Skip to main content
Log in

A Combined Analysis of the Observational Aspects of the Quasi-biennial Oscillation in Solar Magnetic Activity

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Solar quasi-biennial oscillations (QBOs) with the time scale of 0.6–4 yrs appear to be a basic feature of the Sun’s activity. Observational aspects of QBOs are reviewed on the basis of recent publications. Solar QBOs are shown to be ubiquitous and very variable. We demonstrate that many features of QBOs are common to different observations. These features include variable periodicity and intermittence with signs of stochastisity, a presence at all levels of the solar atmosphere and even in the convective zone, independent development in the northern and southern solar hemispheres, most pronounced amplitudes during the maximum phase of the 11-yr cycle and the transition of QBOs into interplanetary space. Temporal weakening of solar activity around the maximum of the 11-yr cycle (Gnevyshev Gap) can be considered an integral part of QBOs. The exact mechanism by which the solar QBO is produced is poorly understood. We describe some of the most plausible theoretical mechanisms and discuss observational features that support/contradict the theory. QBOs have an important meaning as a benchmark of solar activity, not only for investigation of the solar dynamo but also in terms of space weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://solarscience.msfc.nasa.gov/greenwch.shtml.

  2. http://www.ngdc.noaa.gov/stp/solar/flux.html.

  3. ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_CORONA/INDEX/Lomnicky/.

  4. ftp://spdf.gsfc.nasa.gov/pub/data/.

  5. helios.izmiran.rssi.ru/cosray/.

  6. http://wdc.kugi.kyoto-u.ac.jp/dstae/index.html.

References

  • H.S. Ahluwalia, Ap time variations and interplanetary magnetic field intensity. J. Geophys. Res. 105, 27481–27488 (2000). doi:10.1029/2000JA900124

    ADS  Google Scholar 

  • H.S. Ahluwalia, Y. Kamide, Gnevyshev gap, Forbush decreases, ICMEs and solar wind electric field: relationships. Adv. Space Res. 35, 2119–2123 (2005). doi:10.1016/j.asr.2004.11.030

    ADS  Google Scholar 

  • M. Akioka, J. Kubota, K. Ichimoto, I. Tohmura, M. Suzuki, The 17-month periodicity of sunspot activity. Sol. Phys. 112, 313–316 (1987). doi:10.1007/BF00148785

    ADS  Google Scholar 

  • M. Amenomori, S. Ayabe, S.W. Cui, Danzengluobu, L.K. Ding, X.H. Ding, C.F. Feng, Z.Y. Feng, X.Y. Gao, Q.X. Geng, H.W. Guo, H.H. He, M. He, K. Hibino, N. Hotta, H. Hu, H.B. Hu, J. Huang, Q. Huang, M. Izumi, H.Y. Jia, F. Kajino, K. Kasahara, Y. Katayose, C. Kato, K. Kawata, Labaciren, G.M. Le, J.Y. Li, H. Lu, S.L. Lu, X.R. Meng, K. Mizutani, J. Mu, K. Munakata, A. Nagai, H. Nanjo, M. Nishizawa, M. Ohnishi, I. Ohta, H. Onuma, T. Ouchi, S. Ozawa, J.R. Ren, T. Saito, M. Sakata, T. Sasaki, M. Shibata, A. Shiomi, T. Shirai, H. Sugimoto, M. Takita, Y.H. Tan, N. Tateyama, S. Torii, H. Tsuchiya, S. Udo, T. Utsugi, B.S. Wang, H. Wang, X. Wang, Y.G. Wang, H.R. Wu, L. Xue, Y. Yamamoto, C.T. Yan, X.C. Yang, S. Yasue, Z.H. Ye, G.C. Yu, A.F. Yuan, T. Yuda, H.M. Zhang, J.L. Zhang, N.J. Zhang, X.Y. Zhang, Y. Zhang, Zhaxisangzhu, X.X. Zhou (Tibet AS γ Collaboration), Variation of sun shadow in the solar cycle 23 observed with the Tibet air shower array. Adv. Space Res. 38, 936–941 (2006). doi:10.1016/j.asr.2006.04.023

    ADS  Google Scholar 

  • A. Antalova, M.N. Gnevyshev, Latitudinal distribution of sunspot areas during the period 1874–1976. Contrib. Astron. Obs. Skaln. Pleso 11, 63–93 (1983)

    ADS  Google Scholar 

  • H.M. Antia, S. Basu, Temporal variations of the rotation rate in the solar interior. Astrophys. J. 541, 442–448 (2000). doi:10.1086/309421

    ADS  Google Scholar 

  • H.M. Antia, S. Basu, S.M. Chitre, Solar rotation rate and its gradients during cycle 23. Astrophys. J. 681, 680–692 (2008). doi:10.1086/588523

    ADS  Google Scholar 

  • T. Appourchaux, K. Belkacem, A.-M. Broomhall, W.J. Chaplin, D.O. Gough, G. Houdek, J. Provost, F. Baudin, P. Boumier, Y. Elsworth, R.A. García, B.N. Andersen, W. Finsterle, C. Fröhlich, A. Gabriel, G. Grec, A. Jiménez, A. Kosovichev, T. Sekii, T. Toutain, S. Turck-Chièze, The quest for the solar g modes. Astron. Astrophys. Rev. 18, 197–277 (2010). doi:10.1007/s00159-009-0027-z

    ADS  Google Scholar 

  • N. Astafyeva, G. Bazilevskaya, Long-term changes of cosmic ray intensity: spectral behaviour and 27-day variations. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 25, 129–132 (2000). doi:10.1016/S1464-1917(99)00053-7

    ADS  Google Scholar 

  • T. Ataç, A. Özgüç, J. Rybák, Overview of the flare index during the maximum phase of the solar cycle 23. Adv. Space Res. 35, 400–405 (2005). doi:10.1016/j.asr.2005.01.040

    ADS  Google Scholar 

  • O.G. Badalyan, V.N. Obridko, Solar magnetic fields and the intensity of the green coronal line. Astron. Rep. 48, 678–687 (2004). doi:10.1134/1.1787070

    ADS  Google Scholar 

  • O.G. Badalyan, V.N. Obridko, North-South asymmetry of the sunspot indices and its quasi-biennial oscillations. New Astron. 16, 357–365 (2011). doi:10.1016/j.newast.2011.01.005

    ADS  Google Scholar 

  • O.G. Badalyan, V.N. Obridko, J. Sýkora, Quasi-biennial oscillations in the North—South asymmetry of solar activity. Sol. Phys. 247, 379–397 (2008). doi:10.1007/s11207-008-9120-0

    ADS  Google Scholar 

  • J.N. Bahcall, R. Davis Jr., Solar neutrinos: a scientific puzzle. Science 191, 264–267 (1976). doi:10.1126/science.191.4224.264

    ADS  Google Scholar 

  • T. Bai, Periodicities in solar flare occurrence: analysis of cycles 19–23. Astrophys. J. 591, 406–415 (2003). doi:10.1086/375295

    ADS  Google Scholar 

  • C.S. Baldner, T.P. Larson, S. Basu, Solar-cycle related changes at the base of the convection zone, in Solar-Stellar Dynamos as Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, ed. by M. Dikpati, T. Arentoft, I. González Hernández, C. Lindsey, F. Hill. Astronomical Society of the Pacific Conference Series, vol. 416, (2009), p. 477

    Google Scholar 

  • M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001). doi:10.1029/1999RG000073

    ADS  Google Scholar 

  • S.L. Baliunas, R.A. Donahue, W.H. Soon, J.H. Horne, J. Frazer, L. Woodard-Eklund, M. Bradford, L.M. Rao, O.C. Wilson, Q. Zhang, W. Bennett, J. Briggs, S.M. Carroll, D.K. Duncan, D. Figueroa, H.H. Lanning, T. Misch, J. Mueller, R.W. Noyes, D. Poppe, A.C. Porter, C.R. Robinson, J. Russell, J.C. Shelton, T. Soyumer, A.H. Vaughan, J.H. Whitney, Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287 (1995). doi:10.1086/175072

    ADS  Google Scholar 

  • J.L. Ballester, R. Oliver, M. Carbonell, The near 160 day periodicity in the photospheric magnetic flux. Astrophys. J. 566, 505–511 (2002). doi:10.1086/338075

    ADS  Google Scholar 

  • J.L. Ballester, R. Oliver, M. Carbonell, Return of the near 160 day periodicity in the photospheric magnetic flux during solar cycle 23. Astrophys. J. Lett. 615, 173–176 (2004). doi:10.1086/426430

    ADS  Google Scholar 

  • G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, E.O. Flückiger, A.I. Sladkova, M. Storini, Structure of the maximum phase of solar cycles 21 and 22. Sol. Phys. 197, 157–174 (2000). doi:10.1023/A:1026515520311

    ADS  Google Scholar 

  • G.A. Bazilevskaya, E.O. Fluckiger, M.B. Krainev, V.S. Makhmutov, A.I. Sladkova, M. Storini, Distribution of solar energetic particle events over an 11-year solar cycle. Int. Cosm. Ray Conf. 8, 3413 (2001)

    Google Scholar 

  • G.A. Bazilevskaya, V.S. Makhmutov, A.I. Sladkova, Gnevyshev gap effects in solar energetic particle activity. Adv. Space Res. 38, 484–488 (2006). doi:10.1016/j.asr.2004.11.011

    ADS  Google Scholar 

  • A.V. Belov, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena (2009). doi:10.1017/S1743921309029676

  • E.E. Benevolenskaya, Double magnetic cycle of solar activity. Sol. Phys. 161, 1–8 (1995). doi:10.1007/BF00732080

    ADS  Google Scholar 

  • E.E. Benevolenskaya, A model of the double magnetic cycle of the sun. Astrophys. J. Lett. 509, 49–52 (1998). doi:10.1086/311755

    ADS  Google Scholar 

  • E.E. Benevolenskaya, Impulses of activity and the solar cycle. Sol. Phys. 216, 325–341 (2003). doi:10.1023/A:1026105100181

    ADS  Google Scholar 

  • E.E. Benevolenskaya, The formation and evolution of complexes of activity, activity nests and the large-scale connectivity in the solar corona, in Large-Scale Structures and Their Role in Solar Activity, ed. by K. Sankarasubramanian, M. Penn, A. Pevtsov. Astronomical Society of the Pacific Conference Series, vol. 346, (2005), p. 129

    Google Scholar 

  • S.V. Berdyugina, I.G. Usoskin, Active longitudes in sunspot activity: century scale persistence. Astron. Astrophys. 405, 1121–1128 (2003). doi:10.1051/0004-6361:20030748

    ADS  Google Scholar 

  • S.V. Berdyugina, J. Pelt, I. Tuominen, Magnetic activity in the young solar analog LQ Hydrae. I. Active longitudes and cycles. Astron. Astrophys. 394, 505–515 (2002). doi:10.1051/0004-6361:20021179

    ADS  Google Scholar 

  • F. Boberg, H. Lundstedt, J.T. Hoeksema, P.H. Scherrer, W. Liu, Solar mean magnetic field variability: a wavelet approach to Wilcox solar observatory and SOHO/Michelson Doppler imager observations. J. Geophys. Res. 107, 1318 (2002). doi:10.1029/2001JA009195

    Google Scholar 

  • E. Böhm-Vitense, Chromospheric activity in G and K main-sequence stars, and what it tells us about stellar dynamos. Astrophys. J. 657, 486–493 (2007). doi:10.1086/510482

    ADS  Google Scholar 

  • A. Broomhall, W.J. Chaplin, Y. Elsworth, S.T. Fletcher, R. New, Is the current lack of solar activity only skin deep? Astrophys. J. Lett. 700, 162–165 (2009). doi:10.1088/0004-637X/700/2/L162

    ADS  Google Scholar 

  • A.-M. Broomhall, S.T. Fletcher, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. García, A. Jiménez, R. New, Are short-term variations in solar oscillation frequencies the signature of a second solar dynamo? J. Phys. Conf. Ser. 271(1), 012025 (2011). doi:10.1088/1742-6596/271/1/012025

    ADS  Google Scholar 

  • A.-M. Broomhall, W.J. Chaplin, Y. Elsworth, R. Simoniello, Quasi-biennial variations in helioseismic frequencies: can the source of the variation be localized? Mon. Not. R. Astron. Soc. 420, 1405–1414 (2012). doi:10.1111/j.1365-2966.2011.20123.x

    ADS  Google Scholar 

  • A.C. Cadavid, J.K. Lawrence, D.P. McDonald, A. Ruzmaikin, Independent global modes of solar magnetic field fluctuations. Sol. Phys. 226, 359–376 (2005). doi:10.1007/s11207-005-8187-0

    ADS  Google Scholar 

  • W.J. Chaplin, Y. Elsworth, B.A. Miller, G.A. Verner, R. New, Solar p-mode frequencies over three solar cycles. Astrophys. J. 659, 1749–1760 (2007). doi:10.1086/512543

    ADS  Google Scholar 

  • I.-H. Cho, J. Hwang, Y.-D. Park, Revisiting solar and heliospheric 1.3-Year signals during 1970–2007. Sol. Phys. 289, 707–719 (2014). doi:10.1007/s11207-013-0365-x

    ADS  Google Scholar 

  • D.-Y. Chou, A. Serebryanskiy, In search of the solar cycle variations of p-mode frequencies generated by perturbations in the solar interior. Astrophys. J. 624, 420–427 (2005). doi:10.1086/428925

    ADS  Google Scholar 

  • D.P. Choudhary, J.K. Lawrence, M. Norris, A.C. Cadavid, Different periodicities in the sunspot area and the occurrence of solar flares and coronal mass ejections in solar cycle 23–24. Sol. Phys. 289, 649–656 (2014). doi:10.1007/s11207-013-0392-7

    ADS  Google Scholar 

  • P. Chowdhury, P.C. Ray, Periodicities of solar electron flare occurrence: analysis of cycles 21–23. Mon. Not. R. Astron. Soc. 373, 1577–1589 (2006). doi:10.1111/j.1365-2966.2006.11120.x

    ADS  Google Scholar 

  • P. Chowdhury, M. Khan, P. Ray, Intermediate-term periodicities in relativistic solar electron fluences during solar cycles 22 and 23. Adv. Space Res. 43, 297–307 (2009a). doi:10.1016/j.asr.2008.06.008

    ADS  Google Scholar 

  • P. Chowdhury, M. Khan, P.C. Ray, Intermediate-term periodicities in sunspot areas during solar cycles 22 and 23. Mon. Not. R. Astron. Soc. 392, 1159–1180 (2009b). doi:10.1111/j.1365-2966.2008.14117.x

    ADS  Google Scholar 

  • P. Chowdhury, D.P. Choudhary, S. Gosain, A study of the hemispheric asymmetry of sunspot area during solar cycles 23 and 24. Astrophys. J. 768, 188 (2013). doi:10.1088/0004-637X/768/2/188

    ADS  Google Scholar 

  • J. Christensen-Dalsgaard, Helioseismology, Rev. Mod. Phys. 74, 1073–1129 (2002). doi:10.1103/RevModPhys.74.1073

    ADS  Google Scholar 

  • T. Corbard, M.J. Thompson, The subsurface radial gradient of solar angular velocity from MDI f-mode observations. Sol. Phys. 205, 211–229 (2002). doi:10.1023/A:1014224523374

    ADS  Google Scholar 

  • E. Covas, R. Tavakol, D. Moss, Spatiotemporal fragmentation as a mechanism for different dynamical modes of behaviour in the solar convection zone. Astron. Astrophys. 363, 13–16 (2000a)

    ADS  Google Scholar 

  • E. Covas, R. Tavakol, D. Moss, A. Tworkowski, Torsional oscillations in the solar convection zone. Astron. Astrophys. 360, 21–24 (2000b)

    ADS  Google Scholar 

  • L. D’Alessi, A. Vecchio, V. Carbone, M. Laurenza, M. Storini, Quasi-biennial modulation of the solar neutrino flux: a “Telescope” for the solar interior. J. Mod. Phys. 4, 49–56 (2013). doi:10.4236/jmp.2013.44A008

    Google Scholar 

  • S. Danilovic, I. Vince, N. Vitas, P. Jovanovic, Time series analysis of long term full disk observations of the Mn i 539.4 nm solar line. Serb. Astron. J. 170, 79–88 (2005). doi:10.2298/SAJ0570079D

    ADS  Google Scholar 

  • Y. Elsworth, R. Howe, G.R. Isaak, C.P. McLeod, R. New, Variation of low-order acoustic solar oscillations over the solar cycle. Nature 345, 322–324 (1990). doi:10.1038/345322a0

    ADS  Google Scholar 

  • F. Feminella, M. Storini, Large-scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 322, 311–319 (1997)

    ADS  Google Scholar 

  • S.T. Fletcher, A.-M. Broomhall, D. Salabert, S. Basu, W.J. Chaplin, Y. Elsworth, R.A. Garcia, R. New, A seismic signature of a second dynamo? Astrophys. J. Lett. 718, 19–22 (2010). doi:10.1088/2041-8205/718/1/L19

    ADS  Google Scholar 

  • D.M. Fluri, S.V. Berdyugina, Flip-flops as observational signatures of different dynamo modes in cool stars. Sol. Phys. 224, 153–160 (2004). doi:10.1007/s11207-005-4147-y

    ADS  Google Scholar 

  • E. Forgács-Dajka, T. Borkovits, Searching for mid-term variations in different aspects of solar activity—looking for probable common origins and studying temporal variations of magnetic polarities. Mon. Not. R. Astron. Soc. 374, 282–291 (2007). doi:10.1111/j.1365-2966.2006.11167.x

    ADS  Google Scholar 

  • K. Georgieva, Why the sunspot cycle is double peaked. ISRN Astron. Astrophys. 2011 (2011). doi:10.5402/2011/437838

  • K. Georgieva, B. Kirov, Long-term variations in solar meridional circulation from geomagnetic data: implications for solar dynamo theory. (2007). arXiv:physics/0703187

  • K. Georgieva, B. Kirov, Solar dynamo and geomagnetic activity. J. Atmos. Sol.-Terr. Phys. 73, 207–222 (2011). doi:10.1016/j.jastp.2010.03.003

    ADS  Google Scholar 

  • M.N. Gnevyshev, On the 11-years cycle of solar activity. Sol. Phys. 1, 107–120 (1967). doi:10.1007/BF00150306

    ADS  Google Scholar 

  • M.N. Gnevyshev, Essential features of the 11-year solar cycle. Sol. Phys. 51, 175–183 (1977). doi:10.1007/BF00240455

    ADS  Google Scholar 

  • N. Gyenge, T. Baranyi, A. Ludmány, Migration and extension of solar active longitudinal zones. Sol. Phys. 289, 579–591 (2014). doi:10.1007/s11207-013-0424-3

    ADS  Google Scholar 

  • D.H. Hathaway, The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010). doi:10.12942/lrsp-2010-1

    ADS  Google Scholar 

  • M.E. Hill, D.C. Hamilton, S.M. Krimigis, Periodicity of 151 days in outer heliospheric anomalous cosmic ray fluxes. J. Geophys. Res. 106, 8315–8322 (2001). doi:10.1029/2000JA000380

    ADS  Google Scholar 

  • J.T. Hoeksema, Global solar magnetic fields. NASA STI/Recon Technical Report N 92, 29421 (1991)

  • R. Howe, J. Christensen-Dalsgaard, F. Hill, R.W. Komm, R.M. Larsen, J. Schou, M.J. Thompson, J. Toomre, Dynamic variations at the base of the solar convection zone. Science 287, 2456–2460 (2000). doi:10.1126/science.287.5462.2456

    ADS  Google Scholar 

  • R. Howe, R. Komm, F. Hill, J. Christensen-Dalsgaard, T.P. Larson, J. Schou, M.J. Thompson, J. Toomre, Rotation-rate variations at the tachocline: an update. J. Phys. Conf. Ser. 271(1), 012075 (2011). doi:10.1088/1742-6596/271/1/012075

    ADS  Google Scholar 

  • K. Ichimoto, J. Kubota, M. Suzuki, I. Tohmura, H. Kurokawa, Periodic behaviour of solar flare activity. Nature 316, 422–424 (1985). doi:10.1038/316422a0

    ADS  Google Scholar 

  • E.V. Ivanov, V.N. Obridko, B.D. Shelting, Quasi-biennial oscillations of the solar magnetic fields, in Solar Variability: from Core to Outer Frontiers, ed. by A. Wilson. ESA Special Publication, vol. 506, (2002), pp. 847–850

    Google Scholar 

  • K. Jain, S.C. Tripathy, F. Hill, How peculiar was the recent extended minimum: a hint toward double minima. Astrophys. J. 739, 6 (2011). doi:10.1088/0004-637X/739/1/6

    ADS  Google Scholar 

  • S.J. Jiménez-Reyes, R.A. García, A. Jiménez, W.J. Chaplin, Excitation and damping of low-degree solar p-modes during activity cycle 23: analysis of GOLF and VIRGO sun photometer data. Astrophys. J. 595, 446–457 (2003). doi:10.1086/377304

    ADS  Google Scholar 

  • S.J. Jiménez-Reyes, W.J. Chaplin, Y. Elsworth, R.A. García, R. Howe, H. Socas-Navarro, T. Toutain, On the variation of the peak asymmetry of low-l solar p modes. Astrophys. J. 654, 1135–1145 (2007). doi:10.1086/509700

    ADS  Google Scholar 

  • B. Joshi, A. Joshi, Intermediate-term periodicities in soft x-ray flare index during solar cycles 21, 22 and 23. Sol. Phys. 226, 153–161 (2005). doi:10.1007/s11207-005-5716-9

    ADS  Google Scholar 

  • R.P. Kane, Evolutions of various solar indices around sunspot maximum and sunspot minimum years. Ann. Geophys. 20, 741–755 (2002). doi:10.5194/angeo-20-741-2002

    ADS  Google Scholar 

  • R.P. Kane, Differences in the quasi-biennial oscillation and quasi-triennial oscillation characteristics of the solar, interplanetary, and terrestrial parameters. J. Geophys. Res. 110, 1108 (2005a). doi:10.1029/2004JA010606

    Google Scholar 

  • R.P. Kane, Short-term periodicities in solar indices. Sol. Phys. 227, 155–175 (2005b). doi:10.1007/s11207-005-1110-x

    ADS  Google Scholar 

  • R.P. Kane, Which one is the ‘GNEVYSHEV’ GAP? Sol. Phys. 229, 387–407 (2005c). doi:10.1007/s11207-005-7451-7

    ADS  Google Scholar 

  • R.P. Kane, A detailed comparison of cosmic ray gaps with solar gnevyshev gaps. Sol. Phys. 236, 207–226 (2006). doi:10.1007/s11207-006-0142-1

    ADS  Google Scholar 

  • C. Kato, K. Munakata, S. Yasue, K. Inoue, F.B. McDonald, A 1.7-year quasi-periodicity in cosmic ray intensity variation observed in the outer heliosphere. J. Geophys. Res. 108, 1367 (2003). doi:10.1029/2003JA009897

    Google Scholar 

  • C. Katsavrias, P. Preka-Papadema, X. Moussas, Wavelet analysis on solar wind parameters and geomagnetic indices. Sol. Phys. 280, 623–640 (2012). doi:10.1007/s11207-012-0078-6

    ADS  Google Scholar 

  • M.N. Khramova, E.V. Kononovich, S.A. Krasotkin, Quasi-biennial oscillations of global solar-activity indices. Sol. Syst. Res. 36, 507–512 (2002)

    ADS  Google Scholar 

  • A. Kilcik, A. Ozguc, One possible reason for double-peaked maxima in solar cycles: is a second maximum of solar cycle 24 expected? Sol. Phys. 289, 1379–1386 (2014). doi:10.1007/s11207-013-0407-4

    ADS  Google Scholar 

  • A. Kilcik, V.B. Yurchyshyn, V. Abramenko, P.R. Goode, A. Ozguc, J.P. Rozelot, W. Cao, Time distributions of large and small sunspot groups over four solar cycles. Astrophys. J. 731, 30 (2011). doi:10.1088/0004-637X/731/1/30

    ADS  Google Scholar 

  • R. Knaack, J.O. Stenflo, Spherical harmonic decomposition of solar magnetic fields. Astron. Astrophys. 438, 349–363 (2005). doi:10.1051/0004-6361:20052765

    ADS  MATH  Google Scholar 

  • R. Knaack, J.O. Stenflo, S.V. Berdyugina, Periodic oscillations in the North-South asymmetry of the solar magnetic field. Astron. Astrophys. 418, 17–20 (2004). doi:10.1051/0004-6361:20040107

    ADS  Google Scholar 

  • R. Knaack, J.O. Stenflo, S.V. Berdyugina, Evolution and rotation of large-scale photospheric magnetic fields of the Sun during cycles 21-23. Periodicities, North-South asymmetries and r-mode signatures. Astron. Astrophys. 438, 1067–1082 (2005). doi:10.1051/0004-6361:20042091

    ADS  Google Scholar 

  • M.B. Krainev, G.A. Bazilevskaya, V.S. Makhmutov, Solar magnetic field and dynamic phenomena in cosmic rays. Adv. Space Res. 29, 331–336 (2002). doi:10.1016/S0273-1177(01)00593-2

    ADS  Google Scholar 

  • N.A. Krivova, S.K. Solanki, The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701–706 (2002). doi:10.1051/0004-6361:20021063

    ADS  Google Scholar 

  • K. Kudela, J. Rybák, A. Antalová, M. Storini, Time evolution of low-frequency periodicities in cosmic ray intensity. Sol. Phys. 205, 165–175 (2002). doi:10.1023/A:1013869322693

    ADS  Google Scholar 

  • K. Kudela, H. Mavromichalaki, A. Papaioannou, M. Gerontidou, On mid-term periodicities in cosmic rays. Sol. Phys. 266, 173–180 (2010). doi:10.1007/s11207-010-9598-0

    ADS  Google Scholar 

  • P. Kumar, S. Talon, J.-P. Zahn, Angular momentum redistribution by waves in the sun. Astrophys. J. 520, 859–870 (1999). doi:10.1086/307464

    ADS  Google Scholar 

  • A. Lara, A. Borgazzi, O. Mendes Jr., R.R. Rosa, M.O. Domingues, Short-period fluctuations in coronal mass ejection activity during solar cycle 23. Sol. Phys. 248, 155–166 (2008). doi:10.1007/s11207-008-9153-4

    ADS  Google Scholar 

  • M. Laurenza, M. Storini, S. Giangravè, G. Moreno, Search for periodicities in the IMP 8 charged particle measurement experiment proton fluxes for the energy bands 0.50-0.96 MeV and 190-440 MeV. J. Geophys. Res. 114, 1103 (2009). doi:10.1029/2008JA013181

    Google Scholar 

  • M. Laurenza, A. Vecchio, M. Storini, V. Carbone, Quasi-biennial modulation of galactic cosmic rays. Astrophys. J. 749, 167 (2012). doi:10.1088/0004-637X/749/2/167

    ADS  Google Scholar 

  • K.G. Libbrecht, M.F. Woodard, Solar-cycle effects on solar oscillation frequencies. Nature 345, 779–782 (1990). doi:10.1038/345779a0

    ADS  Google Scholar 

  • M. Lockwood, Long-term variations in the magnetic fields of the sun and the heliosphere: their origin, effects, and implications. J. Geophys. Res. 106, 16021–16038 (2001). doi:10.1029/2000JA000115

    ADS  Google Scholar 

  • Y.-Q. Lou, Rossby-type wave-induced periodicities in flare activities and sunspot areas or groups during solar maxima. Astrophys. J. 540, 1102–1108 (2000). doi:10.1086/309387

    ADS  Google Scholar 

  • Y.-Q. Lou, Y.-M. Wang, Z. Fan, S. Wang, J.X. Wang, Periodicities in solar coronal mass ejections. Mon. Not. R. Astron. Soc. 345, 809–818 (2003). doi:10.1046/j.1365-8711.2003.06993.x

    ADS  Google Scholar 

  • R. Lukianova, K. Mursula, Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. Sol.-Terr. Phys. 73, 235–240 (2011). doi:10.1016/j.jastp.2010.04.002

    ADS  Google Scholar 

  • K. Maeda, Quasi-biennial cycles in cosmic ray intensity. J. Atmos. Sci. 24, 320–322 (1967). doi:10.1175/1520-0469(1967)024<0320:QBCICR>2.0.CO;2

    ADS  Google Scholar 

  • H. Mavromichalaki, P. Preka-Papadema, I. Liritzis, B. Petropoulos, V. Kurt, Short-term variations of cosmic-ray intensity and flare related data in 1981–1983. New Astron. 8, 777–794 (2003). doi:10.1016/S1384-1076(03)00066-6

    ADS  Google Scholar 

  • T.S. Metcalfe, A.P. Buccino, B.P. Brown, S. Mathur, D.R. Soderblom, T.J. Henry, P.J.D. Mauas, R. Petrucci, J.C. Hall, S. Basu, Magnetic activity cycles in the exoplanet host star epsilon Eridani. Astrophys. J. Lett. 763, 26 (2013). doi:10.1088/2041-8205/763/2/L26

    ADS  Google Scholar 

  • L.I. Miroshnichenko, Solar cosmic rays in the system of solar terrestrial relations. J. Atmos. Sol.-Terr. Phys. 70, 450–466 (2008). doi:10.1016/j.jastp.2007.08.027

    ADS  Google Scholar 

  • D. Moss, Non-axisymmetric solar magnetic fields. Mon. Not. R. Astron. Soc. 306, 300–306 (1999). doi:10.1046/j.1365-8711.1999.02510.x

    ADS  Google Scholar 

  • D. Moss, Dynamo models and the flip-flop phenomenon in late-type stars. Mon. Not. R. Astron. Soc. 352, 17–20 (2004). doi:10.1111/j.1365-2966.2004.08125.x

    ADS  Google Scholar 

  • D. Moss, J. Brooke, Towards a model for the solar dynamo. Mon. Not. R. Astron. Soc. 315, 521–533 (2000). doi:10.1046/j.1365-8711.2000.03452.x

    ADS  Google Scholar 

  • D. Moss, D.M. Barker, A. Brandenburg, I. Tuominen, Nonaxisymmetric dynamo solutions and extended starspots on late-type stars. Astron. Astrophys. 294, 155–164 (1995)

    ADS  Google Scholar 

  • X. Moussas, J.M. Polygiannakis, P. Preka-Papadema, G. Exarhos, Solar cycles: a tutorial. Adv. Space Res. 35, 725–738 (2005). doi:10.1016/j.asr.2005.03.148

    ADS  Google Scholar 

  • J. Murakozy, A. Ludmany, Cycle dependence of the longitudinal-latitudinal sunspot motion correlations. Astron. Astrophys. 486, 1003–1007 (2008). doi:10.1051/0004-6361:20078456

    ADS  Google Scholar 

  • K. Mursula, J.H. Vilppola, Fluctuations of the solar dynamo observed in the solar wind and interplanetary magnetic field at 1 AU and in the outer heliosphere. Sol. Phys. 221, 337–349 (2004). doi:10.1023/B:SOLA.0000035053.17913.26

    ADS  Google Scholar 

  • K. Mursula, B. Zieger, The 1.3-year variation in solar wind speed and geomagnetic activity. Adv. Space Res. 25, 1939–1942 (2000). doi:10.1016/S0273-1177(99)00608-0

    ADS  Google Scholar 

  • K. Mursula, B. Zieger, J.H. Vilppola, Mid-term quasi-periodicities in geomagnetic activity during the last 15 solar cycles: connection to solar dynamo strength to the memory of Karolen I. Paularena (1957–2001). Sol. Phys. 212, 201–207 (2003). doi:10.1023/A:1022980029618

    ADS  Google Scholar 

  • K. Nagashima, S. Sakakibara, I. Morishita, Quiescence of GLE-producible solar proton eruptions during the transition phase of heliomagnetic polarity reversal near the solar-activity-maximum period. Int. Cosm. Ray Conf. 3, 29 (1991)

    Google Scholar 

  • A.A. Norton, J.C. Gallagher, Solar-cycle characteristics examined in separate hemispheres: phase, gnevyshev gap, and length of minimum. Sol. Phys. 261, 193–207 (2010). doi:10.1007/s11207-009-9479-6

    ADS  Google Scholar 

  • V.N. Obridko, B.D. Shelting, Quasi-biennial oscillations of the global solar magnetic field. Astron. Rep. 45, 1012–1017 (2001). doi:10.1134/1.1426132

    ADS  Google Scholar 

  • V.N. Obridko, B.D. Shelting, Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv. Space Res. 40, 1006–1014 (2007). doi:10.1016/j.asr.2007.04.105

    ADS  Google Scholar 

  • V.P. Okhlopkov, Distinctive properties of the frequency spectra of cosmic ray variations and parameters of solar activity and the interplanetary medium in solar cycles 20–23. Mosc. University Phys. Bull. 66, 99–103 (2011). doi:10.3103/S0027134911010188

    ADS  Google Scholar 

  • K. Oláh, Z. Kolláth, T. Granzer, K.G. Strassmeier, A.F. Lanza, S. Järvinen, H. Korhonen, S.L. Baliunas, W. Soon, S. Messina, G. Cutispoto, Multiple and changing cycles of active stars. II. Results. Astron. Astrophys. 501, 703–713 (2009). doi:10.1051/0004-6361/200811304

    ADS  Google Scholar 

  • A. Özgüç, T. Ataç, J. Rybák, Temporal variability of the flare index (1966–2001). Sol. Phys. 214, 375–396 (2003). doi:10.1023/A:1024225802080

    ADS  Google Scholar 

  • P.L. Pallé, C. Régulo, T. Roca Cortés, Solar cycle induced variations of the low L solar acoustic spectrum. Astron. Astrophys. 224, 253–258 (1989)

    ADS  Google Scholar 

  • C. Petrick, K. Matthes, H. Dobslaw, M. Thomas, Impact of the solar cycle and the QBO on the atmosphere and the ocean. J. Geophys. Res., Atmos. 117, 17111 (2012). doi:10.1029/2011JD017390

    ADS  Google Scholar 

  • E.P. Popova, N.A. Yukhina, The quasi-biennial cycle of solar activity and dynamo theory. Astron. Lett. 39, 729–735 (2013). doi:10.1134/S1063773713100046

    ADS  Google Scholar 

  • V.E. Reznikova, K. Shibasaki, R.A. Sych, V.M. Nakariakov, Three-minute oscillations above sunspot umbra observed with the solar dynamics Observatory/Atmospheric imaging assembly and nobeyama radioheliograph. Astrophys. J. 746, 119 (2012). doi:10.1088/0004-637X/746/2/119

    ADS  Google Scholar 

  • I.G. Richardson, H.V. Cane, The ∼150 day quasi-periodicity in interplanetary and solar phenomena during cycle 23. Geophys. Res. Lett. 32, 2104 (2005). doi:10.1029/2004GL021691

    ADS  Google Scholar 

  • I.G. Richardson, H.V. Cane, E.W. Cliver, Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res. 107, 1187 (2002). doi:10.1029/2001JA000504

    Google Scholar 

  • E. Rieger, G. Kanbach, C. Reppin, G.H. Share, D.J. Forrest, E.L. Chupp, A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623–625 (1984). doi:10.1038/312623a0

    ADS  Google Scholar 

  • J. Rodríguez-Pacheco, J.J. Blanco, B. Heber, R. Gómez-Herrero, Energetic particles measured in and out of the ecliptic plane during the last Gnevyshev gap. Sol. Phys. 281, 491–499 (2012). doi:10.1007/s11207-012-9977-9

    ADS  Google Scholar 

  • A. Ruzmaikin, A.C. Cadavid, J. Lawrence, Quasi-periodic patterns coupling the sun, solar wind and the earth. J. Atmos. Sol.-Terr. Phys. 70, 2112–2117 (2008). doi:10.1016/j.jastp.2008.09.013

    ADS  Google Scholar 

  • J. Rybák, A. Antalová, M. Storini, The wavelet analysis of the solar and cosmic-ray data. Space Sci. Rev. 97, 359–362 (2001). doi:10.1023/A:1011805923567

    ADS  Google Scholar 

  • S.H. Saar, A. Brandenburg, Time evolution of the magnetic activity cycle period. II. Results for an expanded stellar sample. Astrophys. J. 524, 295–310 (1999). doi:10.1086/307794

    ADS  Google Scholar 

  • K. Sakurai, Quasi-biennial variation of the solar neutrino flux and solar activity. Nature 278, 146–148 (1979). doi:10.1038/278146a0

    ADS  Google Scholar 

  • D.J. Schove, Sunspot turning-points and aurorae since A.D. 1510. Sol. Phys. 63, 423–432 (1979). doi:10.1007/BF00174546

    ADS  Google Scholar 

  • S. Sello, Wavelet entropy and the multi-peaked structure of solar cycle maximum. New Astron. 8, 105–117 (2003). doi:10.1016/S1384-1076(02)00192-6

    ADS  Google Scholar 

  • A. Serebryanskiy, D.-Y. Chou, Comparison of solar cycle variations of solar p-mode frequencies from GONG and MDI. Astrophys. J. 633, 1187–1190 (2005). doi:10.1086/491467

    ADS  Google Scholar 

  • T. Shirai, Time variation of the solar neutrino fluxes from Super-Kamiokande data. Sol. Phys. 222, 199–201 (2004). doi:10.1023/B:SOLA.0000043565.83411.ec

    ADS  Google Scholar 

  • S.M. Silverman, R. Shapiro, Power spectral analysis of auroral occurrence frequency. J. Geophys. Res. 88, 6310–6316 (1983). doi:10.1029/JA088iA08p06310

    ADS  Google Scholar 

  • R. Simoniello, W. Finsterle, D. Salabert, R.A. García, S. Turck-Chièze, A. Jiménez, M. Roth, The quasi-biennial periodicity (QBP) in velocity and intensity helioseismic observations. The seismic QBP over solar cycle 23. Astron. Astrophys. 539, 135 (2012a). doi:10.1051/0004-6361/201118057

    ADS  Google Scholar 

  • R. Simoniello, K. Jain, S.C. Tripathy, S. Turck-Chiéze, W. Finsterle, M. Roth, Seismic comparison of the 11- and 2-year cycle signatures in the sun. Astron. Nachr. 333, 1018 (2012b). doi:10.1002/asna.201211813

    ADS  Google Scholar 

  • R. Simoniello, K. Jain, S.C. Tripathy, S. Turck-Chièze, C. Baldner, W. Finsterle, F. Hill, M. Roth, The quasi-biennial periodicity as a window on the solar magnetic dynamo configuration. Astrophys. J. 765, 100 (2013). doi:10.1088/0004-637X/765/2/100

    ADS  Google Scholar 

  • Y.P. Singh, S. Gautam Badruddin, Temporal variations of short- and mid-term periodicities in solar wind parameters and cosmic ray intensity. J. Atmos. Sol.-Terr. Phys. 89, 48–53 (2012). doi:10.1016/j.jastp.2012.07.011

    ADS  Google Scholar 

  • M. Storini, M. Laurenza, Solar activity effects on muon data. Mem. Soc. Astron. Ital. 74, 774 (2003)

    ADS  Google Scholar 

  • M. Storini, G.A. Bazilevskaya, E.O. Fluckiger, M.B. Krainev, V.S. Makhmutov, A.I. Sladkova, The GNEVYSHEV gap: a review for space weather. Adv. Space Res. 31, 895–900 (2003). doi:10.1016/S0273-1177(02)00789-5

    ADS  Google Scholar 

  • M. Storini, K. Kudela, E.G. Cordaro, S. Massetti, Ground-level enhancements during solar cycle 23: results from SVIRCO, LOMNICKY STIT and LARC neutron monitors. Adv. Space Res. 35, 416–420 (2005). doi:10.1016/j.asr.2004.12.020

    ADS  Google Scholar 

  • J. Sykora, The coronal responses to the large-scale and long-term phenomena of the lower layers of the sun. Sol. Interplanet. Dyn. 91, 87–104 (1980)

    ADS  Google Scholar 

  • M.J. Thompson, Temporal variations of the sun’s internal structure and dynamics: a theoretical perspective, in SOHO 10/GONG 2000 Workshop: Helio- and Asteroseismology at the Dawn of the Millennium, ed. by A. Wilson, P.L. Pallé. ESA Special Publication, vol. 464, (2001), pp. 39–44

    Google Scholar 

  • I. Tuominen, S.V. Berdyugina, M.J. Korpi, Starspot cycles from Doppler imaging and photometric time series as nonlinear dynamo. Astron. Nachr. 323, 367–370 (2002). doi:10.1002/1521-3994(200208)323:3/4<367::AID-ASNA367>3.0.CO;2-E

    ADS  Google Scholar 

  • J.F. Valdés-Galicia, V.M. Velasco, Variations of mid-term periodicities in solar activity physical phenomena. Adv. Space Res. 41, 297–305 (2008). doi:10.1016/j.asr.2007.02.012

    ADS  Google Scholar 

  • J.F. Valdés-Galicia, V.M. Velasco, B. Mendoza, Mid term cosmic ray quasi periodicities and solar magnetic activity manifestations. Int. Cosm. Ray Conf. 2, 211 (2005)

    Google Scholar 

  • A. Vecchio, V. Carbone, On the origin of the double magnetic cycle of the sun. Astrophys. J. 683, 536–541 (2008). doi:10.1086/589768

    ADS  Google Scholar 

  • A. Vecchio, V. Carbone, Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron. Astrophys. 502, 981–987 (2009). doi:10.1051/0004-6361/200811024

    ADS  Google Scholar 

  • A. Vecchio, M. Laurenza, V. Carbone, M. Storini, Quasi-biennial modulation of solar neutrino flux and solar and galactic cosmic rays by solar cyclic activity. Astrophys. J. Lett. 709, 1–5 (2010). doi:10.1088/2041-8205/709/1/L1

    ADS  Google Scholar 

  • A. Vecchio, M. Laurenza, D. Meduri, V. Carbone, M. Storini, The dynamics of the solar magnetic field: polarity reversals, butterfly diagram, and quasi-biennial oscillations. Astrophys. J. 749, 27 (2012a). doi:10.1088/0004-637X/749/1/27

    ADS  Google Scholar 

  • A. Vecchio, M. Laurenza, M. Storini, V. Carbone, New insights on cosmic ray modulation through a joint use of nonstationary data-processing methods. Adv. Astron. 2012(2012b). doi:10.1155/2012/834247

  • Y.-M. Wang, The sun’s large-scale magnetic field and its long-term evolution. Sol. Phys. 224, 21–35 (2004). doi:10.1007/s11207-005-4982-x

    ADS  Google Scholar 

  • Y. Wang, N.R. Sheeley Jr., On the fluctuating component of the sun’s large-scale magnetic field. Astrophys. J. 590, 1111–1120 (2003). doi:10.1086/375026

    ADS  Google Scholar 

  • Y.-M. Wang, J. Lean, N.R. Sheeley Jr., Role of a variable meridional flow in the secular evolution of the sun’s polar fields and open flux. Astrophys. J. Lett. 577, 53–57 (2002). doi:10.1086/344196

    ADS  Google Scholar 

  • C.L. Wolff, The rotational spectrum of g-modes in the sun. Astrophys. J. 264, 667–676 (1983). doi:10.1086/160640

    ADS  Google Scholar 

  • M.F. Woodard, R.W. Noyes, Change of solar oscillation eigenfrequencies with the solar cycle. Nature 318, 449 (1985)

    ADS  Google Scholar 

  • T.V. Zaqarashvili, M. Carbonell, R. Oliver, J.L. Ballester, Magnetic rossby waves in the solar tachocline and rieger-type periodicities. Astrophys. J. 709, 749–758 (2010a). doi:10.1088/0004-637X/709/2/749

    ADS  Google Scholar 

  • T.V. Zaqarashvili, M. Carbonell, R. Oliver, J.L. Ballester, Quasi-biennial oscillations in the solar tachocline caused by magnetic rossby wave instabilities. Astrophys. J. Lett. 724, 95–98 (2010b). doi:10.1088/2041-8205/724/1/L95

    ADS  Google Scholar 

  • T.V. Zaqarashvili, R. Oliver, J.L. Ballester, M. Carbonell, M.L. Khodachenko, H. Lammer, M. Leitzinger, P. Odert, Rossby waves and polar spots in rapidly rotating stars: implications for stellar wind evolution. Astron. Astrophys. 532, 139 (2011). doi:10.1051/0004-6361/201117122

    ADS  Google Scholar 

  • S.I. Zharkov, E. Gavryuseva, V.V. Zharkova, On phase relation between toroidal and poloidal magnetic fields in the solar cycle 23, in Proceedings of the International Astronomical Union, IAU Symposium, vol. 247, (2008), pp. 39–45. doi:10.1017/S1743921308014634

    Google Scholar 

  • N.V. Zolotova, D.I. Ponyavin, Impulse-like behavior of the sunspot activity. Astron. Rep. 56, 250–255 (2012). doi:10.1134/S1063772912030080

    ADS  Google Scholar 

  • T.H. Zurbuchen, A new view of the coupling of the sun and the heliosphere. Annu. Rev. Astron. Astrophys. 45, 297–338 (2007). doi:10.1146/annurev.astro.45.010807.154030

    ADS  Google Scholar 

Download references

Acknowledgements

The paper was stimulated by the workshop “The solar activity cycle: physical causes and consequences”. It is a pleasure to thank André Balogh, Hugh Hudson, Kristof Petrovay, Rudolf von Steiger and the International Space Science Institute for financial support, excellent organization and hospitality. We thank SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Royal Observatory (Greenwich), Wilcox Solar Observatory, NOAA NGDC, GSFC, IZMIRAN Cosmic Ray group, WDC for Geomagnetism (Kyoto) providing their data in open access. We thank the Birmingham Solar Oscillations Network for making their data available to us. G.B. acknowledges support from the Russian Academy of Sciences. A.M.B thanks the Institute of Advanced Study, University of Warwick for their support. Y.E. acknowledges support from the UK Science and Technology Facilities Council (STFC). A.M.B. and Y.E. acknowledge the Leverhulme trust for funding “Probing the Sun: inside and out” project upon which this research is partly based. V.N.: This work was supported by the European Research Council under the SeismoSun Research Project No. 321141 and the BK21 plus program through the National Research Foundation funded by the Ministry of Education of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-M. Broomhall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevskaya, G., Broomhall, AM., Elsworth, Y. et al. A Combined Analysis of the Observational Aspects of the Quasi-biennial Oscillation in Solar Magnetic Activity. Space Sci Rev 186, 359–386 (2014). https://doi.org/10.1007/s11214-014-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0068-0

Keywords

Navigation