Skip to main content

Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

Abstract

The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90 field of view in monochrome mode and 60 field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  • C.H. Acton, Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44, 65–70 (1996). doi:10.1016/0032-0633(95)00107-7

    ADS  Article  Google Scholar 

  • C.O. Alley, Apollo Laser Ranging Retro-Reflector Experiment ( \(\mathit{SO}78\) ). Final Report (1971), p. 455

    Google Scholar 

  • C.O. Alley, P.L. Bender, R.H. Dicke, J.E. Faller, P.A. Franken, H.H. Plotkin, D.T. Wilkinson, Optical radar using a corner reflector on the Moon. J. Geophys. Res. 70, 2267–2269 (1965). doi:10.1029/JZ070i009p02267

    ADS  Article  Google Scholar 

  • J.A. Anderson, ISIS camera model design, in Lunar Planet. Sci. Conf. XXXIX, Abstract 2159 (2008)

    Google Scholar 

  • J.A. Anderson, Comparing patch orthorectification algorithms in ISIS based on camera type, in Lunar Planet. Sci. Conf. XLIV, Abstract 2069 (2013)

    Google Scholar 

  • J.A. Anderson, S.C. Sides, D.L. Soltesz, T.L. Sucharski, K.J. Becker, Modernization of the integrated software for imagers and spectrometers, in Lunar Planet. Sci. Conf. XXXV, Abstract 2039 (2004)

    Google Scholar 

  • J.W. Ashley, M.S. Robinson, B.R. Hawke, C.H. van der Bogert, H. Hiesinger, H. Sato, E.J. Speyerer, A.C. Enns, R.V. Wagner, K.E. Young, K.N. Burns, Geology of the King crater region: new insights into impact melt dynamics on the Moon. J. Geophys. Res. 117, E00H29 (2012). doi:10.1029/2011JE003990

    ADS  Article  Google Scholar 

  • J.B.R. Battat, T.W. Murphy, E.G. Adelberger, B. Gillespie, C.D. Hoyle, R.J. McMillan, E.L. Michelsen, K. Nordtvedt, A.E. Orin, C.W. Stubbs, H.E. Swanson, The Apache Point Observatory Lunar Laser-ranging Operation (APOLLO): two years of millimeter-precision measurements of the Earth-Moon range. Publ. Astron. Soc. Pac. 121, 29–40 (2009). doi:10.1086/596748

    ADS  Article  Google Scholar 

  • E. Bowman-Cisneros, LROC EDR/CDR Data Product Software Interface Specification (2010)

    Google Scholar 

  • A.K. Boyd, M.S. Robinson, LROC WAC multispectral empirical normalized reflectance (10i, 0e, 10g), in NASA Lunar Science Forum (2013)

    Google Scholar 

  • A.K. Boyd, M.S. Robinson, H. Sato, Lunar reconnaissance orbiter wide angle camera photometry: an empirical solution, in Lunar Planet. Sci. Conf. XLIII, Abstract 2795 (2012)

    Google Scholar 

  • D.C. Brown, Decentering distortion of lenses. Photogramm. Eng. 32, 444–462 (1966)

    Google Scholar 

  • D.C. Brown, Close-range camera calibration. Photogramm. Eng. 37, 855–866 (1971)

    Google Scholar 

  • K.N. Burns, E.J. Speyerer, M.S. Robinson, T. Tran, M.R. Rosiek, B.A. Archinal, E. Howington-Kraus (LROC Science Team), Digital elevation models and derived products from LROC NAC stereo observations, in Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XXXIX-B4 (2012), pp. 483–488. doi:10.5194/isprsarchives-XXXIX-B4-483-2012

    Google Scholar 

  • P.C. Calhoun, J.C. Garrick, Observing mode attitude controller for the lunar reconnaissance orbiter, in 20th Int. Symp. Sp. Flight Dyn. (2007)

    Google Scholar 

  • G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige, K. Raney, M. Robinson, A. Sanin, D. Smith, H. Spence, P. Spudis, S.A. Stern, M. Zuber, Lunar reconnaissance orbiter overview: the instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007). doi:10.1007/s11214-007-9153-y

    ADS  Article  Google Scholar 

  • R.G. Congalton, K. Green, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices (CRC Press/Taylor & Francis, Boca Raton, 2009), p. 183

    Google Scholar 

  • J.P. de Villiers, F.W. Leuschner, R. Geldenhuys, Centi-pixel accurate real-time inverse distortion correction, optomechatronic technologies, in Int. Symp. Optomechatronic Technol., vol. 7266, ed. by Y. Otani, Y. Bellouard, J.T. Wen, D. Hodko, Y. Katagiri, S.K. Kassegne, J. Kofman, S. Kaneko, C.A. Perez, D. Coquin, O. Kaynak, Y. Cho, T. Fukuda, J. Yi, F. Janabi-Sharifi (2008), pp. 726601–726608. doi:10.1117/12.804771

    Google Scholar 

  • Eastman Kodak, KAI-1001 Series: \(1024(H)\times 1024(V)\) Pixel-Megapixel Interline CCD Image Sensor Performance Specification (Rochester, NY, 1993), p. 22

  • Eastman Kodak, KLI-5001G: 5000 Element Linear CCD Image Sensor Performance Specification (Rochester, NY, 2002), p. 16

  • Federal Geographic Data Committee, Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy (Washington, DC, 1998), p. 24

  • R.D. Fiete, Elements of photogrammetric optics, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 359–450

    Google Scholar 

  • W.M. Folkner, J.G. Williams, D.H. Boggs, The Planetary and Lunar Ephemeris. DE 421. Interplanet. Netw. Prog. Rep. 42-178 (2009), p. 34

  • D. Folta, D. Quinn, Lunar frozen orbits, in AIAA/AAS Astrodyn. Spec. Conf. Exhib. (AIAA, Washington, 2006). doi:10.2514/6.2006-6749

    Google Scholar 

  • W. Förstner, B.P. Wrobel, Mathematical concepts in photogrammetry, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 63–234

    Google Scholar 

  • M. Fournet, Le réflecteur laser de Lunokhod, in Sp. Res. XII, vol. 1 (1972), pp. 261–277

    Google Scholar 

  • R.C. Gonzalez, R.E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992), p. 730

    Google Scholar 

  • B. Hallert, Photogrammetry: Basic Principles and General Survey (McGraw-Hill, New York, 1960), p. 340

    MATH  Google Scholar 

  • B. Hapke, B. Denevi, H. Sato, S. Braden, M. Robinson, The wavelength dependence of the lunar phase curve as seen by the Lunar Reconnaissance Orbiter wide-angle camera. J. Geophys. Res. 117, E00H15 (2012). doi:10.1029/2011JE003916

    ADS  Article  Google Scholar 

  • B. Harvey, Soviet and Russian Lunar Exploration (Springer, Chichester, 2007), p. 317

    Google Scholar 

  • M.R. Henriksen, P. Seymour, K.N. Burns, E.J. Speyerer, M.S. Robinson (LROC Science Team), Improvements to high resolution LROC NAC digital terrain models, in Lunar Planet. Sci. Conf. XLV, Abstract 1676 (2014)

    Google Scholar 

  • D.C. Humm, M. Tschimmel, S.M. Brylow, P. Mahanti, T.N. Tran, S.E. Braden, S. Wiesman, J. Danton, E.M. Eliason, M.S. Robinson. Space Sci. Rev. (2014, this issue)

  • D. Kim, J. Oh, K. Sohn, H. Shin, Automatic radial distortion correction in zoom lens video camera. J. Electron. Imaging 19, 043010 (2010). doi:10.1117/1.3503524

    ADS  Article  Google Scholar 

  • Y.L. Kokurin, V.V. Kurbasov, V.F. Lobanov, A.N. Sukhanovskii, N.S. Chernykh, Laser location of the reflector on board Lunokhod-1. Sov. J. Quantum Electron. 1, 555–557 (1972). doi:10.1070/QE1972v001n05ABEH003290

    ADS  Article  Google Scholar 

  • D.S. Lee, J.C. Storey, M.J. Choate, R.W. Hayes, Four years of Landsat-7 on-orbit geometric calibration and performance. IEEE Trans. Geosci. Remote Sens. 42, 2786–2795 (2004). doi:10.1109/TGRS.2004.836769

    ADS  Article  Google Scholar 

  • E.M. Lee, L.A. Weller, J.O. Richie, B.L. Redding, J.R. Shinaman, K. Edmundson, B.A. Archinal, T.M. Hare, R.L. Fergason, Controlled polar mosaics of the Moon for LMMP by USGS, in Lunar Planet. Sci. Conf. XLIII, Abstract 2507 (2012)

    Google Scholar 

  • F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, G.A. Neumann, D.E. Smith, M.T. Zuber, GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382–3389 (2014). doi:10.1002/2014GL060027

    ADS  Article  Google Scholar 

  • J.P. Lewis, Fast Normalized Cross-Correlation (1995), p. 7

    Google Scholar 

  • LRO Project, LGCWG, A Standardized Lunar Coordinate System for the Lunar Reconnaissance Orbiter and Lunar Datasets (Goddard Space Flight Center, Greenbelt, 2009), p. 13

    Google Scholar 

  • V.N. Mahajan, Optical Imaging and Aberrations. Part I. Ray Geometrical Optics, 1st edn. (SPIE Press, Bellingham, 1998), p. 469. doi:10.1117/3.265735

    Book  Google Scholar 

  • J. Mallon, P.F. Whelan, Calibration and removal of lateral chromatic aberration in images. Pattern Recognit. Lett. 28, 125–135 (2007). doi:10.1016/j.patrec.2006.06.013

    Article  Google Scholar 

  • J.G. Masek, M. Honzak, S.N. Goward, P. Liu, E. Pak, Landsat-7 ETM+ as an observatory for land cover. Remote Sens. Environ. 78, 118–130 (2001). doi:10.1016/S0034-4257(01)00254-1

    Article  Google Scholar 

  • S. Mattson, L. Ojha, A. Ortiz, A.S. McEwen, K. Burns, Regional digital terrain model production with LROC-NAC, in Lunar Planet. Sci. Conf. XLIII, Abstract 2630 (2012)

    Google Scholar 

  • H. Mayer, M. Sester, G. Vosselman, Basic computer vision techniques, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 517–583

    Google Scholar 

  • E. Mazarico, D.D. Rowlands, G.A. Neumann, D.E. Smith, M.H. Torrence, F.G. Lemoine, M.T. Zuber, Orbit determination of the Lunar Reconnaissance Orbiter. J. Geod. 86, 193–207 (2011). doi:10.1007/s00190-011-0509-4

    ADS  Article  Google Scholar 

  • E. Mazarico, S.J. Goossens, F.G. Lemoine, G.A. Neumann, M.H. Torrence, D.D. Rowlands, D.E. Smith, M.T. Zuber, Improved orbit determination of lunar orbiters with lunar gravity fields obtained by the GRAIL mission, in Lunar Planet. Sci. Conf. XLIV, Abstract 2414 (2013)

    Google Scholar 

  • C.J. Mugnier, W. Förstner, B. Wrobel, F. Paderes, R. Munjy, The mathematics of photogrammetry, in Manual of Photogrammetry, ed. by J.C. McGlone 6th edn. (American Society of Photogrammetry and Remote Sensing, Bethesda, 2013), pp. 235–358

    Google Scholar 

  • T.W. Murphy Jr., E.G. Adelberger, J.B.R. Battat, C.D. Hoyle, N.H. Johnson, R.J. McMillan, E.L. Michelsen, C.W. Stubbs, H.E. Swanson, Laser ranging to the lost Lunokhod 1 reflector. Icarus 211, 1103–1108 (2011). doi:10.1016/j.icarus.2010.11.010

    ADS  Article  Google Scholar 

  • T.W. Murphy, E.L. Michelson, A.E. Orin, E.G. Adelberger, C.D. Hoyle, H.E. Swanson, C.W. Stubbs, J.B. Battat, APOLLO: a new push in lunar laser ranging. Int. J. Mod. Phys. D 16, 2127–2135 (2007). doi:10.1142/S0218271807011589

    ADS  Article  Google Scholar 

  • D.E. Pavlix, S. Poulose, J.J. McCarthy, GEODYN operations manuals, Raytheon ITTS contractor report (Greenbelt, Maryland, 2009)

  • S.F. Ray, Applied Photographic Optics: Lenses and Optical Systems for Photography, Film, Video, Electronic and Digital Imaging (Focal Press, Waltham, 2002), p. 656

    Google Scholar 

  • M.S. Robinson, S.M. Brylow, M. Tschimmel, D. Humm, S.J. Lawrence, P.C. Thomas, B.W. Denevi, E. Bowman-Cisneros, J. Zerr, M.A. Ravine, M.A. Caplinger, F.T. Ghaemi, J.A. Schaffner, M.C. Malin, P. Mahanti, A. Bartels, J. Anderson, T.N. Tran, E.M. Eliason, A.S. McEwen, E. Turtle, B.L. Jolliff, H. Hiesinger, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview Space Sci. Rev. 150, 81–124 (2010). doi:10.1007/s11214-010-9634-2

    ADS  Article  Google Scholar 

  • M.R. Rosiek, E.M. Lee, E.T. Howington-Kraus, R.L. Fergason, L.A. Weller, D.M. Galuszka, B.L. Redding, O.H. Thomas, R.A. Saleh, J.O. Richie, J.R. Shinaman, B.A. Archinal, T.M. Hare, USGS digital terrain models and mosaics for LMMP, in Lunar Planet. Sci. Conf. XLIII, Abstract 2343 (2012)

    Google Scholar 

  • H. Sato, M.S. Robinson, B.W. Hapke, B.W. Denevi, A.K. Boyd, Resolved Hapke parameter maps of the Moon. J. Geophys. Res., Planets (2014). doi:10.1002/2013JE004580

    Google Scholar 

  • F. Scholten, J. Oberst, K.-D. Matz, T. Roatsch, M. Wählisch, E.J. Speyerer, M.S. Robinson, GLD100: the near-global lunar 100 m raster DTM from LROC WAC stereo image data. J. Geophys. Res. 117, E00H17 (2012). doi:10.1029/2011JE003926

    ADS  Article  Google Scholar 

  • R.A. Schowengerdt, Remote Sensing-Models and Methods for Image Processing, 3rd edn. (Academic Press, San Diego, 2007), p. 560

    Google Scholar 

  • R. Schuster, B. Braunecker, Calibration of the LH systems ADS40 airborne digital sensor. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 33, 288–294 (2000)

    Google Scholar 

  • P.K. Seidelmann, B.A. Archinal, M.F. A’Hearn, A. Conrad, G.J. Consolmagno, D. Hestroffer, J.L. Hilton, G.A. Krasinsky, G. Neumann, J. Oberst, P. Stooke, E.F. Tedesco, D.J. Tholen, P.C. Thomas, I.P. Williams, Report of the IAU/IAG working group on cartographic coordinates and rotational elements, 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007). doi:10.1007/s10569-007-9072-y

    ADS  Article  MATH  Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head, T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Barnouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, J.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010). doi:10.1029/2010GL043751

    ADS  Google Scholar 

  • E.J. Speyerer, M.S. Robinson, Persistently illuminated regions at the lunar poles: ideal sites for future exploration. Icarus 222, 122–136 (2013). doi:10.1016/j.icarus.2012.10.010

    ADS  Article  Google Scholar 

  • E.J. Speyerer, M.S. Robinson, B.W. Denevi, Lunar Reconnaissance Orbiter camera global morphological map of the Moon, in Lunar Planet. Sci. Conf. XLII, Abstract 2387 (2011)

    Google Scholar 

  • C.R. Tooley, M.B. Houghton, R.S. Saylor, C. Peddie, D.F. Everett, C.L. Baker, K.N. Safdie, Lunar Reconnaissance Orbiter mission and spacecraft design. Space Sci. Rev. 150, 23–62 (2010). doi:10.1007/s11214-009-9624-4

    ADS  Article  Google Scholar 

  • T. Toutin, Multi-source data fusion with an integrated and unified geometric modeling. EARSeL Adv. Remote Sens. 4, 118–129 (1995)

    Google Scholar 

  • T. Tran, M.R. Rosiek, R. Beyer, S. Mattson, A. Howington-Kraus, M.S. Robinson, B.A. Archinal, K. Edmundson, D. Harbour, E. Anderson (LROC Science Team), Generating digital terrain models using LROC NAC images, in Spec. Jt. Symp. ISPRS Comm. IV AutoCarto 2010 (2010)

    Google Scholar 

  • R. Vondrak, J. Keller, G. Chin, J. Garvin, Lunar Reconnaissance Orbiter (LRO): observations for lunar exploration and science. Space Sci. Rev. 150, 7–22 (2010). doi:10.1007/s11214-010-9631-5

    ADS  Article  Google Scholar 

  • P. Wighton, T.K. Lee, H. Lui, D. McLean, M.S. Atkins, Chromatic aberration correction: an enhancement to the calibration of low-cost digital dermoscopes. Skin Res. Technol. 17, 339–347 (2011). doi:10.1111/j.1600-0846.2011.00504.x

    Article  Google Scholar 

  • M.T. Zuber, D.E. Smith, R.S. Zellar, G.A. Neumann, X. Sun, R.B. Katz, I. Kleyner, A. Matuszeski, J.F. McGarry, M.N. Ott, L.A. Ramos-Izquierdo, D.D. Rowlands, M.H. Torrence, T.W. Zagwodzki, The Lunar Reconnaissance Orbiter laser ranging investigation. Space Sci. Rev. 150, 63 (2009). doi:10.1007/s11214-009-9511-z

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The LROC Team would like to acknowledge Michael Ravine, Michael Caplinger, Jacob Schaffner and the other scientists and engineers at Malin Space Science Systems who designed, built, and integrated the LROC system. We would not be able to create products with such a high level of precision and accuracy without their attention to detail and craftsmanship. We would also like to acknowledge the superior work of Erwan Mazarico and Gregory Neumann of the LOLA and GRAIL Science Teams in deriving the improved ephemeris for the LRO Spacecraft that we used in this study. We would finally like to thank Ella Lee and Lynn Weller of the USGS Astrogeology Science Center for producing several large control mosaics used to derive the absolute twist of the NAC-L and NAC-R instruments as well as the two reviewers whose detailed criticisms helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Speyerer.

Additional information

This paper is a Special Communication, related to the topical volume on ‘Lunar Reconnaissance Orbiter Mission’, Space Science Reviews, Volume 150, 2010, guest edited by R.R. Vondrak, J.W. Keller and C.T. Russell.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11214_2014_73_MOESM1_ESM.gif

Animation of the Apollo 14 landing site showing a before and after comparison of the relative twist correction (GIF 620 kB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Speyerer, E.J., Wagner, R.V., Robinson, M.S. et al. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera. Space Sci Rev 200, 357–392 (2016). https://doi.org/10.1007/s11214-014-0073-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0073-3

Keywords

  • LRO
  • LROC
  • Instrument
  • Camera
  • Moon
  • Lunar
  • Reconnaissance Orbiter
  • Geometric
  • Calibration
  • Distortion
  • Orientation
  • Mapping