS  Google Scholar 

  • H.W. Babcock, H.D. Babcock, The Sun’s magnetic field, 1952–1954. Astrophys. J. 121, 349–366 (1955)

    ADS  Google Scholar 

  • S. Basu, H.M. Antia, Changes in solar dynamics from 1995 to 2002. Astrophys. J. 585, 553–565 (2003)

    ADS  Google Scholar 

  • P. Beaudoin, P. Charbonneau, E. Racine, P.K. Smolarkiewicz, Torsional oscillations in a global solar dynamo. Sol. Phys. 282, 335–360 (2013)

    ADS  Google Scholar 

  • E.E. Benevolenskaya, A.G. Kosovichev, J.R. Lemen, P.H. Scherrer, G.L. Slater, Detection of high-latitude waves of solar coronal activity in extreme-ultraviolet data from the Solar and Heliospheric Observatory EUV Imaging Telescope. Astrophys. J. Lett. 554, L107–L110 (2001)

    ADS  Google Scholar 

  • P.N. Bernasconi, D.M. Rust, D. Hakim, Advanced automated solar filament detection and characterization code: description, performance, and results. Sol. Phys. 228, 97–117 (2005)

    ADS  Google Scholar 

  • G. Bocchino, Migrazione delle protuberanze durante il ciclo undecennale dell’attivatà solare. Oss. Mem. Oss. Astrofis. Arcetri 51, 5–47 (1933)

    Google Scholar 

  • M.C. Bretz, D.E. Billings, Analysis of emission corona 1942–1955 from Climax spectrograms. Astrophys. J. 129, 134–145 (1959)

    ADS  Google Scholar 

  • R.C. Carrington, On the distribution of the solar spots in latitudes since the beginning of the year 1854, with a map. Mon. Not. R. Astron. Soc. 19, 1–3 (1858)

    ADS  Google Scholar 

  • R.C. Carrington, Observations of the Spots on the Sun from November 9, 1853 to March 24, 1861 (Williams and Norgate, London, 1863), p. 17

    Google Scholar 

  • P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010)

    ADS  Google Scholar 

  • A.M. Clerke, Problems in Astrophysics (Black, London, 1903), pp. 150–152

    Google Scholar 

  • L. d’Azambuja, M. d’Azambuja, A comprehensive study of solar prominences and their evolution from spectroheliograms obtained at the observatory and from synoptic maps of the chromosphere published at the observatory. Ann. Obs. Meudon 6(Fasc. VII), 1–278 (1948)

    Google Scholar 

  • J.-P. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au et al., EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995)

    ADS  Google Scholar 

  • V.N. Dermendjiev, K.Y. Stavrev, V. Rušin, M. Rybansky, Secondary polar zone of prominence activity revealed from Lomnicky Štìt observations. Astron. Astrophys. 281, 241–244 (1994)

    ADS  Google Scholar 

  • V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–37 (1995)

    ADS  Google Scholar 

  • J. Evershed, M.A. Evershed, Results of prominence observations. Mem. Kodaikanal Obs. 1, 55–126 (1917)

    Google Scholar 

  • P.A. Gilman, What can we learn about solar cycle mechanisms from observed velocity fields? in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 241–255

    Google Scholar 

  • G.E. Hale, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315–343 (1908)

    ADS  Google Scholar 

  • G.E. Hale, Preliminary results of an attempt to detect the general magnetic field of the Sun. Astrophys. J. 38, 27–98 (1913)

    ADS  Google Scholar 

  • G.E. Hale, S.B. Nicholson, The law of sun-spot polarity. Astrophys. J. 62, 270–300 (1925)

    ADS  Google Scholar 

  • G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of sun-spots. Astrophys. J. 49, 153–178 (1919)

    ADS  Google Scholar 

  • W. Hanle, Über magnetische Beeinflussung der Polarisation der Resonanzfluoreszenz. Z. Phys. 30, 93–105 (1924)

    ADS  Google Scholar 

  • R. Hansen, S. Hansen, Global distribution of filaments during solar cycle no. 20. Sol. Phys. 44, 225–230 (1975)

    ADS  Google Scholar 

  • K.L. Harvey, The cyclic behavior of solar activity, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 335–367

    Google Scholar 

  • K.L. Harvey, The solar magnetic cycle, in Solar Surface Magnetism, ed. by R.J. Rutten, C.J. Schrijver (Kluwer, Dordrecht, 1994), pp. 347–363

    Google Scholar 

  • K.L. Harvey, S.F. Martin, Ephemeral active regions. Sol. Phys. 32, 389–402 (1973)

    ADS  Google Scholar 

  • K.L. Harvey, J.W. Harvey, S.F. Martin, Ephemeral active regions in 1970 and 1973. Sol. Phys. 40, 87–102 (1975)

    ADS  Google Scholar 

  • J.W. Harvey, F. Hill, R. Hubbard, J.R. Kennedy, J.W. Leibacher, J.A. Pintar, P.A. Gilman, R.W. Noyes et al., The global oscillation network group (GONG) project. Science 272, 1284–1286 (1996)

    ADS  Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010)

    ADS  Google Scholar 

  • F. Hill, R. Howe, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, Large-scale zonal flows during the solar minimum – where is cycle 25? Bull. Am. Astron. Soc. 43, 16.10 (2011)

    Google Scholar 

  • R. Howard, Polar magnetic fields of the Sun: 1960–1971. Sol. Phys. 25, 5–13 (1972)

    ADS  Google Scholar 

  • R. Howard, B.J. LaBonte, The Sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett. 239, L33–L36 (1980)

    ADS  Google Scholar 

  • R. Howe, Solar interior rotation and its variation. Living Rev. Sol. Phys. 6, 1 (2009)

    ADS  Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Deeply penetrating banded zonal flows in the solar convection zone. Astrophys. J. Lett. 533, L163–L166 (2000a)

    ADS  Google Scholar 

  • R. Howe, R. Komm, F. Hill, Variations in solar sub-surface rotation from GONG data 1995–1998. Sol. Phys. 192, 427–435 (2000b)

    ADS  Google Scholar 

  • R. Howe, F. Hill, R. Komm, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, R. Ulrich, The torsional oscillation and the new solar cycle, in GONG–SoHO 24: A New Era of Seismology of the Sun and Solar-Like Stars. Journal of Physics: Conference Series, vol. 271 (IOP, Bristol, 2011), Issue 1, id. 012074

    Google Scholar 

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R. Komm, T.P. Larson, M. Rempel, J. Schou, M.J. Thompson, The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett. 767, L20 (2013), 4 pp.

    ADS  Google Scholar 

  • A.J. Kinder, Edward Walter Maunder FRAS (1851–1928): his life and times. J. Br. Astron. Assoc. 118, 21–42 (2008)

    ADS  Google Scholar 

  • R.W. Komm, R.F. Howard, J.W. Harvey, Torsional oscillation patterns in photospheric magnetic features. Sol. Phys. 143, 19–39 (1993)

    ADS  Google Scholar 

  • R. Komm, R. Howe, I. González Hernández, F. Hill, Solar-cycle variation of subsurface zonal flow. Sol. Phys. 289, 3435–3455 (2014)

    ADS  Google Scholar 

  • D.F. Kong, Z.N. Qu, Q.L. Guo, Revisiting the question: does high-latitude solar activity lead low-latitude solar activity in time phase? Astron. J. 147, 97 (2014), 7 pp.

    ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701–706 (2002)

    ADS  Google Scholar 

  • M. Küker, R. Arlt, R. Rüdiger, The Maunder minimum as due to magnetic Λ-quenching. Astron. Astrophys. 343, 977–982 (1999)

    ADS  Google Scholar 

  • B.J. LaBonte, R. Howard, Torsional waves on the sun and the activity cycle. Sol. Phys. 75, 161–178 (1982)

    ADS  Google Scholar 

  • N. Labrosse, S. Dalla, S. Marshall, Automatic detection of limb prominences in 304 Å EUV images. Sol. Phys. 262, 449–460 (2010)

    ADS  Google Scholar 

  • J.L. Leroy, On the orientation of magnetic fields in quiescent prominences. Astron. Astrophys. 64, 247–252 (1978)

    ADS  MathSciNet  Google Scholar 

  • J.-L. Leroy, J.-C. Noens, Does the solar activity cycle extend over more than an 11-year period? Astron. Astrophys. 120, L1–L2 (1983)

    ADS  Google Scholar 

  • K.J. Li, Latitude migration of solar filaments. Mon. Not. R. Astron. Soc. 405, 1040–1046 (2010)

    ADS  Google Scholar 

  • K.J. Li, Q.X. Li, P.X. Gao, X.J. Shi, Cyclic behavior of solar full-disk activity. J. Geophys. Res. 113, A11108 (2008)

    ADS  Google Scholar 

  • W. Livingston, T.L. Duvall Jr., Solar rotation, 1966–1978. Sol. Phys. 61, 219–231 (1979)

    ADS  Google Scholar 

  • W.J.S. Lockyer, On the relationship between solar prominences and the forms of the corona. Mon. Not. R. Astron. Soc. 91, 797–809 (1931)

    ADS  Google Scholar 

  • N. Lockyer, W.J.S. Lockyer, Solar prominence and spot circulation, 1872–1901. Proc. R. Soc. Lond. 71, 446–452 (1902)

    Google Scholar 

  • D.H. Mackay, C.R. DeVore, S.K. Antiochos, Global-scale consequences of magnetic-helicity injection and condensation on the Sun. Astrophys. J. 784, 164 (2014), 15 pp.

    ADS  Google Scholar 

  • V.I. Makarov, K.R. Sivaraman, Evolution of latitude zonal structure of the large-scale magnetic field in solar cycles. Sol. Phys. 119, 35–44 (1989a)

    ADS  Google Scholar 

  • V.I. Makarov, K.R. Sivaraman, New results concerning the global solar cycle. Sol. Phys. 123, 367–380 (1989b)

    ADS  Google Scholar 

  • S.F. Martin, Conditions for the formation and maintenance of filaments (Invited review). Sol. Phys. 182, 107–137 (1998)

    ADS  Google Scholar 

  • S.F. Martin, K.H. Harvey, Ephemeral active regions during solar minimum. Sol. Phys. 64, 93–108 (1979)

    ADS  Google Scholar 

  • E.W. Maunder, Note on the distribution of sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904)

    ADS  Google Scholar 

  • A.R. Maunder, Letter to Stephan Ionides 21 May 1940 (1940)

  • P.S. McIntosh, Solar interior processes suggested by large-scale surface patterns, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 14–34

    Google Scholar 

  • H.W. Newton, The Face of the Sun (Penguin, Baltimore, 1958), p. 116

    Google Scholar 

  • W.D. Pesnell, Solar cycle predictions. Sol. Phys. 281, 507–532 (2012)

    ADS  Google Scholar 

  • G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: observations and models. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0064-4

    MATH  Google Scholar 

  • V.V. Pipin, The Gleissberg cycle by a nonlinear αΛ dynamo. Astron. Astrophys. 346, 295–302 (1999)

    ADS  Google Scholar 

  • M. Rempel, Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: saturation mechanism and torsional oscillations. Astrophys. J. 647, 662–675 (2006)

    ADS  Google Scholar 

  • M. Rempel, High-latitude solar torsional oscillations during phases of changing magnetic cycle amplitude. Astrophys. J. Lett. 750, L8 (2012), 4 pp.

    ADS  Google Scholar 

  • A. Riccò, Risultati delle osservazioni dell protuberanze solari nel periodo undecennale dell’attività solare dal 1880 al 1890. Mem. Soc. degli Spettro. Ital. 20, 135–139 (1892)

    ADS  Google Scholar 

  • E. Robbrecht, Y.-M. Wang, N.R. Sheeley Jr., N.B. Rich, On the “extended” solar cycle in coronal emission. Astrophys. J. 716, 693–700 (2010)

    ADS  Google Scholar 

  • D.M. Rust, Magnetic fields in quiescent solar prominences. I. Observations. Astrophys. J. 150, 313–326 (1967)

    ADS  Google Scholar 

  • M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, A08106 (2005), 9 pp.

    ADS  Google Scholar 

  • K.H. Schatten, P.H. Scherrer, L. Svalgaard, J.M. Wilcox, Using dynamo theory to predict the sunspot number during solar cycle 21. Geophys. Res. Lett. 5, 411–414 (1978)

    ADS  Google Scholar 

  • P.H. Scherrer, R.S. Bogart, R.I. Bush, J.T. Hoeksema, A.G. Kosovichev, J. Schou, W. Rosenberg, L. Springer et al., The solar oscillations investigation – Michelson Doppler Imager. Sol. Phys. 162, 129–188 (1995)

    ADS  Google Scholar 

  • J. Schou, Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings. Astrophys. J. Lett. 523, L181–L184 (1999)

    ADS  Google Scholar 

  • J. Schou, H.M. Antia, S. Basu, R.S. Bogart, R.I. Bush, S.M. Chitre, J. Christensen-Dalsgaard, M.P. Di Mauro et al., Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390–417 (1998)

    ADS  Google Scholar 

  • J. Schou, P.H. Scherrer, R.I. Bush, R. Wachter, S. Couvidat, M.C. Rabello-Soares, R.S. Bogart, J.T. Hoeksema et al., Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012)

    ADS  Google Scholar 

  • M.A. Schuh, J.M. Banda, P.N. Bernasconi, R.A. Angryk, P.C.H. Martens, A comparative evaluation of automated solar filament detection. Sol. Phys. 289, 2503–2524 (2014)

    ADS  Google Scholar 

  • M. Schüssler, The solar torsional oscillation and dynamo models of the solar cycle. Astron. Astrophys. 94, L17–L18 (1981)

    ADS  Google Scholar 

  • S.H. Schwabe, Sonnen-Beobachtungen in Jahre 1843. Astron. Nachr. 21, 233–236 (1844)

    ADS  Google Scholar 

  • H.J. Smith, E.v.P. Smith, Solar Flares (Macmillan, New York, 1963), p. 30

    Google Scholar 

  • H.B. Snodgrass, Solar torsional oscillations—a net pattern with wavenumber 2 as artifact. Astrophys. J. 291, 339–343 (1985)

    ADS  Google Scholar 

  • H.B. Snodgrass, Synoptic observations of large scale velocity patterns on the Sun, in The Solar Cycle, ed. by K.L. Harvey. ASP Conference Series, vol. 27 (ASP, San Francisco, 1992), pp. 205–240

    Google Scholar 

  • G. Spörer, Beobachtungen der Sonnenflecken vom Januar 1874 bis December 1879. Publ. Astrophys. Obs. Potsdam 2(5), 1–81 (1880)

    Google Scholar 

  • H.C. Spruit, Origin of the torsional oscillation pattern of solar rotation. Sol. Phys. 213, 1–21 (2003)

    ADS  Google Scholar 

  • L. Svalgaard, Y. Kamide, Asymmetric solar polar field reversals. Astrophys. J. 763, 23 (2013), 6 pp.

    ADS  Google Scholar 

  • L. Svalgaard, E.W. Cliver, Y. Kamide, Sunspot cycle 24: smallest cycle in 100 years? Geophys. Res. Lett. 32, L01104 (2005)

    ADS  Google Scholar 

  • S.J. Tappin, R.C. Altrock, The extended solar cycle tracked high into the corona. Sol. Phys. 282, 249–261 (2013)

    ADS  Google Scholar 

  • M.J. Thompson, J. Toomre, E. Anderson, H.M. Antia, G. Berthomieu, D. Burtonclay, S.M. Chitre, J. Christensen-Dalsgaard et al., Differential rotation and dynamics of the solar interior. Science 272, 1300–1305 (1996)

    ADS  Google Scholar 

  • J. Toomre, J. Christensen-Dalsgaard, R. Howe, R.M. Larsen, J. Schou, M.J. Thompson, Time variability of rotation in solar convection zone from SOI-MDI. Sol. Phys. 192, 437–448 (2000)

    ADS  Google Scholar 

  • K. Topka, R. Moore, B.J. Labonte, R. Howard, Evidence for a poleward meridional flow on the Sun. Sol. Phys. 79, 231–245 (1982)

    ADS  Google Scholar 

  • R.K. Ulrich, Very long lived wave patterns detected in the solar surface velocity signal. Astrophys. J. 560, 466–475 (2001)

    ADS  Google Scholar 

  • R.K. Ulrich, T. Tran, The global solar magnetic field—identification of traveling, long-lived ripples. Astrophys. J. 768, 189 (2013), 12 pp.

    ADS  Google Scholar 

  • S.V. Vorontsov, J. Christensen-Dalsgaard, J. Schou, V.N. Strakhov, M.J. Thompson, Helioseismic measurement of solar torsional oscillations. Science 296, 101–103 (2002)

    ADS  Google Scholar 

  • M. Waldmeier, Zirkulation und Magnetfeld der solaren Polarzone. Z. Astrophys. 49, 176–185 (1960)

    ADS  Google Scholar 

  • M. Waldmeier, A secondary polar zone of solar prominences. Sol. Phys. 28, 389–398 (1973)

    ADS  Google Scholar 

  • Y.-M. Wang, N.R. Sheeley Jr., S.H. Hawley, J.R. Kraemer, G.E. Brueckner, R.A. Howard, C.M. Korendyke, D.J. Michels et al., The green line corona and its relation to the photospheric magnetic field. Astrophys. J. 485, 419–429 (1997)

    ADS  Google Scholar 

  • D.F. Webb, CMEs and prominences and their evolution over the solar cycle, in New Perspectives on Solar Prominences, IAU Colloquium 167, ed. by D. Webb, D. Rust, B. Schmieder. ASP Conference Series, vol. 150 (ASP, San Francisco, 1997), pp. 463–474

    Google Scholar 

  • P.R. Wilson, R.C. Altrock, K.L. Harvey, S.F. Martin, H.B. Snodgrass, The extended solar activity cycle. Nature 333, 748–750 (1988)

    ADS  Google Scholar 

  • H. Yoshimura, Solar cycle Lorentz force waves and the torsional oscillations of the Sun. Astrophys. J. 247, 1102–1112 (1981)

    ADS  Google Scholar 

  • C.A. Young, in The Sun, 4th edn. (Appleton, New York, 1897), pp. 157

    Google Scholar 

  • P. Zeeman, On the influence of magnetism on the nature of the light emitted by a substance. Astrophys. J. 5, 332–347 (1897)

    ADS  Google Scholar 

Download references

Acknowledgements

I thank André Balogh, Hugh Hudson, Kristóf Petrovay, and Rudolf von Steiger for organizing a timely and stimulating workshop. I am grateful to: Dick Altrock, Rainer Arlt, Sara Martin, Alexei Pevtsov, and Leif Svalgaard for helpful comments/discussions, Tom Bogdan for providing the text of A. Maunder’s letter, and Rachel Howe for providing updated/modified versions of Figs. 16, 17, and 18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Cliver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cliver, E.W. The Extended Cycle of Solar Activity and the Sun’s 22-Year Magnetic Cycle. Space Sci Rev 186, 169–189 (2014). https://doi.org/10.1007/s11214-014-0093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0093-z

Keywords

Navigation