Skip to main content

Advertisement

Log in

Solar Wind and Internally Driven Dynamics: Influences on Magnetodiscs and Auroral Responses

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The dynamics of the giant planet magnetodiscs are strongly influenced by planetary rotation. Yet the solar wind must ultimately remove plasma from these rapidly rotating magnetodiscs at the same rate that plasma is transported radially outward from the source regions: the Io and Enceladus plasma tori. It is not clear how the solar wind influences magnetospheric dynamics when the dynamics are dominated by rotation. However, auroral observations provide important clues. We review magnetodisc sources and radial transport and the solar wind interaction with the giant magnetospheres of Jupiter and Saturn in an attempt to connect auroral features with specific drivers. We provide a discussion of auroral signatures that are related to the solar wind interaction and summarize with a discussion of global magnetospheric dynamics as illustrated by global MHD simulations. Many questions remain and it is the intent of this review to highlight several of the most compelling questions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • N. Achilleos, P. Guio, C.S. Arridge, A model of force balance in Saturn’s magnetodisc. Mon. Not. R. Astron. Soc. 401, 2349–2371 (2010a). doi:10.1111/j.1365-2966.2009.15865.x

    ADS  Google Scholar 

  • N. Achilleos, P. Guio, C.S. Arridge, N. Sergis, R.J. Wilson, M.F. Thomsen, A.J. Coates, Influence of hot plasma pressure on the global structure of Saturn’s magnetodisk. Geophys. Res. Lett. 37, L20201 (2010b). doi:10.1029/2010GL045159

    ADS  Google Scholar 

  • N. Achilleos et al., Space Sci. Rev. (2014, this issue)

  • B.J. Anderson, T.-D. Phan, S.A. Fuselier, Relationships between plasma depletion and subsolar reconnection. J. Geophys. Res. 102, 9531–9542 (1997). doi:10.1029/97JA00173

    ADS  Google Scholar 

  • C.S. Arridge, N. Achilleos, M.K. Dougherty, K.K. Khurana, C.T. Russell, Modeling the size and shape of Saturn’s magnetopause with variable dynamic pressure. J. Geophys. Res. (Space Phys.) 111, A11227 (2006). doi:10.1029/2005JA011574

    ADS  Google Scholar 

  • C.S. Arridge, K.K. Khurana, C.T. Russell, D.J. Southwood, N. Achilleos, M.K. Dougherty, A.J. Coates, H.K. Leinweber, Warping of Saturn’s magnetospheric and magnetotail current sheets. J. Geophys. Res. (Space Phys.) 113, A08217 (2008). doi:10.1029/2007JA012963

    ADS  Google Scholar 

  • C.S. Arridge, N. André, C.L. Bertucci, P. Garnier, C.M. Jackman, Z. Németh, A.M. Rymer, N. Sergis, K. Szego, A.J. Coates, F.J. Crary, Upstream of Saturn and Titan. Space Sci. Rev. 162, 25–83 (2011). doi:10.1007/s11214-011-9849-x

    ADS  Google Scholar 

  • C. Arridge, N. Achilleos, Y. Bogdanova, E.J. Bunce, S. Cowley, M. Dougherty, A. Fazakerley, G. Jones, J. Jasinski, K. Khuana, S. Krimigis, N. Krupp, L. Lamy, J. Leisner, E. Roussos, C. Russell, P. Zarka, Cassini observations of Saturn’s southern polar cusp. J. Geophys. Res. (2014, submitted)

  • W.I. Axford, C.O. Hines, A unifying theory of high latitude geophysical phenomena and geomagnetic storms. Can. J. Phys. 39, 1433 (1961)

    ADS  MathSciNet  Google Scholar 

  • S.V. Badman, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, S.E. Milan, Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini-HST campaign, and implications for reconnection rates. J. Geophys. Res. (Space Phys.) 110, A11216 (2005). doi:10.1029/2005JA011240

    ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, J.-C. Gérard, D. Grodent, A statistical analysis of the location and width of Saturn’s southern auroras. Ann. Geophys. 24(12), 3533–3545 (2006)

    ADS  Google Scholar 

  • S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Ann. Geophys. 25, 941–951 (2007). doi:10.5194/angeo-25-941-2007

    ADS  Google Scholar 

  • S.V. Badman, D.J. Andrews, S.W.H. Cowley, L. Lamy, G. Provan, C. Tao, S. Kasahara, T. Kimura, M. Fujimoto, H. Melin, T. Stallard, R.H. Brown, K.H. Baines, Rotational modulation and local time dependence of Saturn’s infrared \(\mathrm{H}_{3}^{+}\) auroral intensity. J. Geophys. Res. (Space Phys.) 117, A09228 (2012a). doi:10.1029/2012JA017990

    ADS  Google Scholar 

  • S.V. Badman, N. Achilleos, C.S. Arridge, K.H. Baines, R.H. Brown, E.J. Bunce, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, M. Fujimoto, G. Hospodarsky, S. Kasahara, T. Kimura, H. Melin, D.G. Mitchell, T. Stallard, C. Tao, Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. J. Geophys. Res. 117(A1), A01211 (2012b). doi:10.1029/2011JA017222

    ADS  Google Scholar 

  • S.V. Badman, A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M.K. Dougherty, A.J. Coates, Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013)

    ADS  Google Scholar 

  • S.V. Badman, Saturn’s auroral morphology and field-aligned currents during a solar wind compression. Icarus (2014, submitted)

  • S.V. Badman, G. Branduardi-Raymont, M. Galand, S.L.G. Hess, N. Krupp, L. Lamy, H. Melin, C. Tao, Auroral processes at the giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci. Rev. (2014a). doi:10.1007/s11214-014-0042-x

    Google Scholar 

  • S.V. Badman, C.M. Jackman, J.D. Nichols, J.T. Clarke, J.-C. Gérard, Open flux in Saturn’s magnetosphere. Icarus 231, 137–145 (2014b). doi:10.1016/j.icarus.2013.12.004

    ADS  Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol.-Terr. Phys. 69, 387–402 (2007). doi:10.1016/j.jastp.2006.08.012

    ADS  Google Scholar 

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. (Space Phys.) 116, A05209 (2011). doi:10.1029/2010JA016294

    ADS  Google Scholar 

  • G.E. Ballester, J.T. Clarke, J.T. Trauger, W.M. Harris, K.R. Stapelfeldt, D. Crisp, R.W. Evans, E.B. Burgh, C.J. Burrows, S. Casertano, J.S. Gallagher III, R.E. Griffiths, J.J. Hester, J.G. Hoessel, J.A. Holtzman, J.E. Krist, V. Meadows, J.R. Mould, R. Sahai, P.A. Scowen, A.M. Watson, J.A. Westphal, Time-resolved observations of Jupiter’s far-ultraviolet aurora. Science 274, 409–412 (1996)

    ADS  Google Scholar 

  • R.L. Baron, T. Owen, J.E.P. Connerney, T. Satoh, J. Harrington, Solar wind control of Jupiter’s \(\mathrm{H}^{+}_{3}\) auroras. Icarus 120, 437–442 (1996). doi:10.1006/icar.1996.0063

    ADS  Google Scholar 

  • C. Barrow, M. Desch, F. Genova, Solar-wind control of Jupiter decametric radio-emission. Astron. Astrophys. 165(1–2), 244–250 (1986)

    ADS  Google Scholar 

  • E.S. Belenkaya, I.I. Alexeev, M.S. Blokhina, E.J. Bunce, S.W.H. Cowley, J.D. Nichols, V.V. Kalegaev, V.G. Petrov, G. Provan, IMF dependence of Saturn’s auroras: modelling study of HST and Cassini data from 12–15 February 2008. Ann. Geophys. 28, 1559–1570 (2010). doi:10.5194/angeo-28-1559-2010

    ADS  Google Scholar 

  • E.S. Belenkaya, S.W.H. Cowley, J.D. Nichols, M.S. Blokhina, V.V. Kalegaev, Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model. Ann. Geophys. 29, 1233–1246 (2011). doi:10.5194/angeo-29-1233-2011

    ADS  Google Scholar 

  • B. Bonfond, When moons create aurora: the satellite footprints on giant planets, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophysical Monograph Series, vol. 197 (Am. Geophys. Union, Washington, 2012), pp. 133–140

    Google Scholar 

  • B. Bonfond, M.F. Vogt, J.-C. Gérard, D. Grodent, A. Radioti, V. Coumans, Quasi-periodic polar flares at Jupiter: a signature of pulsed dayside reconnections? Geophys. Res. Lett. 38(2), L02104 (2011). doi:10.1029/2010GL045981

    ADS  Google Scholar 

  • B. Bonfond, D. Grodent, J.-C. Gérard, T. Stallard, J.T. Clarke, M. Yoneda, A. Radioti, J. Gustin, Auroral evidence of Io’s control over the magnetosphere of Jupiter. Geophys. Res. Lett. 39, L01105 (2012). doi:10.1029/2011GL050253

    ADS  Google Scholar 

  • S. Bose, A. Bhattacharya, Solar plasma activated decametric radio emission of non-Io origin from Jupiter magnetosphere. Indian J. Radio Space Phys. 32(1), 43–51 (2003)

    Google Scholar 

  • G. Branduardi-Raymont, R.F. Elsner, M. Galand, D. Grodent, T.E. Cravens, P. Ford, G.R. Gladstone, J.H. Waite, Spectral morphology of the X-ray emission from Jupiter’s aurorae. J. Geophys. Res. (Space Phys.) 113, A02202 (2008). doi:10.1029/2007JA012600

    ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, T.K. Yeoman, Jovian cusp processes: implications for the polar aurora. J. Geophys. Res. 109(A18), A09S13 (2004). doi:10.1029/2003JA010280

    Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, S.E. Milan, Interplanetary magnetic field control of Saturn’s polar cusp aurora. Ann. Geophys. 23, 1405–1431 (2005a). doi:10.5194/angeo-23-1405-2005

    ADS  Google Scholar 

  • E.J. Bunce, S.W.H. Cowley, D.M. Wright, A.J. Coates, M.K. Dougherty, N. Krupp, W.S. Kurth, A.M. Rymer, In situ observations of a solar wind compression-induced hot plasma injection in Saturn’s tail. Geophys. Res. Lett. 32, L20S04 (2005b). doi:10.1029/2005GL022888

    Google Scholar 

  • E.J. Bunce, C.S. Arridge, J.T. Clarke, A.J. Coates, S.W.H. Cowley, M.K. Dougherty, J.-C. Gérard, D. Grodent, K.C. Hansen, J.D. Nichols, D.J. Southwood, D.L. Talboys, Origin of Saturn’s aurora: simultaneous observations by Cassini and the Hubble Space Telescope. J. Geophys. Res. 113(A12), A09209 (2008). doi:10.1029/2008JA013257

    ADS  Google Scholar 

  • J.F. Carbary, N. Achilleos, C.S. Arridge, K.K. Khurana, M.K. Dougherty, Global configuration of Saturn’s magnetic field derived from observations. Geophys. Res. Lett. 37, L21806 (2010). doi:10.1029/2010GL044622

    ADS  Google Scholar 

  • P.A. Cassak, A. Otto, Scaling of the magnetic reconnection rate with symmetric shear flow. Phys. Plasmas 18(7), 074,501 (2011). doi:10.1063/1.3609771

    Google Scholar 

  • T.A. Cassidy, R.E. Johnson, Collisional spreading of Enceladus’s neutral cloud. Icarus 209, 696–703 (2010). doi:10.1016/j.icarus.2010.04.010

    ADS  Google Scholar 

  • G. Caudal, A self-consistent model of Jupiter’s magnetodisc including the effects of centrifugal force and pressure. J. Geophys. Res. 91, 4201–4221 (1986). doi:10.1029/JA091iA04p04201

    ADS  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (1961)

  • J.T. Clarke, L. Ben Jaffel, J.-C. Gérard, Hubble Space Telescope imaging of Jupiter’s UV aurora during the Galileo orbiter mission. J. Geophys. Res. 103, 20,217–20,236 (1998). doi:10.1029/98JE01130

    ADS  Google Scholar 

  • J.T. Clarke, J.-C. Gérard, D. Grodent, S. Wannawichian, J. Gustin, J. Connerney, F.J. Crary, M.K. Dougherty, W.S. Kurth, S.W.H. Cowley, E.J. Bunce, T.W. Hill, J. Kim, Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433(7027), 717–719 (2005). doi:10.1038/nature03331

    ADS  Google Scholar 

  • J.T. Clarke, J.D. Nichols, J.-C. Gérard, D. Grodent, K.C. Hansen, W.S. Kurth, G.R. Gladstone, J. Duval, S. Wannawichian, E.J. Bunce, S.W.H. Cowley, F.J. Crary, M.K. Dougherty, L. Lamy, D. Mitchell, W.R. Pryor, K. Retherford, T.S. Stallard, B. Zieger, P. Zarka, B. Cecconi, The response of Jupiter’s and Saturn’s auroral activity to the solar wind. J. Geophys. Res. 114, A05210 (2009). doi:10.1029/2008JA013694

    ADS  Google Scholar 

  • J.F. Cooper, J.A. Simpson, Sources of high-energy protons in Saturn’s magnetosphere. J. Geophys. Res. 85, 5793–5802 (1980). doi:10.1029/JA085iA11p05793

    ADS  Google Scholar 

  • M.M. Cowee, D. Winske, S.P. Gary, Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: density variations and magnetic shear. J. Geophys. Res. (Space Phys.) 115, A06214 (2010). doi:10.1029/2009JA015011

    ADS  Google Scholar 

  • S. Cowley, E. Bunce, R. Prangé, Saturn’s polar ionospheric flows and their relation to the main auroral oval. Ann. Geophys. 22, 1379–1394 (2004). doi:10.5194/angeo-22-1379-2004

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001). doi:10.1016/S0032-0633(00)00167-7

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, Corotation-driven magnetosphere-ionosphere coupling currents in Saturn’s magnetosphere and their relation to the auroras. Ann. Geophys. 21, 1691–1707 (2003). doi:10.5194/angeo-21-1691-2003

    ADS  Google Scholar 

  • S.W.H. Cowley, E.J. Bunce, T.S. Stallard, S. Miller, Jupiter’s polar ionospheric flows: theoretical interpretation. Geophys. Res. Lett. 30, 1220 (2003). doi:10.1029/2002GL016030

    ADS  Google Scholar 

  • S.W.H. Cowley, I.I. Alexeev, E.S. Belenkaya, E.J. Bunce, C.E. Cottis, V.V. Kalegaev, J.D. Nichols, R. Prangé, F.J. Wilson, A simple axisymmetric model of magnetosphere-ionosphere coupling currents in Jupiter’s polar ionosphere. J. Geophys. Res. 110(A9), A11209 (2005a). doi:10.1029/2005JA011237

    ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, E.J. Bunce, J.T. Clarke, J.-C. Gérard, D. Grodent, C.M. Jackman, S.E. Milan, T.K. Yeoman, Reconnection in a rotation-dominated magnetosphere and its relation to Saturn’s auroral dynamics. J. Geophys. Res. 110(A9), A02201 (2005b). doi:10.1029/2004JA010796

    ADS  Google Scholar 

  • S.W.H. Cowley, J.D. Nichols, D.J. Andrews, Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar wind-induced compressions and expansions of the magnetosphere: a simple theoretical model. Ann. Geophys. 25, 1433–1463 (2007)

    ADS  Google Scholar 

  • S.W.H. Cowley, S.V. Badman, S.M. Imber, S.E. Milan, Comment on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind” by D.J. McComas and F. Bagenal. Geophys. Res. Lett. 35, L10101 (2008). doi:10.1029/2007GL032645

    ADS  Google Scholar 

  • F.J. Crary, J.T. Clarke, M.K. Dougherty, P.G. Hanlon, K.C. Hansen, J.T. Steinberg, B.L. Barraclough, A.J. Coates, J.-C. Gérard, D. Grodent, W.S. Kurth, D.G. Mitchell, A.M. Rymer, D.T. Young, Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature 433, 720–722 (2005). doi:10.1038/nature03333

    ADS  Google Scholar 

  • J.C. Cutler, M.K. Dougherty, E. Lucek, A. Masters, Evidence of surface wave on the dusk flank of Saturn’s magnetopause possibly caused by the Kelvin-Helmholtz instability. J. Geophys. Res. (Space Phys.) 116, A10220 (2011). doi:10.1029/2011JA016643

    ADS  Google Scholar 

  • R.B. Decker, S.M. Krimigis, E.C. Roelof, M.E. Hill, T.P. Armstrong, G. Gloeckler, D.C. Hamilton, L.J. Lanzerotti, Voyager 1 in the foreshock, termination shock, and heliosheath. Science 309, 2020–2024 (2005). doi:10.1126/science.1117569

    ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Modeling variability of plasma conditions in the Io torus. J. Geophys. Res. 108, 5-1 (2003) doi:10.1029/2002JA009706

    Google Scholar 

  • P.A. Delamere, F. Bagenal, Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, A10201 (2010). doi:10.1029/2010JA015347

    ADS  Google Scholar 

  • P.A. Delamere, F. Bagenal, Magnetotail structure of the giant magnetospheres: implications of the viscous interaction with the solar wind. J. Geophys. Res. (Space Phys.) 118, 7045–7053 (2013). doi:10.1002/2013JA019179

    ADS  Google Scholar 

  • P.A. Delamere, R.J. Wilson, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: hybrid simulations. J. Geophys. Res. (Space Phys.) 116, A10222 (2011). doi:10.1029/2011JA016724

    ADS  Google Scholar 

  • P.A. Delamere, R.J. Wilson, S. Eriksson, F. Bagenal, Magnetic signatures of Kelvin-Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. (Space Phys.) 118, 393–404 (2013). doi:10.1029/2012JA018197

    ADS  Google Scholar 

  • M.D. Desch, M.L. Kaiser, Voyager measurements of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8(3), 253–256 (1981)

    ADS  Google Scholar 

  • M. Desroche, F. Bagenal, P.A. Delamere, N. Erkaev, Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction. J. Geophys. Res. (Space Phys.) 117, A07202 (2012). doi:10.1029/2012JA017621

    ADS  Google Scholar 

  • K. Dialynas, S.M. Krimigis, D.G. Mitchell, D.C. Hamilton, N. Krupp, P.C. Brandt, Energetic ion spectral characteristics in the Saturnian magnetosphere using Cassini/MIMI measurements. J. Geophys. Res. (Space Phys.) 114, A01212 (2009). doi:10.1029/2008JA013761

    ADS  Google Scholar 

  • J.W. Dungey, Electrodynamics of the outer atmosphere, in Proceedings of the Ionosphere Conference (The Physical Society of London, 1955), p. 225

    Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47–48 (1961). doi:10.1103/PhysRevLett.6.47

    ADS  Google Scholar 

  • E. Echer, P. Zarka, W.D. Gonzalez, A. Morioka, L. Denis, Solar wind effects on Jupiter non-Io DAM emissions during Ulysses distant encounter (2003–2004). Astron. Astrophys. 519, A84 (2010). doi:10.1051/0004-6361/200913305

    ADS  Google Scholar 

  • R.F. Elsner, N. Lugaz, J.H. Waite, T.E. Cravens, G.R. Gladstone, P. Ford, D. Grodent, A. Bhardwaj, R.J. MacDowall, M.D. Desch, T. Majeed, Simultaneous Chandra X ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora. J. Geophys. Res. 110(A9), A01207 (2005). doi:10.1029/2004JA010717

    ADS  Google Scholar 

  • G.J. Fasel, L.C. Lee, R.W. Smith, A mechanism for the multiple brightenings of dayside poleward-moving auroral forms. Geophys. Res. Lett. 20, 2247–2250 (1993). doi:10.1029/93GL02487

    ADS  Google Scholar 

  • B.L. Fleshman, P.A. Delamere, F. Bagenal, T. Cassidy, The roles of charge exchange and dissociation in spreading Saturn’s neutral clouds. J. Geophys. Res., Planets 117, E05007 (2012). doi:10.1029/2011JE003996

    ADS  Google Scholar 

  • L.A. Frank, J.D. Craven, J.L. Burch, J.D. Winningham, Polar views of the earth’s aurora with Dynamics Explorer. Geophys. Res. Lett. 9, 1001–1004 (1982). doi:10.1029/GL009i009p01001

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett. 32, L03202 (2005). doi:10.1029/2004GL021392

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Configuration and dynamics of the Jovian magnetosphere. J. Geophys. Res. (Space Phys.) 111, A10207 (2006). doi:10.1029/2006JA011874

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, Vortex-associated reconnection for northward IMF in the Kronian magnetosphere. Geophys. Res. Lett. 34, L23201 (2007a). doi:10.1029/2007GL031784

    ADS  Google Scholar 

  • K. Fukazawa, S.-i. Ogi, T. Ogino, R.J. Walker, Magnetospheric convection at Saturn as a function of IMF BZ. Geophys. Res. Lett. 34, 1105 (2007b). doi:10.1029/2006GL028373

    ADS  Google Scholar 

  • K. Fukazawa, T. Ogino, R.J. Walker, A simulation study of dynamics in the distant Jovian magnetotail. J. Geophys. Res. (Space Phys.) 115, A09219 (2010). doi:10.1029/2009JA015228

    ADS  Google Scholar 

  • S.A. Fuselier, H.U. Frey, K.J. Trattner, S.B. Mende, J.L. Burch, Cusp aurora dependence on interplanetary magnetic field B z . J. Geophys. Res. (Space Phys.) 107, 1111 (2002). doi:10.1029/2001JA900165

    ADS  Google Scholar 

  • S.A. Fuselier, R. Frahm, W.S. Lewis, A. Masters, J. Mukherjee, S.M. Petrinec, I.J. Sillanpaa, The location of magnetic reconnection at Saturn’s magnetopause: a comparison with Earth. J. Geophys. Res. (Space Phys.) 119, 2563–2578 (2014). doi:10.1002/2013JA019684

    ADS  Google Scholar 

  • P.H.M. Galopeau, P. Zarka, D.L. Quéau, Source location of Saturn’s kilometric radiation: the Kelvin-Helmholtz instability hypothesis. J. Geophys. Res. 100, 26,397–26,410 (1995). doi:10.1029/95JE02132

    ADS  Google Scholar 

  • Y.S. Ge, C.T. Russell, K.K. Khurana, Reconnection sites in Jupiter’s magnetotail and relation to Jovian auroras. Planet. Space Sci. 58, 1455–1469 (2010). doi:10.1016/j.pss.2010.06.013

    ADS  Google Scholar 

  • F. Genova, P. Zarka, C. Barrow, Voyager and Nancay observations of the Jovian radio-emission at different frequencies—solar-wind effect and source extent. Astron. Astrophys. 182, 159–162 (1987)

    ADS  Google Scholar 

  • J.-C. Gérard, D. Grodent, J. Gustin, A. Saglam, J.T. Clarke, J.T. Trauger, Characteristics of Saturn’s FUV aurora observed with the Space Telescope Imaging Spectrograph. J. Geophys. Res. (Space Phys.) 109, A09207 (2004). doi:10.1029/2004JA010513

    ADS  Google Scholar 

  • J.-C. Gérard, E.J. Bunce, D. Grodent, S.W.H. Cowley, J.T. Clarke, S.V. Badman, Signature of Saturn’s auroral cusp: simultaneous Hubble Space Telescope FUV observations and upstream solar wind monitoring. J. Geophys. Res. 110(A9), A11201 (2005). doi:10.1029/2005JA011094

    ADS  Google Scholar 

  • G.R. Gladstone, J.H. Waite, D. Grodent, W. Lewis, F.J. Crary, R.F. Elsner, M. Weisskopf, T. Majeed, J. Jahn, A. Bhardwaj, J.T. Clarke, D.T. Young, M.K. Dougherty, S.A. Espinosa, T.E. Cravens, A pulsating auroral X-ray hot spot on Jupiter. Nature 415(6875), 1000–1003 (2002)

    ADS  Google Scholar 

  • D. Grodent, J.T. Clarke, J. Kim, J.H. Waite, S.W.H. Cowley, Jupiter’s main auroral oval observed with HST-STIS. J. Geophys. Res. 108, 1389 (2003a). doi:10.1029/2003JA009921

    Google Scholar 

  • D. Grodent, J.T. Clarke, J.H. Waite, S.W.H. Cowley, J.-C. Gérard, J. Kim, Jupiter’s polar auroral emissions. J. Geophys. Res. 108, 1366 (2003b). doi:10.1029/2003JA010017

    Google Scholar 

  • D. Grodent, J.-C. Gérard, J.T. Clarke, G.R. Gladstone, J.H. Waite, A possible auroral signature of a magnetotail reconnection process on Jupiter. J. Geophys. Res. (Space Phys.) 109, A05201 (2004). doi:10.1029/2003JA010341

    ADS  Google Scholar 

  • D. Grodent, J.-C. Gérard, S.W.H. Cowley, E.J. Bunce, J.T. Clarke, Variable morphology of Saturn’s southern ultraviolet aurora. J. Geophys. Res. (Space Phys.) 110, A07215 (2005). doi:10.1029/2004JA010983

    ADS  Google Scholar 

  • D. Grodent, J.-C. Gérard, A. Radioti, B. Bonfond, A. Saglam, Jupiter’s changing auroral location. J. Geophys. Res. 113, 1206 (2008). doi:10.1029/2007JA012601

    Google Scholar 

  • D. Grodent, A. Radioti, B. Bonfond, J.-C. Gérard, On the origin of Saturn’s outer auroral emission. J. Geophys. Res. (Space Phys.) 115, A08219 (2010). doi:10.1029/2009JA014901

    ADS  Google Scholar 

  • D. Grodent, J. Gustin, J.C. Gérard, A. Radioti, B. Bonfond, W.R. Pryor, Small-scale structures in Saturn’s ultraviolet aurora. J. Geophys. Res. 116(A9), A09225 (2011). doi:10.1029/2011JA016818

    ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, G.B. Hospodarsky, A.M. Persoon, P. Zarka, A. Lecacheux, S.J. Bolton, M.D. Desch, W.M. Farrell, M.L. Kaiser, H.-P. Ladreiter, H.O. Rucker, P. Galopeau, P. Louarn, D.T. Young, W.R. Pryor, M.K. Dougherty, Control of Jupiter’s radio emission and aurorae by the solar wind. Nature 415, 985–987 (2002)

    ADS  Google Scholar 

  • J. Gustin, J.-C. Gérard, D. Grodent, S.W.H. Cowley, J.T. Clarke, A. Grard, Energy-flux relationship in the FUV Jovian aurora deduced from HST-STIS spectral observations. J. Geophys. Res. 109, 10,205 (2004). doi:10.1029/2003JA010365

    Google Scholar 

  • J. Gustin, S.W.H. Cowley, J.-C. Gérard, G.R. Gladstone, D. Grodent, J.T. Clarke, Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/Space Telescope Imaging Spectrograph imaging and spectral observations. J. Geophys. Res. (Space Phys.) 111, A09220 (2006). doi:10.1029/2006JA011730

    ADS  Google Scholar 

  • D.K. Haggerty, M.E. Hill, R.L. McNutt, C. Paranicas, Composition of energetic particles in the Jovian magnetotail. J. Geophys. Res. (Space Phys.) 114, A02208 (2009). doi:10.1029/2008JA013659

    ADS  Google Scholar 

  • K.C. Hansen, A.J. Ridley, G.B. Hospodarsky, N. Achilleos, M.K. Dougherty, T.I. Gombosi, G. Tóth, Global MHD simulations of Saturn’s magnetosphere at the time of Cassini approach. Geophys. Res. Lett. 32, L20S06 (2005). doi:10.1029/2005GL022835

    Google Scholar 

  • H. Hasegawa, M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M.W. Dunlop, C. Hashimoto, R. TanDokoro, Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin-Helmholtz vortices. Nature 430, 755–758 (2004). doi:10.1038/nature02799

    ADS  Google Scholar 

  • H. Hasegawa, A. Retinò, A. Vaivads, Y. Khotyaintsev, M. André, T.K.M. Nakamura, W.-L. Teh, B.U.Ö. Sonnerup, S.J. Schwartz, Y. Seki, M. Fujimoto, Y. Saito, H. Rème, P. Canu, Kelvin-Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res. (Space Phys.) 114, A12207 (2009). doi:10.1029/2009JA014042

    ADS  Google Scholar 

  • S.L.G. Hess, E. Echer, P. Zarka, Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planet. Space Sci. 70, 114–125 (2012). doi:10.1016/j.pss.2012.05.011

    ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554–6558 (1979). doi:10.1029/JA084iA11p06554

    ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, F.C. Michel, Configuration of the Jovian magnetosphere. Geophys. Res. Lett. 1, 3–6 (1974). doi:10.1029/GL001i001p00003

    ADS  Google Scholar 

  • T.S. Huang, T.W. Hill, Corotation lag of the Jovian atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 94, 3761–3765 (1989). doi:10.1029/JA094iA04p03761

    ADS  Google Scholar 

  • D.E. Huddleston, C.T. Russell, G. Le, A. Szabo, Magnetopause structure and the role of reconnection at the outer planets. J. Geophys. Res. 102, 24,289–24,004 (1997). doi:10.1029/97JA02416

    ADS  Google Scholar 

  • D.E. Huddleston, C.T. Russell, M.G. Kivelson, K.K. Khurana, L. Bennett, Location and shape of the Jovian magnetopause and bow shock. J. Geophys. Res. 103, 20,075–20,082 (1998). doi:10.1029/98JE00394

    ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, E.J. Bunce, B. Cecconi, J.T. Clarke, S.W.H. Cowley, W.S. Kurth, P. Zarka, Interplanetary conditions and magnetospheric dynamics during the Cassini orbit insertion fly-through of Saturn’s magnetosphere. J. Geophys. Res. (Space Phys.) 110, A10212 (2005). doi:10.1029/2005JA011054

    ADS  Google Scholar 

  • C.M. Jackman, R.J. Forsyth, M.K. Dougherty, The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations. J. Geophys. Res. (Space Phys.) 113, A08114 (2008). doi:10.1029/2008JA013083

    ADS  Google Scholar 

  • C.M. Jackman, C.S. Arridge, Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres. Solar Phys. 274(1–2), 481–502 (2011). doi:10.1007/s11207-011-9748-z

    ADS  Google Scholar 

  • C.M. Jackman, N. Achilleos, S.W.H. Cowley, E.J. Bunce, A. Radioti, D. Grodent, S.V. Badman, M.K. Dougherty, W. Pryor, Auroral counterpart of magnetic field dipolarizations in Saturn’s tail. Planet. Space Sci. 82, 34–42 (2013). doi:10.1016/j.pss.2013.03.010

    ADS  Google Scholar 

  • J. Jasinski, C. Arridge, L. Lamy, J. Leisner, M. Thomsen, D. Mitchell, A. Coates, A. Radioti, G. Jones, E. Roussos, N. Krupp, D. Grodent, M. Dougherty, J. Waite, Cusp observation at Saturn’s high latitude magnetosphere by the Cassini spacecraft. Geophys. Res. Lett. (2014). doi:10.1002/2014GL059319

    Google Scholar 

  • X. Jia, M.G. Kivelson, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: magnetotail response to dual sources. J. Geophys. Res. (Space Phys.) 117, A11219 (2012). doi:10.1029/2012JA018183

    ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, T.I. Gombosi, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J. Geophys. Res. (Space Phys.) 117, A04215 (2012a). doi:10.1029/2011JA017367

    ADS  Google Scholar 

  • X. Jia, K.C. Hansen, T.I. Gombosi, M.G. Kivelson, G. Tóth, D.L. DeZeeuw, A.J. Ridley, Magnetospheric configuration and dynamics of Saturn’s magnetosphere: a global MHD simulation. J. Geophys. Res. (Space Phys.) 117, A05225 (2012b). doi:10.1029/2012JA017575

    ADS  Google Scholar 

  • S.J. Kanani, C.S. Arridge, G.H. Jones, A.N. Fazakerley, H.J. McAndrews, N. Sergis, S.M. Krimigis, M.K. Dougherty, A.J. Coates, D.T. Young, K.C. Hansen, N. Krupp, A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. (Space Phys.) 115, 6207 (2010). doi:10.1029/2009JA014262

    ADS  Google Scholar 

  • K.K. Khurana, Euler potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102, 11,295–11,306 (1997). doi:10.1029/97JA00563

    ADS  Google Scholar 

  • A. Kidder, C.S. Paty, R.M. Winglee, E.M. Harnett, External triggering of plasmoid development at Saturn. J. Geophys. Res. (Space Phys.) 117, A07206 (2012). doi:10.1029/2012JA017625

    ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. (Space Phys.) 110, A12209 (2005). doi:10.1029/2005JA011176

    ADS  Google Scholar 

  • S.M. Krimigis, N. Sergis, D.G. Mitchell, D.C. Hamilton, N. Krupp, A dynamic, rotating ring current around Saturn. Nature 450, 1050–1053 (2007). doi:10.1038/nature06425

    ADS  Google Scholar 

  • E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: substorm-like processes in the Jovian magnetotail. J. Geophys. Res. (Space Phys.) 110, A03211 (2005). doi:10.1029/2004JA010777

    ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, B. Wilken, S. Livi, D.J. Williams, Energetic particle bursts in the predawn Jovian magnetotail. Geophys. Res. Lett. 25, 1249–1252 (1998). doi:10.1029/98GL00863

    ADS  Google Scholar 

  • N. Krupp, J. Woch, A. Lagg, S.A. Espinosa, S. Livi, S.M. Krimigis, D.G. Mitchell, D.J. Williams, A.F. Cheng, B.H. Mauk, R.W. McEntire, T.P. Armstrong, D.C. Hamilton, G. Gloeckler, J. Dandouras, L.J. Lanzerotti, Leakage of energetic particles from Jupiter’s dusk magnetosphere: dual spacecraft observations. Geophys. Res. Lett. 29, 1736 (2002). doi:10.1029/2001GL014290

    ADS  Google Scholar 

  • A. Kullen, The connection between transpolar arcs and magnetotail rotation. Geophys. Res. Lett. 27, 73–76 (2000). doi:10.1029/1999GL010675

    ADS  Google Scholar 

  • H.R. Lai, H.Y.W.C.T. Russell, C.S. Arridge, M.K.M.K. Dougherty, Reconnection at the magnetopause of Saturn: perspective from fte occurrence and magnetosphere size. J. Geophys. Res. 117(A5), A05222 (2012)

    ADS  Google Scholar 

  • G.M. Mason, G. Gloeckler, Power law distributions of suprathermal ions in the quiet solar wind. Space Sci. Rev. 172, 241–251 (2012). doi:10.1007/s11214-010-9741-0. http://adsabs.harvard.edu/abs/2012SSRv..172..241M

    ADS  Google Scholar 

  • A. Masters, N. Achilleos, C. Bertucci, M.K. Dougherty, S.J. Kanani, C.S. Arridge, H.J. McAndrews, A.J. Coates, Surface waves on Saturn’s dawn flank magnetopause driven by the Kelvin-Helmholtz instability. Planet. Space Sci. 57, 1769–1778 (2009). doi:10.1016/j.pss.2009.02.010

    ADS  Google Scholar 

  • A. Masters, N.A. Achilleos, N. Sergis, M.K. Dougherty, M.G. Kivelson, C.S. Arridge, S.M. Krimigis, H.J. McAndrews, M.F. Thomsen, S.J. Kanani, N. Krupp, A.J. Coates, Cassini observations of a Kelvin-Helmholtz vortex in Saturn’s outer magnetosphere. J. Geophys. Res. (2010). doi:10.1029/2010JA015351

    Google Scholar 

  • A. Masters, D.G. Mitchell, A.J. Coates, M.K. Dougherty, Saturn’s low-latitude boundary layer: 1. Properties and variability. J. Geophys. Res. (Space Phys.) 116, A06210 (2011). doi:10.1029/2010JA016421

    ADS  Google Scholar 

  • A. Masters, J.P. Eastwood, M. Swisdak, M.F. Thomsen, C.T. Russell, N. Sergis, F.J. Crary, M.K. Dougherty, A.J. Coates, S.M. Krimigis, The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 39, L08103 (2012a). doi:10.1029/2012GL051372

    ADS  Google Scholar 

  • A. Masters, N. Achilleos, J.C. Cutler, A.J. Coates, M.K. Dougherty, G.H. Jones, Surface waves on Saturn’s magnetopause. Planet. Space Sci. 65, 109–121 (2012b). doi:10.1016/j.pss.2012.02.007

    ADS  Google Scholar 

  • A. Masters, M. Fujimoto, H. Hasegawa, C.T. Russell, A.J. Coates, M.K. Dougherty, Can magnetopause reconnection drive Saturn’s magnetosphere? Geophys. Res. Lett. 41, 1862–1868 (2014). doi:10.1002/2014GL059288

    ADS  Google Scholar 

  • B.H. Mauk, J.T. Clarke, D. Grodent, J.H. Waite, C.P. Paranicas, D.J. Williams, Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003–1005 (2002)

    ADS  Google Scholar 

  • H.J. McAndrews, C.J. Owen, M.F. Thomsen, B. Lavraud, A.J. Coates, M.K. Dougherty, D.T. Young, Evidence for reconnection at Saturn’s magnetopause. J. Geophys. Res. (Space Phys.) 113, A04210 (2008). doi:10.1029/2007JA012581

    ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Jupiter: a fundamentally different magnetospheric interaction with the solar wind. Geophys. Res. Lett. 34, 20,106 (2007). doi:10.1029/2007GL031078

    Google Scholar 

  • D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217 (2007). doi:10.1126/science.1147393

    ADS  Google Scholar 

  • D.J. McComas, F. Bagenal, Reply to comment by S.W.H. Cowley et al. on “Jupiter: a fundamentally different magnetospheric interaction with the solar wind”. Geophys. Res. Lett. 35, L10103 (2008). doi:10.1029/2008GL034351

    ADS  Google Scholar 

  • C.J. Meredith, S.W.H. Cowley, K.C. Hansen, J.D. Nichols, T.K. Yeoman, Simultaneous conjugate observations of small-scale structures in Saturn’s dayside ultraviolet auroras—implications for physical origins. J. Geophys. Res. (2013). doi:10.1002/jgra.50270

    MATH  Google Scholar 

  • S.E. Milan, B. Hubert, A. Grocott, Formation and motion of a transpolar arc in response to dayside and nightside reconnection. J. Geophys. Res. (Space Phys.) 110, A01212 (2005). doi:10.1029/2004JA010835

    ADS  Google Scholar 

  • R. Mistry, M.K. Dougherty, A. Masters, A.H. Sulaiman, E.J. Allen, Separating drivers of Saturnian magnetopause motion. J. Geophys. Res. (Space Phys.) 119, 1514–1522 (2014). doi:10.1002/2013JA019489

    ADS  Google Scholar 

  • D.G. Mitchell, Injection, interchange and reconnection: energetic particle observations in Saturn’s magnetotail, in Magnetotails in the Solar System, ed. by A. Keiling, C. Jackman, P.A. Delamere. AGU Monographs (American Geophysical Union, Washington, 2015). ISBN 978-1-118-84234-8

    Google Scholar 

  • D.G. Mitchell, S.M. Krimigis, C. Paranicas, P.C. Brandt, J.F. Carbary, E.C. Roelof, W.S. Kurth, D.A. Gurnett, J.T. Clarke, J.D. Nichols, J.-C. Gérard, D.C. Grodent, M.K. Dougherty, W.R. Pryor, Recurrent energization of plasma in the midnight-to-dawn quadrant of Saturn’s magnetosphere, and its relationship to auroral UV and radio emissions. Planet. Space Sci. 57, 1732–1742 (2009). doi:10.1016/j.pss.2009.04.002

    ADS  Google Scholar 

  • T. Moriguchi, A. Nakamizo, T. Tanaka, T. Obara, H. Shimazu, Current systems in the Jovian magnetosphere. J. Geophys. Res. (Space Phys.) 113, A05204 (2008). doi:10.1029/2007JA012751

    ADS  Google Scholar 

  • T.K.M. Nakamura, M. Fujimoto, Magnetic reconnection within rolled-up MHD-scale Kelvin-Helmholtz vortices: two-fluid simulations including finite electron inertial effects. Geophys. Res. Lett. 32, L21102 (2005). doi:10.1029/2005GL023362

    ADS  Google Scholar 

  • T.K.M. Nakamura, M. Fujimoto, A. Otto, Magnetic reconnection induced by weak Kelvin-Helmholtz instability and the formation of the low-latitude boundary layer. Geophys. Res. Lett. 33, L14106 (2006). doi:10.1029/2006GL026318

    ADS  Google Scholar 

  • J. Nichols, S. Cowley, Magnetosphere-ionosphere coupling currents in Jupiter’s middle magnetosphere: effect of precipitation-induced enhancement of the ionospheric Pedersen conductivity. Ann. Geophys. 22, 1799–1827 (2004). doi:10.5194/angeo-22-1799-2004

    ADS  Google Scholar 

  • J.D. Nichols, Magnetosphere-ionosphere coupling in Jupiter’s middle magnetosphere: computations including a self-consistent current sheet magnetic field model. J. Geophys. Res. (Space Phys.) 116, A10232 (2011). doi:10.1029/2011JA016922

    ADS  Google Scholar 

  • J.D. Nichols, S.W.H. Cowley, D.J. McComas, Magnetopause reconnection rate estimates for Jupiter’s magnetosphere based on interplanetary measurements at ∼5AU. Ann. Geophys. 24, 393–406 (2006)

    ADS  Google Scholar 

  • J.D. Nichols, E.J. Bunce, J.T. Clarke, S.W.H. Cowley, J.-C. Gérard, D. Grodent, W.R. Pryor, Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign. J. Geophys. Res. 112(A11), A02203 (2007). doi:10.1029/2006JA012005

    ADS  Google Scholar 

  • J.D. Nichols, J.T. Clarke, J.-C. Gérard, D. Grodent, K.C. Hansen, Variation of different components of Jupiter’s auroral emission. J. Geophys. Res. 114, A06210 (2009a). doi:10.1029/2009JA014051

    ADS  Google Scholar 

  • J.D. Nichols, J.T. Clarke, J.C. Gérard, D. Grodent, Observations of Jovian polar auroral filaments. Geophys. Res. Lett. 36, L08101 (2009b). doi:10.1029/2009GL037578

    ADS  Google Scholar 

  • J.D. Nichols, S. Badman, K. Baines, R. Brown, E. Bunce, J. Clarke, S. Cowley, F. Crary, M. Dougherty, J. Grard, A. Grocott, D. Grodent, W. Kurth, H. Melin, D. Mitchell, W. Pryor, T. Stallard, Dynamic auroral storms on Saturn as observed by the Hubble Space Telescope. Geophys. Res. Lett. (2014). doi:10.1002/2014GL060186

    Google Scholar 

  • K. Nykyri, A. Otto, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices. Geophys. Res. Lett. 28, 3565–3568 (2001). doi:10.1029/2001GL013239

    ADS  Google Scholar 

  • K. Nykyri, A. Otto, B. Lavraud, C. Mouikis, L.M. Kistler, A. Balogh, H. Rème, Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank. Ann. Geophys. 24, 2619–2643 (2006)

    ADS  Google Scholar 

  • T. Ogino, R.J. Walker, M.G. Kivelson, A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103, 225 (1998). doi:10.1029/97JA02247

    ADS  Google Scholar 

  • L. Pallier, R. Prange, More about the structure of the high latitude Jovian aurorae. Planet. Space Sci. 49(10–11), 1159–1173 (2001)

    ADS  Google Scholar 

  • C. Paranicas, D.G. Mitchell, S.M. Krimigis, D.C. Hamilton, E. Roussos, N. Krupp, G.H. Jones, R.E. Johnson, J.F. Cooper, T.P. Armstrong, Sources and losses of energetic protons in Saturn’s magnetosphere. Icarus 197, 519–525 (2008). doi:10.1016/j.icarus.2008.05.011

    ADS  Google Scholar 

  • G. Paschmann, Recent in-situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. 35, L19109 (2008). doi:10.1029/2008GL035297

    ADS  Google Scholar 

  • T.D. Phan, J.T. Gosling, G. Paschmann, C. Pasma, J.F. Drake, M. Øieroset, D. Larson, R.P. Lin, M.S. Davis, The dependence of magnetic reconnection on plasma β and magnetic shear: evidence from solar wind observations. Astrophys. J. Lett. 719, L199–L203 (2010). doi:10.1088/2041-8205/719/2/L199

    ADS  Google Scholar 

  • T.D. Phan, G. Paschmann, J.T. Gosling, M. Oieroset, M. Fujimoto, J.F. Drake, V. Angelopoulos, The dependence of magnetic reconnection on plasma β and magnetic shear: evidence from magnetopause observations. Geophys. Res. Lett. 40, 11–16 (2013). doi:10.1029/2012GL054528

    ADS  Google Scholar 

  • V. Pierrard, M. Lazar, Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153–174 (2010). doi:10.1007/s11207-010-9640-2

    ADS  Google Scholar 

  • N.M. Pilkington, N. Achilleos, C.S. Arridge, A. Masters, N. Sergis, A.J. Coates, M.K. Dougherty, Polar confinement of Saturn’s magnetosphere revealed by in situ Cassini observations. J. Geophys. Res. (Space Phys.) 119, 2858–2875 (2014). doi:10.1002/2014JA019774

    ADS  Google Scholar 

  • D.H. Pontius, Radial mass transport and rotational dynamics. J. Geophys. Res. 102, 7137–7150 (1997). doi:10.1029/97JA00289

    ADS  Google Scholar 

  • W.R. Pryor, A.I.F. Stewart, L.W. Esposito, W.E. McClintock, J.E. Colwell, A.J. Jouchoux, A.J. Steffl, D.E. Shemansky, J.M. Ajello, R.A. West, C.J. Hansen, B.T. Tsurutani, W.S. Kurth, G.B. Hospodarsky, D.A. Gurnett, K.C. Hansen, J.H. Waite, F.J. Crary, D.T. Young, N. Krupp, J.T. Clarke, D. Grodent, M.K. Dougherty, Cassini UVIS observations of Jupiter’s auroral variability. Icarus 178, 312–326 (2005). doi:10.1016/j.icarus.2005.05.021

    ADS  Google Scholar 

  • W.R. Pryor, A.M. Rymer, D.G. Mitchell, T.W. Hill, D.T. Young, J. Saur, G.H. Jones, S. Jacobsen, S.W.H. Cowley, B.H. Mauk, A.J. Coates, J. Gustin, D. Grodent, J.-C. Gérard, L. Lamy, J.D. Nichols, S.M. Krimigis, L.W. Esposito, M.K. Dougherty, A.J. Jouchoux, A.I.F. Stewart, W.E. McClintock, G.M. Holsclaw, J.M. Ajello, J.E. Colwell, A.R. Hendrix, F.J. Crary, J.T. Clarke, X. Zhou, The auroral footprint of Enceladus on Saturn. Nature 472, 331–333 (2011). doi:10.1038/nature09928

    ADS  Google Scholar 

  • A. Radioti, J.-C. Gérard, D. Grodent, B. Bonfond, N. Krupp, J. Woch, Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. 113, 1215 (2008a). doi:10.1029/2007JA012610

    Google Scholar 

  • A. Radioti, D. Grodent, J.C. Gérard, B. Bonfond, J.T. Clarke, Auroral polar dawn spots: Signatures of internally driven reconnection processes at Jupiter’s magnetotail. Geophys. Res. Lett. 35(3) (2008b)

  • A. Radioti, A.T. Tomás, D. Grondent, J.C. Gérard, J. Gustin, B. Bonfond, N. Krupp, J. Woch, J.D. Menietti, Equatorward diffuse auroral emissions at Jupiter: simultaneous HST and Galileo observations. Geophys. Res. Lett. 36, 7101 (2009a)

    ADS  Google Scholar 

  • A. Radioti, J.-C. Gérard, E. Roussos, C.P. Paranicas, B. Bonfond, D.G. Mitchell, N. Krupp, S.M. Krimigis, J.T. Clarke, Transient auroral features at Saturn: signatures of energetic particle injections in the magnetosphere. J. Geophys. Res. 114, A03210 (2009b). doi:10.1029/2008JA013632

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, Auroral signatures of flow bursts released during magnetotail reconnection at Jupiter. J. Geophys. Res. (Space Phys.) 115, A07214 (2010). doi:10.1029/2009JA014844

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, S.E. Milan, B. Bonfond, J. Gustin, W. Pryor, Bifurcations of the main auroral ring at Saturn: ionospheric signatures of consecutive reconnection events at the magnetopause. J. Geophys. Res. (Space Phys.) 116, A11209 (2011a). doi:10.1029/2011JA016661

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.C. Gerard, M.F. Vogt, M. Lystrup, B. Bonfond, Nightside reconnection at Jupiter: auroral and magnetic field observations from 26 July 1998. J. Geophys. Res. 116, A03221 (2011b). doi:10.1029/2010JA016200

    ADS  Google Scholar 

  • A. Radioti, M. Lystrup, B. Bonfond, D. Grodent, J.-C. Gérard, Jupiter’s aurora in ultraviolet and infrared: simultaneous observations with the Hubble Space Telescope and the NASA infrared telescope facility. J. Geophys. Res. (Space Phys.) 118, 2286–2295 (2013a). doi:10.1002/jgra.50245

    ADS  Google Scholar 

  • A. Radioti, E. Roussos, D. Grodent, J.-C. Gérard, N. Krupp, D.G. Mitchell, J. Gustin, B. Bonfond, W. Pryor, Signatures of magnetospheric injections in Saturn’s aurora. J. Geophys. Res. (Space Phys.) 118, 1922–1933 (2013b). doi:10.1002/jgra.50161

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J.-C. Gérard, B. Bonfond, J. Gustin, W. Pryor, J.M. Jasinski, C.S. Arridge, Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett. 40, 4498–4502 (2013c). doi:10.1002/grl.50889

    ADS  Google Scholar 

  • A. Radioti, D. Grodent, J. Gérard, S. Milan, R. Fear, C. Jackman, B. Bonfond, W. Pryor, Saturn’s elusive transpolar arc. Geophys. Res. Lett. (2014a, submitted)

  • A.D. Radioti, Grodent, X. Jia, J.-C. Gérard, B. Bonfond, W. Pryor, J. Gustin, D. Mitchell, C. Jackman, A remarkable magnetotail reconnection event at Saturn, as observed by UVIS/Cassini. Icarus (2014b, submitted)

  • L.C. Ray, Y.-J. Su, R.E. Ergun, P.A. Delamere, F. Bagenal, Current-voltage relation of a centrifugally confined plasma. J. Geophys. Res. (Space Phys.) 114, A04214 (2009). doi:10.1029/2008JA013969

    ADS  Google Scholar 

  • L.C. Ray, R.E. Ergun, P.A. Delamere, F. Bagenal, Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. (Space Phys.) 115, A09211 (2010). doi:10.1029/2010JA015423

    ADS  Google Scholar 

  • L.C. Ray, M. Galand, L.E. Moore, B.L. Fleshman, Characterizing the limitations to the coupling between Saturn’s ionosphere and middle magnetosphere. J. Geophys. Res. (Space Phys.) 117, A07210 (2012). doi:10.1029/2012JA017735

    ADS  Google Scholar 

  • L.C. Ray, M. Galand, P.A. Delamere, B.L. Fleshman, Current-voltage relation for the Saturnian system. J. Geophys. Res. (Space Phys.) 118, 3214–3222 (2013). doi:10.1002/jgra.50330

    ADS  Google Scholar 

  • E. Roussos, N. Krupp, C.P. Paranicas, P. Kollmann, D.G. Mitchell, S.M. Krimigis, T.P. Armstrong, D.R. Went, M.K. Dougherty, G.H. Jones, Long- and short-term variability of Saturn’s ionic radiation belts. J. Geophys. Res. (Space Phys.) 116, A02217 (2011). doi:10.1029/2010JA015954

    ADS  Google Scholar 

  • H.O. Rucker, M. Panchenko, K.C. Hansen, U. Taubenschuss, M.Y. Boudjada, W.S. Kurth, M.K. Dougherty, J.T. Steinberg, P. Zarka, P.H.M. Galopeau, D.J. McComas, C.H. Barrow, Saturn kilometric radiation as a monitor for the solar wind? Adv. Space Res. 42, 40–47 (2008). doi:10.1016/j.asr.2008.02.008

    ADS  Google Scholar 

  • C.T. Russell, Reconnection, in Physics of Solar Planetary Environments (Am. Geophys. Union, Washington, 1975), pp. 526–540

    Google Scholar 

  • C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results—magnetopause observations. Space Sci. Rev. 22, 681–715 (1978). doi:10.1007/BF00212619

    ADS  Google Scholar 

  • C.T. Russell, M.M. Hoppe, W.A. Livesey, Overshoots in planetary bow shocks. Nature 296, 45–48 (1982). doi:10.1038/296045a0

    ADS  Google Scholar 

  • B. Sandel, A. Broadfoot, Morphology of Saturn’s aurora. Nature 292, 679–682 (1981)

    ADS  Google Scholar 

  • N. Sergis, S.M. Krimigis, E.C. Roelof, C.S. Arridge, A.M. Rymer, D.G. Mitchell, D.C. Hamilton, N. Krupp, M.F. Thomsen, M.K. Dougherty, A.J. Coates, D.T. Young, Particle pressure, inertial force, and ring current density profiles in the magnetosphere of Saturn, based on Cassini measurements. Geophys. Res. Lett. 37, L02102 (2010). doi:10.1029/2009GL041920

    ADS  Google Scholar 

  • N. Sergis, C.M. Jackman, A. Masters, S.M. Krimigis, M.F. Thomsen, D.C. Hamilton, D.G. Mitchell, M.K. Dougherty, A.J. Coates, Particle and magnetic field properties of the Saturnian magnetosheath: presence and upstream escape of hot magnetospheric plasma. J. Geophys. Res. (Space Phys.) 118, 1620–1634 (2013). doi:10.1002/jgra.50164

    ADS  Google Scholar 

  • J.A. Slavin, E.J. Smith, J.R. Spreiter, S.S. Stahara, Solar wind flow about the outer planets—gas dynamic modeling of the Jupiter and Saturn bow shocks. J. Geophys. Res. 90, 6275–6286 (1985). doi:10.1029/JA090iA07p06275

    ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Saturn’s thermosphere and magnetosphere: a thermospheric modelling study. Ann. Geophys. 26, 1007–1027 (2008). doi:10.5194/angeo-26-1007-2008

    ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, Coupled rotational dynamics of Jupiter’s thermosphere and magnetosphere. Ann. Geophys. 27, 199–230 (2009). doi:10.5194/angeo-27-199-2009

    ADS  Google Scholar 

  • B.U.O. Sonnerup, B.G. Ledley, Magnetopause rotational forms. J. Geophys. Res. 79, 4309–4314 (1974). doi:10.1029/JA079i028p04309

    ADS  Google Scholar 

  • D.J. Southwood, The hydromagnetic stability of the magnetospheric boundary. Planet. Space Sci. 16, 587–605 (1968). doi:10.1016/0032-0633(68)90100-1

    ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106, 6123–6130 (2001). doi:10.1029/2000JA000236

    ADS  Google Scholar 

  • T.S. Stallard, S. Miller, S.W.H. Cowley, E.J. Bunce, Jupiter’s polar ionospheric flows: measured intensity and velocity variations poleward of the main auroral oval. Geophys. Res. Lett. 30, 1221 (2003). doi:10.1029/2002GL016031

    ADS  Google Scholar 

  • T. Stallard, S. Miller, H. Melin, M. Lystrup, S.W.H. Cowley, E.J. Bunce, N. Achilleos, M. Dougherty, Jovian-like aurorae on Saturn. Nature 453, 1083–1085 (2008). doi:10.1038/nature07077

    ADS  Google Scholar 

  • Y.-J. Su, R.E. Ergun, F. Bagenal, P.A. Delamere, Io-related Jovian auroral arcs: modeling parallel electric fields. J. Geophys. Res. (Space Phys.) 108, 1094 (2003). doi:10.1029/2002JA009247

    ADS  Google Scholar 

  • M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (Space Phys.) 108, 1218 (2003). doi:10.1029/2002JA009726

    ADS  Google Scholar 

  • M. Swisdak, M. Opher, J.F. Drake, F. Alouani Bibi, The vector direction of the interstellar magnetic field outside the heliosphere. Astrophys. J. 710, 1769–1775 (2010). doi:10.1088/0004-637X/710/2/1769

    ADS  Google Scholar 

  • T. Terasawa, K. Maezawa, S. Machida, Solar-wind effect on Jupiter non-Io-related radio-emission. Nature 273(5658), 131–132 (1978)

    ADS  Google Scholar 

  • N. Thomas, F. Bagenal, T.W. Hill, J.K. Wilson, The Io Neutral Clouds and Plasma Torus (2004), pp. 561–591

    Google Scholar 

  • M.F. Thomsen, J.P. Dilorenzo, D.J. McComas, D.T. Young, F.J. Crary, D. Delapp, D.B. Reisenfeld, N. Andre, Assessment of the magnetospheric contribution to the suprathermal ions in Saturn’s foreshock region. J. Geophys. Res. (Space Phys.) 112, A05220 (2007). doi:10.1029/2006JA012084

    ADS  Google Scholar 

  • M.F. Thomsen, C.M. Jackman, R.L. Tokar, R.J. Wilson, Plasma flows in Saturn’s nightside magnetosphere. J. Geophys. Res. (2014). doi:10.1002/2014JA019912

    Google Scholar 

  • V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839–2885 (1968)

    ADS  Google Scholar 

  • V.M. Vasyliunas, Theoretical models of magnetic field line merging. I. Rev. Geophys. Space Phys. 13, 303–336 (1975). doi:10.1029/RG013i001p00303

    ADS  Google Scholar 

  • V.M. Vasyliunas, Physics of the Jovian magnetosphere, in Plasma Distribution and Flow (1983), pp. 395–453

    Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, S.P. Joy, R.J. Walker, Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. (Space Phys.) 115, A06219 (2010). doi:10.1029/2009JA015098

    ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. (Space Phys.) 116, A03220 (2011). doi:10.1029/2010JA016148

    ADS  Google Scholar 

  • J.H. Waite, G.R. Gladstone, W.S. Lewis, R. Goldstein, D.J. McComas, P. Riley, R.J. Walker, P. Robertson, S. Desai, J.T. Clarke, D.T. Young, An auroral flare at Jupiter. Nature 410, 787–789 (2001)

    ADS  Google Scholar 

  • R.J. Walker, T. Ogino, A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003). doi:10.1016/S0032-0633(03)00018-7

    ADS  Google Scholar 

  • R.J. Walker, C.T. Russell, Flux transfer events at the Jovian magnetopause. J. Geophys. Res. 90, 7397–7404 (1985). doi:10.1029/JA090iA08p07397

    ADS  Google Scholar 

  • R.J. Walker, S.P. Joy, M.G. Kivelson, K. Khurana, T. Ogino, K. Fukazawa, The locations and shapes of Jupiter’s bow shock and magnetopause, in AIP Conf. Proc., vol. 781 (2005)

    Google Scholar 

  • R.J. Walker, K. Fukazawa, T. Ogino, D. Morozoff, A simulation study of Kelvin-Helmholtz waves at Saturn’s magnetopause. J. Geophys. Res. (Space Phys.) 116, A03203 (2011). doi:10.1029/2010JA015905

    ADS  Google Scholar 

  • L. Wang, R.P. Lin, C. Salem, M. Pulupa, D.E. Larson, P.H. Yoon, J.G. Luhmann, Quiet-time interplanetary ∼2–20 keV superhalo electrons at solar minimum. Astrophys. J. Lett. 753, L23 (2012). doi:10.1088/2041-8205/753/1/L23

    ADS  Google Scholar 

  • D.R. Went, M.G. Kivelson, N. Achilleos, C.S. Arridge, M.K. Dougherty, Outer magnetospheric structure: Jupiter and Saturn compared. J. Geophys. Res. (Space Phys.) 116, A04224 (2011). doi:10.1029/2010JA016045

    ADS  Google Scholar 

  • R.M. Winglee, A. Kidder, E. Harnett, N. Ifland, C. Paty, D. Snowden, Generation of periodic signatures at Saturn through Titan’s interaction with the centrifugal interchange instability. J. Geophys. Res. (Space Phys.) 118, 4253–4269 (2013). doi:10.1002/jgra.50397

    ADS  Google Scholar 

  • R.J. Wilson, P.A. Delamere, F. Bagenal, A. Masters, Kelvin-Helmholtz instability at Saturn’s magnetopause: Cassini ion data analysis. J. Geophys. Res. (Space Phys.) 117, A03212 (2012). doi:10.1029/2011JA016723

    ADS  Google Scholar 

  • J. Woch, N. Krupp, A. Lagg, Particle bursts in the Jovian magnetosphere: evidence for a near-Jupiter neutral line. Geophys. Res. Lett. 29, 1138 (2002). doi:10.1029/2001GL014080

    ADS  Google Scholar 

  • J.N. Yates, N. Achilleos, P. Guio, Influence of upstream solar wind on thermospheric flows at Jupiter. Planet. Space Sci. 61, 15–31 (2012). doi:10.1016/j.pss.2011.08.007

    ADS  Google Scholar 

  • D.T. Young, J.-J. Berthelier, M. Blanc, J.L. Burch, S. Bolton, A.J. Coates, F.J. Crary, R. Goldstein, M. Grande, T.W. Hill, R.E. Johnson, R.A. Baragiola, V. Kelha, D.J. McComas, K. Mursula, E.C. Sittler, K.R. Svenes, K. Szegö, P. Tanskanen, M.F. Thomsen, S. Bakshi, B.L. Barraclough, Z. Bebesi, D. Delapp, M.W. Dunlop, J.T. Gosling, J.D. Furman, L.K. Gilbert, D. Glenn, C. Holmlund, J.-M. Illiano, G.R. Lewis, D.R. Linder, S. Maurice, H.J. McAndrews, B.T. Narheim, E. Pallier, D. Reisenfeld, A.M. Rymer, H.T. Smith, R.L. Tokar, J. Vilppola, C. Zinsmeyer, Composition and dynamics of plasma in Saturn’s magnetosphere. Science 307, 1262–1266 (2005). doi:10.1126/science.1106151

    ADS  Google Scholar 

  • P. Zarka, F. Genova, Low-frequency jovian emission and solar-wind magnetic-sector structure. Nature 306, 767–768 (1983)

    ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, Statistical validation of a solar wind propagation model from 1 to 10 AU. J. Geophys. Res. 113(A12), A08107 (2008). doi:10.1029/2008JA013046

    ADS  Google Scholar 

  • B. Zieger, K.C. Hansen, T.I. Gombosi, D.L. De Zeeuw, Periodic plasma escape from the mass-loaded Kronian magnetosphere. J. Geophys. Res. (Space Phys.) 115, A08208 (2010). doi:10.1029/2009JA014951

    ADS  Google Scholar 

  • G. Zimbardo, Collisionless reconnection in Jupiter’s magnetotail. Geophys. Res. Lett. 18, 741–744 (1991). doi:10.1029/91GL00472

    ADS  Google Scholar 

Download references

Acknowledgements

Peter Delamere acknowledges support by NASA grant NNX13AH309G. Xianzhe Jia is supported by the NASA Cassini Data Analysis Program through grant NNX12AK34G and the NASA Outer Planets Research Program through grant NNX12AM74G, and by the NASA Cassini mission under contract 1409449 with JPL. Licia Ray acknowledges supported by NSF Grant 1064635. Chris Arridge is supported by the “Royal Society University Research Fellowship”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Delamere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delamere, P.A., Bagenal, F., Paranicas, C. et al. Solar Wind and Internally Driven Dynamics: Influences on Magnetodiscs and Auroral Responses. Space Sci Rev 187, 51–97 (2015). https://doi.org/10.1007/s11214-014-0075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0075-1

Keywords

Navigation