Abstract
A variety of indices have been proposed in order to represent the many different observables modulated by the solar cycle. Most of these indices are highly correlated with each other owing to their intrinsic link with the solar magnetism and the dominant eleven year cycle, but their variations may differ in fine details, as well as on short- and long-term trends. In this paper we present an overview of the indices that are often employed to describe the many features of the solar cycle, moving from the ones referring to direct observations of the inner solar atmosphere, the photosphere and chromosphere, to those deriving from measurements of the transition region and solar corona. For each index, we summarize existing measurements and typical use, and for those that quantify physical observables, we describe the underlying physics.
This is a preview of subscription content, access via your institution.










Notes
Faculae is the name given to brightenings seen in photospheric radiation mainly near the solar limb and in the general vicinity of sunspots. Find more information in e.g. Solanki and Krivova (2009).
The term white-light indicates the sum of all visible wavelengths of solar radiation from 400 to 700 nm, so that all colors are blended to appear white to the eye.
Plage is the name given to the brightening seen in chromospheric radiation corresponding to photospheric faculae. In contrast to faculae, plage are seen over the whole disk, in active regions and in the quiet sun, on the network pattern formed at the borders of supergranular cells. Find more information in e.g. Solanki and Krivova (2009).
Flare is the name given to a sudden, rapid, and intense brightening observed over the solar disk or at the solar limb, due to a release of magnetic energy (up to 1032 erg on the timescale of hours), followed by ejection of solar plasma through the corona into the heliosphere. Find more information e.g. in Benz (2008).
Coronal holes are areas where the Sun’s corona is darker, and colder, and has lower-density plasma than average. They are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. Find more information in e.g. Potgieter (2013).
Conversion: 1×1016 W sr−1=4.5×10−7 W m−2=1.2×photons cm−2s−1.
References
J.G. Anet, E.V. Rozanov, S. Muthers, T. Peter, S. BröNnimann, F. Arfeuille, J. Beer, A.I. Shapiro, C.C. Raible, F. Steinhilber, W.K. Schmutz, Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophys. Res. Lett. 40, 4420–4425 (2013). doi:10.1002/grl.50806
R. Arlt, R. Leussu, N. Giese, K. Mursula, I.G. Usoskin, Sunspot positions and sizes for 1825–1867 from the observations by Samuel Heinrich Schwabe. Mon. Not. R. Astron. Soc. 433, 3165–3172 (2013). doi:10.1093/mnras/stt961
R. Arlt, N. Weiss, Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev., 1–9 (2014). doi:10.1007/s11214-014-0063-5
E.H. Avrett, J.M. Fontenla, R. Loeser, Formation of the solar 10830 A line 1994, pp. 35–47
H.D. Babcock, The Sun’s polar magnetic field. Astrophys. J. 130, 364 (1959). doi:10.1086/146726
H.D. Babcock, H.W. Babcock, Some new features of the solar spectrum. Publ. Astron. Soc. Pac. 46, 132 (1934). doi:10.1086/124428
L.A. Balmaceda, S.K. Solanki, N.A. Krivova, S. Foster, A homogeneous database of sunspot areas covering more than 130 years. J. Geophys. Res. 114, 7104 (2009). doi:10.1029/2009JA014299
T. Baranyi, S. Király, H.E. Coffey, Indirect comparison of Debrecen and Greenwich daily sums of sunspot areas. Mon. Not. R. Astron. Soc. 434, 1713–1720 (2013). doi:10.1093/mnras/stt1134
T. Baranyi, L. Gyori, A. Ludmány, H.E. Coffey, Comparison of sunspot area data bases. Mon. Not. R. Astron. Soc. 323, 223–230 (2001). doi:10.1046/j.1365-8711.2001.04195.x
J. Beer, A. Blinov, G. Bonani, H.J. Hofmann, R.C. Finkel, Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990). doi:10.1038/347164a0
A.O. Benz, Flare observations. Living Rev. Sol. Phys. 5, 1 (2008). doi:10.12942/lrsp-2008-1
L. Bertello, R.K. Ulrich, J.E. Boyden, The Mount Wilson Ca ii K plage index time series. Sol. Phys. 264, 31–44 (2010). doi:10.1007/s11207-010-9570-z
R. Brajša, S. Pohjolainen, V. Ruždjak, T. Sakurai, S. Urpo, B. Vršnak, H. Wöhl, Helium 10830 Å measurements of the Sun. Sol. Phys. 163, 79–91 (1996). doi:10.1007/BF00165457
D.C. Braun, C. Lindsey, Y. Fan, S.M. Jefferies, Local acoustic diagnostics of the solar interior. Astrophys. J. 392, 739–745 (1992). doi:10.1086/171477
B. Caccin, I. Ermolli, M. Fofi, A.M. Sambuco, Variations of the chromospheric network with the solar cycle. Sol. Phys. 177, 295–303 (1998). doi:10.1023/A:1004938412420
W.J. Chaplin, S. Basu, Sounding stellar cycles. Space Sci. Rev. (2014)
G.A. Chapman, J.J. Dobias, T. Arias, Facular and sunspot areas during solar cycles 22 and 23. Astrophys. J. 728, 150 (2011). doi:10.1088/0004-637X/728/2/150
P. Charbonneau, Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). doi:10.12942/lrsp-2010-3
P. Charbonneau, A. Choudhury, J. Jang, B. Karak, M. Miesch, Challenges for the solar dynamo. Space Sci. Rev. (2014)
F. Clette, E. Cliver, L. Svalgaard, The sunspot number in time. Space Sci. Rev. (2014)
F. Clette, D. Berghmans, P. Vanlommel, R.A.M. Van der Linden, A. Koeckelenbergh, L. Wauters, From the Wolf number to the international sunspot index: 25 years of SIDC. Adv. Space Res. 40, 919–928 (2007). doi:10.1016/j.asr.2006.12.045
A.E. Covington, Solar radio emission at 10.7 cm, 1947–1968. J. R. Astron. Soc. Can. 63, 125 (1969)
S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6(3) (2009). doi:10.12942/lrsp-2009-3
S. Criscuoli, P. Romano, F. Giorgi, F. Zuccarello, Magnetic evolution of superactive regions. Complexity and potentially unstable magnetic discontinuities. Astron. Astrophys. 506, 1429–1436 (2009). doi:10.1051/0004-6361/200912044
L. Deng, Z. Qi, G. Dun, C. Xu, Phase relationship between polar faculae and sunspot numbers revisited: wavelet transform analyses. Publ. Astron. Soc. Jpn. 65, 11 (2013). doi:10.1093/pasj/65.1.11
J.F. Denisse, Microwave solar noise and sunspot. Astron. J. 54, 183 (1949). doi:10.1086/106280
V. Domingo, I. Ermolli, P. Fox, C. Fröhlich, M. Haberreiter, N. Krivova, G. Kopp, W. Schmutz, S.K. Solanki, H.C. Spruit, Y. Unruh, A. Vögler, Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Sci. Rev. 145, 337–380 (2009). doi:10.1007/s11214-009-9562-1
I. Dorotovič, M. Minarovjech, M. Lorenc, M. Rybanský, Modified homogeneous data set of coronal intensities. Sol. Phys. 289, 2697–2703 (2014). doi:10.1007/s11207-014-0501-2
T. Dudok de Wit, S. Bruinsma, K. Shibasaki, Synoptic radio observations as proxies for upper atmosphere modelling. J. Space Weather Space Clim. 4(26), 260000 (2014). doi:10.1051/swsc/2014003
T. Dudok de Wit, M. Kretzschmar, J. Lilensten, T. Woods, Finding the best proxies for the solar UV irradiance. Geophys. Res. Lett. 36, 10107 (2009). doi:10.1029/2009GL037825
I. Ermolli, S.K. Solanki, A.G. Tlatov, N.A. Krivova, R.K. Ulrich, J. Singh, Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. Astrophys. J. 698, 1000–1009 (2009a). doi:10.1088/0004-637X/698/2/1000
I. Ermolli, E. Marchei, M. Centrone, S. Criscuoli, F. Giorgi, C. Perna, The digitized archive of the Arcetri spectroheliograms. Preliminary results from the analysis of Ca II K images. Astron. Astrophys. 499, 627–632 (2009b). doi:10.1051/0004-6361/200811406
I. Ermolli, S. Criscuoli, H. Uitenbroek, F. Giorgi, M.P. Rast, S.K. Solanki, Radiative emission of solar features in the Ca II K line: comparison of measurements and models. Astron. Astrophys. 523, 55 (2010). doi:10.1051/0004-6361/201014762
I. Ermolli, K. Matthes, T. Dudok de Wit, N.A. Krivova, K. Tourpali, M. Weber, Y.C. Unruh, L. Gray, U. Langematz, P. Pilewskie, E. Rozanov, W. Schmutz, A. Shapiro, S.K. Solanki, T.N. Woods, Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos. Chem. Phys. 13, 3945–3977 (2013). doi:10.5194/acp-13-3945-2013
I. Ermolli, F. Giorgi, P. Romano, F. Zuccarello, S. Criscuoli, M. Stangalini, Fractal and multifractal properties of active regions as flare precursors: a case study based on SOHO/MDI and SDO/HMI observations. Sol. Phys. 289, 2525–2545 (2014). doi:10.1007/s11207-014-0500-3
Y.P. Fedorenko, O.F. Tyrnov, V.N. Fedorenko, V.L. Dorohov, Model of traveling ionospheric disturbances. J. Space Weather Space Clim. 3(26), 30 (2013). doi:10.1051/swsc/2013052
P. Foukal, L. Bertello, W.C. Livingston, A.A. Pevtsov, J. Singh, A.G. Tlatov, R.K. Ulrich, A century of solar Ca ii measurements and their implication for solar UV driving of climate. Sol. Phys. 255, 229–238 (2009). doi:10.1007/s11207-009-9330-0
C. Fröhlich, Total solar irradiance: what have we learned from the last three cycles and the recent minimum? Space Sci. Rev. 176, 237–252 (2013). doi:10.1007/s11214-011-9780-1
G. Galilei, Istoria e Dimostrazioni Intorno Alle Macchie Solari (Accad. Naz. Lincei, Rome, 1613)
M.K. Georgoulis, Toward an efficient prediction of solar flares: which parameters, and how? Entropy 15, 5022–5052 (2013). doi:10.3390/e15115022
I. González Hernández, F. Hill, C. Lindsey, Calibration of seismic signatures of active regions on the far side of the Sun. Astrophys. J. 669, 1382–1389 (2007). doi:10.1086/521592
I. González Hernández, M. Díaz Alfaro, K. Jain, W.K. Tobiska, D.C. Braun, F. Hill, F. Pérez Hernández, A full-Sun magnetic index from helioseismology inferences. Sol. Phys. 289, 503–514 (2014)
G.E. Hale, On the probable existence of a magnetic field in Sun-spots. Astrophys. J. 28, 315 (1908). doi:10.1086/141602
G.E. Hale, Sun-spots as magnets and the periodic reversal of their polarity. Nature 113, 105–112 (1924). doi:10.1038/113105a0
G.E. Hale, S.B. Nicholson, The law of Sun-spot polarity. Astrophys. J. 62, 270 (1925). doi:10.1086/142933
G.E. Hale, F. Ellerman, S.B. Nicholson, A.H. Joy, The magnetic polarity of Sun-spots. Astrophys. J. 49, 153 (1919). doi:10.1086/142452
J.C. Hall, Stellar chromospheric activity. Living Rev. Sol. Phys. 5, 2 (2008). doi:10.12942/lrsp-2008-2
J.W. Harvey, N.R. Sheeley Jr., A comparison of He II 304 A and He I 10,830 A spectroheliograms. Sol. Phys. 54, 343–351 (1977). doi:10.1007/BF00159924
K.L. Harvey, The relationship between coronal bright points as seen in He I Lambda 10830 and the evolution of the photospheric network magnetic fields. Aust. J. Phys. 38, 875–883 (1985)
K.L. Harvey, The cyclic behavior of solar activity, in The Solar Cycle, ed. by K.L. Harvey Astronomical Society of the Pacific Conference Series, vol. 27, 1992, p. 335
K.L. Harvey, F. Recely, Polar coronal holes during cycles 22 and 23. Sol. Phys. 211, 31–52 (2002). doi:10.1023/A:1022469023581
D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi:10.12942/lrsp-2010-1
D.H. Hathaway, R.M. Wilson, What the sunspot record tells us about space climate. Sol. Phys. 224, 5–19 (2004). doi:10.1007/s11207-005-3996-8
D.F. Heath, B.M. Schlesinger, The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance. J. Geophys. Res. 91, 8672–8682 (1986). doi:10.1029/JD091iD08p08672
C.J. Henney, W.A. Toussaint, S.M. White, C.N. Arge, Forecasting F10.7 with solar magnetic flux transport modeling. Space Weather 10, 2011 (2012). doi:10.1029/2011SW000748
D.V. Hoyt, K.H. Schatten, How well was the Sun observed during the maunder minimum? Sol. Phys. 165, 181–192 (1996). doi:10.1007/BF00149097
D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 179, 189–219 (1998a). doi:10.1023/A:1005007527816
D.V. Hoyt, K.H. Schatten, Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998b). doi:10.1023/A:1005056326158
H. Hudson, L. Fletcher, J. McTiernan, Cycle 23 variation in solar flare productivity. Sol. Phys. 289, 1341–1347 (2014a). doi:10.1007/s11207-013-0384-7
H. Hudson, L. Svalgaard, E. Cliver, Solar sector structure. Space Sci. Rev. (2014b)
H.S. Hudson, S. Silva, M. Woodard, R.C. Willson, The effects of sunspots on solar irradiance. Sol. Phys. 76, 211–219 (1982). doi:10.1007/BF00170984
K. Jain, S.S. Hasan, Modulation in the solar irradiance due to surface magnetism during cycles 21, 22 and 23. Astron. Astrophys. 425, 301–307 (2004). doi:10.1051/0004-6361:20047102
J. Jiang, R.H. Cameron, D. Schmitt, M. Schüssler, The solar magnetic field since 1700. II. Physical reconstruction of total, polar and open flux. Astron. Astrophys. 528, 83 (2011). doi:10.1051/0004-6361/201016168
A. Kerdraon, J.-M. Delouis, The Nançay radioheliograph, in Coronal Physics from Radio and Space Observations, ed. by G. Trottet Lecture Notes in Physics, Berlin Springer Verlag, vol. 483, 1997, p. 192. doi:10.1007/BFb0106458
C. Kiess, R. Rezaei, W. Schmidt, Properties of sunspot umbrae observed in Cycle 24. ArXiv e-prints (2014)
J. Kleczek, Ionospheric disturbances and flares in the 11-years cycle. Bull. Astron. Inst. Czechoslov. 3, 52 (1952)
N.A. Krivova, L.E.A. Vieira, S.K. Solanki, Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res. 115, 12112 (2010). doi:10.1029/2010JA015431
M.R. Kundu, Solar active regions at millimeter wavelengths. Sol. Phys. 13, 348–356 (1970). doi:10.1007/BF00153556
I. Kutiev, I. Tsagouri, L. Perrone, D. Pancheva, P. Mukhtarov, A. Mikhailov, J. Lastovicka, N. Jakowski, D. Buresova, E. Blanch, B. Andonov, D. Altadill, S. Magdaleno, M. Parisi, J. Miquel Torta, Solar activity impact on the Earth’s upper atmosphere. J. Space Weather Space Clim. 3(26), 6 (2013). doi:10.1051/swsc/2013028
A. Lagg, Recent advances in measuring chromospheric magnetic fields in the He I 10830 Å line. Adv. Space Res. 39, 1734–1740 (2007). doi:10.1016/j.asr.2007.03.091
J.L. Lean, T.N. Woods, F.G. Eparvier, R.R. Meier, D.J. Strickland, J.T. Correira, J.S. Evans, Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. 116, 1102 (2011). doi:10.1029/2010JA015901
J. Leenaarts, M. Carlsson, L. Rouppe van der Voort, The formation of the Hα line in the Solar chromosphere. Astrophys. J. 749, 136 (2012). doi:10.1088/0004-637X/749/2/136
J. Leenaarts, T.M.D. Pereira, M. Carlsson, H. Uitenbroek, B. De Pontieu, The formation of IRIS diagnostics. II. The formation of the Mg II h&k lines in the solar atmosphere. Astrophys. J. 772, 90 (2013). doi:10.1088/0004-637X/772/2/90
L. Lefevre, F. Clette, Survey and merging of sunspot catalogs. Sol. Phys. 289, 545–561 (2014). doi:10.1007/s11207-012-0184-5
D.K. Lepshokov, A.G. Tlatov, V.V. Vasil’eva, Reconstruction of sunspot characteristics for 1853–1879. Geomagn. Aeron. 52, 843–848 (2012). doi:10.1134/S0016793212070109
R. Leussu, I.G. Usoskin, R. Arlt, K. Mursula, Inconsistency of the Wolf sunspot number series around 1848. Astron. Astrophys. 559, 28 (2013). doi:10.1051/0004-6361/201322373
K.J. Li, P.X. Gao, L.S. Zhan, Synchronization of sunspot numbers and sunspot areas. Sol. Phys. 255, 289–300 (2009). doi:10.1007/s11207-009-9328-7
C. Lindsey, D.C. Braun, Helioseismic holography. Astrophys. J. 485, 895 (1997). doi:10.1086/304445
Y. Liu, J.T. Hoeksema, P.H. Scherrer, J. Schou, S. Couvidat, R.I. Bush, T.L. Duvall, K. Hayashi, X. Sun, X. Zhao, Comparison of line-of-sight magnetograms taken by the solar dynamics observatory/helioseismic and magnetic imager and solar and heliospheric observatory/Michelson Doppler imager. Sol. Phys. 279, 295–316 (2012). doi:10.1007/s11207-012-9976-x
M. Lockwood, Reconstruction and prediction of variations in the open solar magnetic flux and interplanetary conditions. Living Rev. Sol. Phys. 10(4) (2013). doi:10.12942/lrsp-2013-4. http://www.livingreviews.org/lrsp-2013-4
J.N. Lockyer, Supplementary note on a spectrum of a solar prominence. Proc. R. Soc. Lond., Ser. A 17, 128 (1868)
V.I. Makarov, A.G. Tlatov, The large-scale solar magnetic field and 11-year activity cycles. Astron. Rep. 44, 759–764 (2000). doi:10.1134/1.1320502
V.I. Makarov, A.G. Tlatov, D.K. Callebaut, V.N. Obridko, B.D. Shelting, Large-scale magnetic field and sunspot cycles. Sol. Phys. 198, 409–421 (2001). doi:10.1023/A:1005249531228
T. Maruyama, Solar proxies pertaining to empirical ionospheric total electron content models. J. Geophys. Res. 115, 4306 (2010). doi:10.1029/2009JA014890
K. Matthes, K. Kodera, R.R. Garcia, Y. Kuroda, D.R. Marsh, K. Labitzke, The importance of time-varying forcing for QBO modulation of the atmospheric 11 year solar cycle signal. J. Geophys. Res. 118, 4435–4447 (2013). doi:10.1002/jgrd.50424
E.W. Maunder, Note on the distribution of Sun-spots in heliographic latitude, 1874–1902. Mon. Not. R. Astron. Soc. 64, 747–761 (1904)
B. Mendoza, V.M. Mendoza, R. Garduño, J. Adem, Modelling the northern hemisphere temperature for solar cycles 24 and 25. J. Atmos. Sol.-Terr. Phys. 72, 1122–1128 (2010). doi:10.1016/j.jastp.2010.05.018
M. Minarovjech, V. Rušin, M. Saniga, The green corona database and the coronal index of solar activity. Contrib. Astron. Obs. Skaln. Pleso 41, 137–141 (2011)
Z. Mouradian, Synoptic data findings, in Synoptic Solar Physics, ed. by K.S. Balasubramaniam, J. Harvey, D. Rabin Astronomical Society of the Pacific Conference Series, vol. 140, 1998, p. 181
A. Muñoz-Jaramillo, N.R. Sheeley, J. Zhang, E.E. DeLuca, Calibrating 100 years of polar faculae measurements: implications for the evolution of the heliospheric magnetic field. Astrophys. J. 753, 146 (2012). doi:10.1088/0004-637X/753/2/146
A. Norton, P. Charbonneau, Observed solar N–S asymmetry in relation to dynamo modeling. Space Sci. Rev. (2014)
S. Oberländer, U. Langematz, K. Matthes, M. Kunze, A. Kubin, J. Harder, N.A. Krivova, S.K. Solanki, J. Pagaran, M. Weber, The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle. Geophys. Res. Lett. 39, 1801 (2012). doi:10.1029/2011GL049539
K. Oláh, Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, S. Järvinen, H. Korhonen, S.L. Baliunas, W. Soon, S. Messina, G. Cutispoto, Multiple and changing cycles of active stars. II. Results. Astron. Astrophys. 501, 703–713 (2009). doi:10.1051/0004-6361/200811304
M.J. Owens, R.J. Forsyth, The heliospheric magnetic field. Living Rev. Sol. Phys. 10(5) (2013). doi:10.12942/lrsp-2013-5. http://www.livingreviews.org/lrsp-2013-5
A. Özgüç, T. Ataç, J. Rybák, Temporal variability of the flare index (1966–2001). Sol. Phys. 214, 375–396 (2003). doi:10.1023/A:1024225802080
J. Pagaran, M. Weber, J. Burrows, Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. Astrophys. J. 700, 1884–1895 (2009a). doi:10.1088/0004-637X/700/2/1884
W.D. Pesnell, Solar cycle predictions (Invited review). Sol. Phys. 281, 507–532 (2012). doi:10.1007/s11207-012-9997-5
C. Petrick, K. Matthes, H. Dobslaw, M. Thomas, Impact of the solar cycle and the QBO on the atmosphere and the ocean. J. Geophys. Res. 117, 17111 (2012). doi:10.1029/2011JD017390
G.J.D. Petrie, Solar magnetic activity cycles, coronal potential field models and eruption rates. Astrophys. J. 768, 162 (2013). doi:10.1088/0004-637X/768/2/162
G.J.D. Petrie, K. Petrovay, K. Schatten, Solar polar fields and the 22-year activity cycle: Observations and models. Space Sci. Rev., 1–33 (2014). doi:10.1007/s11214-014-0064-4
A.A. Pevtsov, L. Bertello, H. Uitenbroek, On possible variations of basal Ca II K chromospheric line profiles with the solar cycle. Astrophys. J. 767, 56 (2013). doi:10.1088/0004-637X/767/1/56
M.S. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10(3) (2013). doi:10.12942/lrsp-2013-3
D.G. Preminger, S.R. Walton, Modeling solar spectral irradiance and total magnetic flux using sunspot areas. Sol. Phys. 235, 387–405 (2006). doi:10.1007/s11207-006-0044-2
D.G. Preminger, S.R. Walton, From sunspot area to solar variability: a linear transformation. Sol. Phys. 240, 17–23 (2007). doi:10.1007/s11207-007-0335-2
M. Priyal, J. Singh, B. Ravindra, T.G. Priya, K. Amareswari, Long term variations in chromospheric features from Ca-K images at Kodaikanal. Sol. Phys. 289, 137–152 (2014). doi:10.1007/s11207-013-0315-7
T. Pulkkinen, Space weather: terrestrial perspective. Living Rev. Sol. Phys. 4, 1 (2007). doi:10.12942/lrsp-2007-1
T.I. Pulkkinen, M. Palmroth, E.I. Tanskanen, N.Y. Ganushkina, M.A. Shukhtina, N.P. Dmitrieva, Solar wind—magnetosphere coupling: a review of recent results. J. Atmos. Sol.-Terr. Phys. 69, 256–264 (2007). doi:10.1016/j.jastp.2006.05.029
A. Reiners, Observations of cool-star magnetic fields. Living Rev. Sol. Phys. 9, 1 (2012). doi:10.12942/lrsp-2012-1
P. Riley, R. Lionello, J.A. Linker, Z. Mikic, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 274, 361–377 (2011). doi:10.1007/s11207-010-9698-x
P. Riley, M. Ben-Nun, J.A. Linker, Z. Mikic, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, R. Ulrich, A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. Sol. Phys. 289, 769–792 (2014). doi:10.1007/s11207-013-0353-1
R.J. Rutten, Observing the solar chromosphere, in The Physics of Chromospheric Plasmas, ed. by P. Heinzel, I. Dorotovič, R.J. Rutten Astronomical Society of the Pacific Conference Series, vol. 368, 2007, p. 27
V. Rušin, M. Rybansky, The green corona and magnetic fields. Sol. Phys. 207, 47–61 (2002). doi:10.1023/A:1015587719072
M. Rybanský, V. Rušin, M. Minarovjech, Coronal index of solar activity—solar-terrestrial research. Space Sci. Rev. 95, 227–234 (2001)
M. Rybanský, V. Rušin, M. Minarovjech, L. Klocok, E.W. Cliver, Reexamination of the coronal index of solar activity. J. Geophys. Res. 110, 8106 (2005). doi:10.1029/2005JA011146
J.D. Scargle, S.L. Keil, S.P. Worden, Solar cycle variability and surface differential rotation from Ca II K-line time series data. Astrophys. J. 771, 33 (2013). doi:10.1088/0004-637X/771/1/33
C. Scheiner, Rosa Ursina Sive Sol 1626–1630
B. Schmieder, V. Archontis, M. Schuessler, E. Pariat, Magnetic flux emergence. Space Sci. Rev. (2014)
C.J. Schrijver, J. Cote, C. Zwaan, S.H. Saar, Relations between the photospheric magnetic field and the emission from the outer atmospheres of cool stars. I—The solar CA II K line core emission. Astrophys. J. 337, 964–976 (1989). doi:10.1086/167168
M. Schwabe, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20, 283 (1843). doi:10.1002/asna.18430201706
C.J. Scott, R.G. Harrison, M.J. Owens, M. Lockwood, L. Barnard, Evidence for solar wind modulation of lightning. Environ. Res. Lett. 9(5), 055004 (2014). doi:10.1088/1748-9326/9/5/055004
N.R. Sheeley Jr., A century of polar faculae variations. Astrophys. J. 680, 1553–1559 (2008). doi:10.1086/588251
N.R. Sheeley Jr., T.J. Cooper, J.R.L. Anderson, Carrington maps of Ca II K-line emission for the years 1915–1985. Astrophys. J. 730, 51 (2011). doi:10.1088/0004-637X/730/1/51
K. Shibasaki, C.E. Alissandrakis, S. Pohjolainen, Radio emission of the quiet Sun and active regions (Invited review). Sol. Phys. 273, 309–337 (2011). doi:10.1007/s11207-011-9788-4
K. Shibata, T. Magara, Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8, 6 (2011). doi:10.12942/lrsp-2011-6
S. Solanki, N. Krivova, Faculae and Plague. Landolt Börnstein, 4124 (2009). doi:10.1007/978-3-540-88055-4_9
S.K. Solanki, B. Inhester, M. Schüssler, The solar magnetic field. Rep. Prog. Phys. 69, 563–668 (2006). doi:10.1088/0034-4885/69/3/R02
S.K. Solanki, N.A. Krivova, J.D. Haigh, Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311–351 (2013). doi:10.1146/annurev-astro-082812-141007
J.O. Stenflo, Solar magnetic fields. J. Astrophys. Astron. 29, 19–28 (2008). doi:10.1007/s12036-008-0003-4
J.O. Stenflo, Solar magnetic fields as revealed by Stokes polarimetry. Astron. Astrophys. Rev. 21, 66 (2013). doi:10.1007/s00159-013-0066-3
M. Stuiver, P.D. Quay, Changes in atmospheric carbon-14 attributed to a variable Sun. Science 207, 11–19 (1980). doi:10.1126/science.207.4426.11
W.T. Sullivan, The Early Years of Radio Astronomy—Reflections Fifty Years After Jansky’s Discovery 1984
L. Svalgaard, What geomagnetism can tell us about the solar cycle? Space Sci. Rev. (2014)
L. Svalgaard, H.S. Hudson, The solar microwave flux and the sunspot number, in SOHO-23: Understanding a Peculiar Solar Minimum, ed. by S.R. Cranmer, J.T. Hoeksema, J.L. Kohl Astronomical Society of the Pacific Conference Series, vol. 428, 2010, p. 325
H. Tanaka, J.P. Castelli, A.E. Covington, A. Krüger, T.L. Landecker, A. Tlamicha, Absolute calibration of solar radio flux density in the microwave region. Sol. Phys. 29, 243–262 (1973). doi:10.1007/BF00153452
K.F. Tapping, The 10.7 cm solar radio flux (F10.7). Space Weather 11, 394–406 (2013). doi:10.1002/swe.20064
K.F. Tapping, J.J. Valdés, Did the Sun change its behaviour during the decline of cycle 23 and into cycle 24? Sol. Phys. 272, 337–350 (2011). doi:10.1007/s11207-011-9827-1
M. Temmer, A. Veronig, A. Hanslmeier, Hemispheric sunspot numbers R n and R s : catalogue and N–S asymmetry analysis. Astron. Astrophys. 390, 707–715 (2002). doi:10.1051/0004-6361:20020758
M. Temmer, J. Rybák, P. Bendík, A. Veronig, F. Vogler, W. Otruba, W. Pötzi, A. Hanslmeier, Hemispheric sunspot numbers {R n } and {R s } from 1945–2004: catalogue and N–S asymmetry analysis for solar cycles 18–23. Astron. Astrophys. 447, 735–743 (2006). doi:10.1051/0004-6361:20054060
G. Thuillier, S.M.L. Melo, J. Lean, N.A. Krivova, C. Bolduc, V.I. Fomichev, P. Charbonneau, A.I. Shapiro, W. Schmutz, D. Bolsée, Analysis of different solar spectral irradiance reconstructions and their impact on solar heating rates. Sol. Phys. 289, 1115–1142 (2014). doi:10.1007/s11207-013-0381-x
H. Uitenbroek, Operator perturbation method for multi-level line transfer with partial redistribution. Astron. Astrophys. 213, 360–370 (1989)
I.G. Usoskin, A history of solar activity over millennia. Living Rev. Sol. Phys. 10, 1 (2013). doi:10.12942/lrsp-2013-1
I. Usoskin, G. Bazilevskaya, E. Cliver, G. Kovaltsov, Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. (2014)
H. van Loon, J. Brown, R.F. Milliff, Trends in sunspots and North Atlantic sea level pressure. J. Geophys. Res. 117, 7106 (2012). doi:10.1029/2012JD017502
J.M. Vaquero, R.M. Trigo, Revised group sunspot number values for 1640, 1652, and 1741. Sol. Phys. 289, 803–808 (2014). doi:10.1007/s11207-013-0360-2
J.M. Vaquero, R.M. Trigo, M.C. Gallego, A simple method to check the reliability of annual sunspot number in the historical period 1610–1847. Sol. Phys. 277, 389–395 (2012). doi:10.1007/s11207-011-9901-8
V.V. Vasil’Eva, V.I. Makarov, A.G. Tlatov, Rotation cycles of the sector structure of the solar magnetic field and its activity. Astron. Lett. 28, 199–205 (2002). doi:10.1134/1.1458351
I.I. Virtanen, K. Mursula, North-South asymmetric solar cycle evolution: signatures in the photosphere and consequences in the corona. Astrophys. J. 781, 99 (2014). doi:10.1088/0004-637X/781/2/99
Y.-M. Wang, Solar cycle variation of the Sun’s low-order magnetic multipoles: Heliospheric consequences. Space Sci. Rev., 1–21 (2014). doi:10.1007/s11214-014-0051-9
D.M. Willis, R. Henwood, M.N. Wild, H.E. Coffey, W.F. Denig, E.H. Erwin, D.V. Hoyt, The Greenwich photo-heliographic results (1874–1976): procedures for checking and correcting the sunspot digital datasets. Sol. Phys. 288, 141–156 (2013a). doi:10.1007/s11207-013-0312-x
D.M. Willis, H.E. Coffey, R. Henwood, E.H. Erwin, D.V. Hoyt, M.N. Wild, W.F. Denig, The Greenwich photo-heliographic results (1874–1976): summary of the observations, applications, datasets, definitions and errors. Sol. Phys. 288, 117–139 (2013b). doi:10.1007/s11207-013-0311-y
R.C. Willson, S. Gulkis, M. Janssen, H.S. Hudson, G.A. Chapman, Observations of solar irradiance variability. Science 211, 700–702 (1981). doi:10.1126/science.211.4483.700
K.L. Yeo, N.A. Krivova, S.K. Solanki, Solar cycle variation in solar irradiance. Space Sci. Rev., 1–31 (2014). doi:10.1007/s11214-014-0061-7
Acknowledgements
The authors are grateful to the International Space Science Institute, Bern, for the organization of the workshop “The Solar Activity Cycle: Physical Causes and Consequences”, the invitation to contribute to it, and the kind support received to the purpose. The authors thank Fabrizio Giorgi for preparing Figs. 1 to 8. This study received funding from the European Union’s Seventh Programme for Research, Technological Development and Demonstration, under the Grant Agreements of the eHEROES (No. 284461, www.eheroes.eu), SOLARNET (No. 312495, www.solarnet-east.eu), and SOLID (No. 313188, projects.pmodwrc.ch/solid/) projects. It was also supported by COST Action ES1005 “TOSCA” (www.tosca-cost.eu). LvDG’s work was supported by the Hungarian Research grants OTKA K-081421 and K-109276, and by the STFC Consolidated Grant ST/H00260/1.
Final acknowledgements go to the many observers and astronomers, both amateur and professional, for performing the regular observations of the solar atmosphere and creating the databases of solar indices described in this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ermolli, I., Shibasaki, K., Tlatov, A. et al. Solar Cycle Indices from the Photosphere to the Corona: Measurements and Underlying Physics. Space Sci Rev 186, 105–135 (2014). https://doi.org/10.1007/s11214-014-0089-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-014-0089-8