Skip to main content
Log in

Lower and Upper Ionosphere of Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The ionosphere of Mars has been explored mostly with the radio occultation experiment onboard Mariners 6, 7, 9; Mars 2, 3, 4, 6; Viking 1, 2, and more recently on Mars Global Surveyor (MGS) and Mars Express (MEX). In addition to the radio occultation experiment, MEX also carried Mars Advanced Radar for the Subsurface and Ionosphere Sounding (MARSIS) experiment which provided electron density profiles well above the main ionospheric peak. The atmosphere of Mars was measured directly by the neutral mass spectrometer onboard Viking 1 and 2 Landers. Later, an accelerometer and radio occultation experiment on MGS provided large data sets of atmospheric density at various locations in the upper and lower atmospheres of Mars, respectively. In this paper we review results of these upper and lower atmospheric/ionospheric measurements. Results of these measurements have been compared with theoretical models by several workers; therefore, we also review various atmospheric and ionospheric models of Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54

Similar content being viewed by others

References

  • M.H. Acuña et al., Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor Mission. Science 279, 1676–1680 (1998)

    ADS  Google Scholar 

  • L.G. Adolfsson, B.A.S. Gustafson, C.D. Murray, The Martian atmosphere as a meteoroid detector. Icarus 199, 144–152 (1996)

    ADS  Google Scholar 

  • A.C. Aikin, The lower ionosphere of Mars. Icarus 9, 487–497 (1968). doi:10.1016/0019-1035(68)90042-0

    ADS  Google Scholar 

  • D.E. Anderson, Mariner 6, 7, and 9 ultraviolet spectrometer: Analysis of hydrogen Lyman alpha data. J. Geophys. Res. 79, 1513–1518 (1974)

    ADS  Google Scholar 

  • D. Banfield, B.J. Conrath, J. Pearl, M.D. Smith, P.R. Christensen, R.J. Wilson, Forced waves in the Martian atmosphere from MGS/TES nadir data. Icarus 161, 319–345 (2003)

    ADS  Google Scholar 

  • C.A. Barth, Photochemistry of the atmosphere of Mars, in The Photochemistry of the Atmospheres, ed. by J.S. Levine (Academic Press, New York, 1985), pp. 337–392

    Google Scholar 

  • C.A. Barth, C.W. Hord, Mariner ultraviolet spectrometer topography and polar cap. Science 173, 197–201 (1971). doi:10.1126/science.173.3993.197

    ADS  Google Scholar 

  • C.A. Barth, C.W. Hord, J.B. Pearce, K.K. Kelly, G.P. Anderson, A.I. Stewart, Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. J. Geophys. Res. 76, 2213–2227 (1971)

    ADS  Google Scholar 

  • M.J.S. Belton, D.M. Hunten, The abundance and temperature of CO2 in the Martian atmosphere. Astrophys. J. 145, 454–467 (1966)

    ADS  Google Scholar 

  • M.J.S. Belton, D.M. Hunten, The spectrographic detection of topographic features on Mars. Science 166, 225–227 (1969)

    ADS  Google Scholar 

  • J.-L. Bertaux, F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, O. Korablev, Discovery of an aurora on Mars. Nature 435, 790–794 (2005)

    ADS  Google Scholar 

  • K. Biemann, T. Owen, D.R. Rushneck, A.L. lafleur, D.W. Howarth, The atmosphere of Mars near the surface: Isotope ratios and upper limits on noble gases. Science 194, 76–78 (1976)

    ADS  Google Scholar 

  • W.J. Borucki, Z. Levin, R.C. Whitten, R.G. Keesee, L.A. Capone, O.B. Toon, J. Dubach, Predicted electrical conductivity between 0 and 80 km in the Venusian atmosphere. Icarus 51, 302–321 (1982)

    ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, E.C. Ridley, R.E. Dickinson, The Mars thermosphere II. General circulation with coupled dynamical and composition. J. Geophys. Res. 95, 14811–14827 (1990)

    ADS  Google Scholar 

  • S.W. Bougher, S. Engel, D.P. Hinson, J.M. Forbes, Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications. Geophys. Res. Lett. 28(16), 3091–3094 (2001)

    ADS  Google Scholar 

  • S.W. Bougher, S. Engel, D.P. Hinson, J.R. Murphy, MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res. 109, E03010 (2004)

    ADS  Google Scholar 

  • S.W. Bougher, J.R. Murphy, J.M. Bell, M.A. Lopez-Valverde, P.G. Withers, Polar warming in the Mars lower thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006)

    ADS  Google Scholar 

  • S.W. Bougher, P.-L. Blelly, M. Combi, J.L. Fox, I. Mueller-Wodarg, A. Ridley, R.G. Roble, Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. 139, 107–141 (2008)

    ADS  Google Scholar 

  • S.W. Bougher, T.M. McDunn, K.A. Zoldak, J.M. Forbes, Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balance. Geophys. Res. Lett. 36, L05201 (2009). doi:10.1029/2008GL036376

    ADS  Google Scholar 

  • L.H. Brace, H.A. Taylor, T.I. Gombosi, A.J. Kliore, W.C. Knudsen, A.F. Nagy, The ionosphere of Venus: Observations and their interpretations, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz, (1983), pp. 779–840

    Google Scholar 

  • D.A. Brain, Mars Global Surveyor measurements of the Martian solar wind interaction. Space Sci. Rev. 126, 77–112 (2006)

    ADS  Google Scholar 

  • D. Brain et al., A comparison of global models for the solar wind interaction with Mars. Icarus 206, 149–151 (2010)

    ADS  Google Scholar 

  • G.P. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere, Chemistry and Physics of Stratosphere and Mesosphere (Springer, New York, 2005)

    Google Scholar 

  • S.H. Brecht, S.A. Ledvina, The solar wind interaction with the Martian ionosphere/atmosphere. Space Sci. Rev. 126, 15–38 (2006)

    ADS  Google Scholar 

  • T.K. Breus, A.M. Krymskii, D.H. Crider, N.F. Ness, D. Hinson, K.K. Barashyan, Effect of the solar radiation in the topside atmosphere/ionosphere of Mars: Mars Global Surveyor observations. J. Geophys. Res. 109, A09310 (2004)

    ADS  Google Scholar 

  • H.V. Cane, R.E. McGuire, T.T. von Rosenvinge, Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares. Astrophys. J. 301, 448–459 (1986)

    ADS  Google Scholar 

  • T. Cavalie et al., Vertical temperature profile and mesospheric winds retrieval on Mars from CO; millimeter observations. Comparison with general circulation model predictions. Astron. Astrophys. 489, 795–809 (2008)

    ADS  Google Scholar 

  • R.H. Chen, T.E. Cravens, A.F. Nagy, The Martian ionosphere in light of the Viking observations. J. Geophys. Res. 83, 3871–3876 (1978)

    ADS  Google Scholar 

  • A.A. Christou, Annual meteor showers at Venus and Mars: Lession from the Earth. Mon. Not. R. Astron. Soc. 402, 2759–2770 (2010)

    ADS  Google Scholar 

  • A.A. Christou, K. Beurle, Meteoroid streams at Mars: Possibilities and implications. Planet. Space Sci. 47, 1475–1485 (1999)

    ADS  Google Scholar 

  • F. Cipriani, F. Leblanc, J.J. Berthelier, Martian corona: Nonthermal sources of hot heavy species. J. Geophys. Res. 112, E07001 (2007). doi:10.1029/2006JE002818

    ADS  Google Scholar 

  • R.T. Clancy, M.J. Wolff, P.B. James, Minimal aerosols loading and global increases in atmospheric ozone during 1996–1997 Martian northern spring seasons. Icarus 138, 49–63 (1999)

    ADS  Google Scholar 

  • T.E. Cravens, A.F. Nagy, Aeronomy of inner planets. Rev. Geophys. 21, 263–273 (1983). doi:10.1029/RG021i002p00263

    ADS  Google Scholar 

  • J.A. Crisp, M. Adler, J.R. Matijevic, S.W. Squyres, R.E. Arvidson, D.M. Kass, Mars exploration rover mission. J. Geophys. Res. 108(E12), 8061–8071 (2003). doi:10.1029/2002JE002038

    Google Scholar 

  • A. Dalgarno, M.B. McElroy, Mars: Is nitrogen present? Science 170, 167–168 (1970)

    ADS  Google Scholar 

  • I. Dandouras, H. Reme, J.B. Cao, P. Escoubet, P.C. Brandt, Abstract on magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star Spacecraft: Solar Extreme Events. Symposium held at Athens in September 2007

  • A. Domokos, J.F. Bell, P. Brown, M.T. Lemmon, R. Suggs, J. Vaubaillon, W. Cook, Measurement of the meteoroid flux at Mars. Icarus 191, 141–150 (2007)

    ADS  Google Scholar 

  • F. Duru, D.A. Gurnett, D.D. Morgan, R. Modolo, A.F. Nagy, D. Najib, Electron densities in the upper ionosphere of Mars from the excitation of electron plasma oscillations. J. Geophys. Res. 113, A07302 (2008)

    ADS  Google Scholar 

  • F. Duru et al., Steep, transient densitygradients in the Martian ionosphere similar to the ionopause at Venus. J. Geophys. Res. 114, A12310 (2009). doi:10.1029/2009JA014711

    ADS  Google Scholar 

  • X. Fang, M.W. Liemohn, A.F. Nagy, J. Luhmann, Y. Ma, On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus 206, 130–138 (2010)

    ADS  Google Scholar 

  • K. Fast et al., Ozone abundance on Mars from infrared heterodyne spectra II. Validating photochemical models. Icarus 183, 396–402 (2006)

    ADS  Google Scholar 

  • M.O. Fillingim, L.M. Peticolas, R.J. Lillis, D.A. Brain, J.S. Halekas, D. Lummerzheim, S.W. Bougher, Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences. Icarus 206, 112–119 (2010)

    ADS  Google Scholar 

  • G. Fjeldbo, W.C. Fjeldbo, V. Eshleman, Models for the atmosphere of Mars based on the Mariner 4 occultation experiment. J. Geophys. Res. 71, 2307–2316 (1966)

    ADS  Google Scholar 

  • G. Fjeldbo, A. Kliore, B. Seidel, The Martian 1969 occultation measurements of the upper atmosphere of Mars. Radio Sci. 5, 381–386 (1970)

    ADS  Google Scholar 

  • G. Fjeldbo, D. Sweetnam, J. Brenkle, E. Christensen, D. Farless, J. Mehta, B. Seidel, W. Michael Jr., A. Wallio, M. Grossi, Viking radio occultation measurements of Martian atmosphere and topography: Primary mission covering age. J. Geophys. Res. 82, 4317–4324 (1977)

    ADS  Google Scholar 

  • J.L. Fox, Airglow and Aurora in the atmosphere of Venus and Mars, in Venus and Mars: Atmosphere, Ionosphere, and Solar Wind Interactions, ed. by J.G. Luhmann, M. Tatrallyay, R.O. Pepin. Geophys. Monogr. Ser., vol. 66 (AGU, Washington, 1992), pp. 191–222

    Google Scholar 

  • J.L. Fox, The production and escape of nitrogen atoms on Mars. J. Geophys. Res. 98, 3297–3310 (1993). doi:10.1029/92JE02289

    ADS  Google Scholar 

  • J.L. Fox, Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. 114, E12005 (2009). doi:10.1029/2009JE003432

    ADS  Google Scholar 

  • J.L. Fox, A. Dalgarno, Ionization, luminosity, and heating of the upper atmosphere of Mars. J. Geophys. Res. 84, 7315–7331 (1979)

    ADS  Google Scholar 

  • J.L. Fox, A. Hac, Spectrum of hot O at the exobase of the terrestrial planets. J. Geophys. Res. 102, 24005–24011 (1997). doi:10.1029/97JA02089

    ADS  Google Scholar 

  • J.L. Fox, A.J. Weber, MGS electron density profiles: Analysis and modelling of peak altitudes. Icarus 221, 1002–1019 (2012)

    ADS  Google Scholar 

  • J.L. Fox, K.E. Yeager, Morphology of the near termination Martian ionosphere: A comparison of models and data. J. Geophys. Res. 111, A10309 (2006)

    ADS  Google Scholar 

  • J.L. Fox, K.E. Yeager, MGS electron density profiles: Analysis of the peak magnitudes. Icarus 200, 468–479 (2009)

    ADS  Google Scholar 

  • J.L. Fox, J.F. Brannon, H.S. Porter, Upper limits to the nightside ionosphere of Mars. Geophys. Res. Lett. 20, 1339–1342 (1993)

    ADS  Google Scholar 

  • J.L. Fox, P. Zhon, S.W. Bougher, The Martian thermosphere/ionosphere at high and low solar activities. Adv. Space Res. 17(11), 203 (1996)

    ADS  Google Scholar 

  • D. Grassi et al., The Martian atmosphere above great volcanoes: Early Planetary Fourier Spectrometer observations. Planet. Space Sci. 53, 1053–1064 (2005)

    ADS  Google Scholar 

  • D.A. Gurnett et al., Radar soundings of the ionosphere of Mars. Science 310, 1929–1933 (2005)

    ADS  Google Scholar 

  • D.A. Gurnett et al., An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft. Adv. Space Res. 41, 1335–1346 (2008). doi:10.1016/j.asr.2007.01.062

    ADS  Google Scholar 

  • S.A. Haider, Chemistry on the nightside ionosphere of Mars. J. Geophys. Res. 102, 407–416 (1997). doi:10.1029/96JA02353

    ADS  Google Scholar 

  • S.A. Haider, Role of X-ray flares and CME in the E region ionosphere of Mars: MGS observations. Planet. Space Sci. 63/64, 56–61 (2012)

    ADS  Google Scholar 

  • S.A. Haider, J. Kim, A.F. Nagy, C.N. Keller, M.I. Verigin, K.I. Gringauz, N.M. Shutte, K. Szego, P. Kiraly, Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars. J. Geophys. Res. 97(A7), 10637–10641 (1992). doi:10.1029/92JA00317

    ADS  Google Scholar 

  • S.A. Haider, S.P. Seth, E. Kallio, K.I. Oyama, Solar EUV and electron-proton-hydrogen atom produced ionosphere on Mars: Comparative studies of particle fluxes and ion production rates due to different processes. Icarus 159, 18–30 (2002). doi:10.1006/icar.2002.6919

    ADS  Google Scholar 

  • S.A. Haider, S.P. Seth, V.R. Choksi, K.I. Oyama, Model of photoelectron impact ionization within the high latitude ionosphere at Mars: Comparison of calculated and measured electron density. Icarus 185, 102–112 (2006). doi:10.1016/j.icarus.2006.07.010

    ADS  Google Scholar 

  • S.A. Haider, V. Singh, V.R. Choksi, W.C. Maguire, M.I. Verigin, Calculated densities of H3O+(H2O)n, \(\mathrm{NO}_{2}^{-}(\mathrm{H}_{2}\mathrm{O})_{\mathrm{n}}\), \(\mathrm{CO}_{3}^{-}(\mathrm{H}_{2}\mathrm{O})_{\mathrm{n}}\) and electron in the nighttime ionosphere of mars: impact of solar wind electron and galactic cosmic rays. J. Geophys. Res. 112, A12309 (2007). doi:10.1029/2007JA012530

    ADS  Google Scholar 

  • S.A. Haider, V. Sheel, V. Singh, W.C. Maguire, G.J. Molina-Cuberos, Model calculation of production rates, ion and electron densities in the evening troposphere of Mars at altitudes 67N and 62S: Seasonal variability. J. Geophys. Res. 113, A08320 (2008). doi:10.1029/2007JA012980

    ADS  Google Scholar 

  • S.A. Haider, M.A. Abdu, I.S. Batista, J.H. Sobral, E. Kallio, E. Kallio, W.C. Maguire, M.I. Verigin, On the responses to solar X-ray flare and coronal mass ejection in the ionosphere of Mars and Earth. Geophys. Res. Lett. 36, L13104 (2009a). doi:10.1029/2009GL038694

    ADS  Google Scholar 

  • S.A. Haider, M.A. Abdu, I.S. Batista, J.H. Sobral, X. Luan, E. Kallio, W.C. Maguire, M.I. Verigin, V. Singh, D, E, and F layers in the daytime at high-latitude terminator ionosphere of Mars: Comparison with Earth’s ionosphere using COSMIC data. J. Geophys. Res. 114, A03311 (2009b). doi:10.1029/2008JA13709

    ADS  Google Scholar 

  • S.A. Haider, M.A. Abdu, I.S. Batista, J.H. Sobral, V. Sheel, G.J. Molina-Cuberos, W.C. Magurie, M.I. Verigin, Zonal wave structures in the nighttime tropospheric density and temperature and in the D-region ionosphere over Mars: Modeling and observation. J. Geophys. Res. 114, A12351 (2009c)

    Google Scholar 

  • S.A. Haider, S.P. Seth, D.A. Brain, D.L. Mitchell, T. Majeed, S.W. Bougher, Modeling photoelectron transport in the Martian ionosphere at Olympus Mons and Syrtis Major: MGS observations. J. Geophys. Res. 115, A08310 (2010a). doi:10.1029/2009JA014968

    ADS  Google Scholar 

  • S.A. Haider, V. Sheel, M.D. Smith, W.C. Maguire, G.J. Molina-Cuberos, Effect of dust storms on the D region of the Martian Ionosphere: Atmospheric electricity. J. Geophys. Res. 115, A12336 (2010b). doi:10.1029/2010JA016125

    ADS  Google Scholar 

  • S.A. Haider, K.K. Mahajan, E. Kallio, Mars ionosphere: A review of experimental results and modeling studies. Rev. Geophys. 49, RG4001 (2011)

    ADS  Google Scholar 

  • S.A. Haider, S.M.P. McKenna-Lawlor, C.D. Fry, R. Jain, K.N. Joshipura, Effects of solar X-ray flares in the E region ionosphere of Mars: First model results. J. Geophys. Res. 117, A05326 (2012). doi:10.1029/2011JA017436

    ADS  Google Scholar 

  • S.A. Haider, B.M. Pandya, G.J. Molina-Cuberos, Nighttime ionosphere caused by meteoroid ablation and solar wind electron-proton-hydrogen impact: MEX observation and modelling. J. Geophys. Res. 115, 1–9 (2013). doi:10.1002/jgra.50590

    Google Scholar 

  • W.B. Hanson, G.P. Mantas, Viking electron temperature measurements: Evidence for a magnetic field in the Martian atmosphere. J. Geophys. Res. 93, 7538–7544 (1988)

    ADS  Google Scholar 

  • W.B. Hanson, S. Sanatani, R. Zuccaro, The Martian ionosphere as observed by the Viking retarding potential analyzers. J. Geophys. Res. 82, 4351–4363 (1977)

    ADS  Google Scholar 

  • J.K. Hargreaves, The Solar-Terrestrial Environment: An Introduction to Geospace—The Science of Terrestrial Upper Atmosphere, Ionosphere and Magnetosphere (Cambridge Univ. Press, New York, 1992)

    Google Scholar 

  • M.G. Heavens et al., Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High altitude tropical dust maximum at northernsummer solstice. J. Geophys. Res. 116, E01007 (2011). doi:10.1029/2010JE003692

    ADS  Google Scholar 

  • S.L. Hess et al., Mars climatology from Viking 1 after 20 sols. Science 194, 78–81 (1976a)

    ADS  Google Scholar 

  • S.L. Hess et al., Early meteorological results from Viking 2 Lander. Science 194, 1352–1353 (1976b)

    ADS  Google Scholar 

  • D.P. Hinson, Mars global surveyor radio occultation profiles of the ionosphere-reorganized, MGS-M-RSS-5-EDS-V1.0, vol. USA_NASA_JPL_MORS_1102, NASA Planetary Data System (NASA Goddard Space Flight Center, Greenbelt, 2007)

  • D.P. Hinson, R.J. Wilson, Temperature inversion, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res. 109, E01002 (2004). doi:10.1029/2003JE00129

    ADS  Google Scholar 

  • D.P. Hinson, R.A. Simpson, J.D. Twicken, G.L. Tyler, F.M. Flassar, Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999)

    ADS  Google Scholar 

  • D.P. Hinson, M.D. Smoth, B.J. Conrath, Comparison of atmospheric temperatures obtained through infrared sounding and radio occultation by Mars Global Surveyor. J. Geophys. Res. 109, E12002 (2004). doi:10.1029/2004JE002344

    ADS  Google Scholar 

  • J.L. Hollingsworth, J.R. Barnes, Forced, stationary planetary waves in Mars’winter atmosphere. J. Atmos. Sci. 53, 428–448 (1996)

    ADS  Google Scholar 

  • F. Hourdin, P. LeVan, F. Forget, O. Talagrand, Meteorological variability and annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993)

    ADS  Google Scholar 

  • D.M. Hunten, Escape of atmospheres, ancient and modern. Icarus 85, 1–20 (1990)

    ADS  Google Scholar 

  • T. Imamura, T. Ogawa, Radiative damping og gravity waves in the terrestrial planetary atmospheres. Geophys. Res. Lett. 22, 267–270 (1995)

    ADS  Google Scholar 

  • W.H. Ip, Meteoroid ablation processes in Titan’s atmosphere. Nature 345, 511–512 (1990)

    ADS  Google Scholar 

  • W.H. Ip, ENA diagnostic of auroral activity at Mars. Planet. Space Sci. 63/64, 83–86 (2012)

    ADS  Google Scholar 

  • V.G. Istomin, K.V. Grechnev, Argon in the Martian atmosphere: Evidence from the Mars 6 descent module. Icarus 28, 155–158 (1976)

    ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Atmospheric effects of proton precipitation in the Martian atmosphere and its connection to the Mars-solar wind interaction. J. Geophys. Res. 106, 5617–5634 (2001)

    ADS  Google Scholar 

  • E. Kallio, K. Liu, R. Javinen, V.Pohjola.P. Janhunen, Oxygen ion excape at Mars in ahybrid model: High energy and low energy ions. Icarus 206, 152–163 (2010). doi:10.1016/j.icarus.2009.05.015

    ADS  Google Scholar 

  • L.D. Kaplan, J. Connes, P. Connes, Carbon monoxide in the Martian atmosphere. Astrophys. J. 157, L187–L192 (1969)

    ADS  Google Scholar 

  • J. Kar, Recent advances in planetary ionospheres. Space Sci. Rev. 77, 193–266 (1996). doi:10.1007/BF00226224

    ADS  Google Scholar 

  • G.M. Keating et al., The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1675 (1998). doi:10.1126/science.279.5357.1672

    ADS  Google Scholar 

  • M.C. Kelley, The Earth’s Ionosphere (Academic Press, San Diego, 1989)

    Google Scholar 

  • J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 29339–29342 (1998)

    ADS  Google Scholar 

  • A.J. Kliore, J.G. Luhmann, Solar cycle effects on the structure of the electron density profiles in the dayside ionosphere of Venus. J. Geophys. Res. 96, 21281–21289 (1991)

    ADS  Google Scholar 

  • A.J. Kliore, D.L. Cane, G.S. Levy, V.R. Eshleman, G. Fjeldbo, F.D. Drake, Occultation experiment: Results of the first direct measurement of Mars’ atmosphere and ionosphere. Science 149, 1243–1248 (1965)

    ADS  Google Scholar 

  • A.J. Kliore, D.L. Cain, G. Fjeldbo, B.L. Seidel, M.J. Sykes, S.I. Rasool, The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus 17, 484–516 (1972)

    ADS  Google Scholar 

  • A.J. Kliore, G. Fjeldbo, B.L. Seidel, M.J. Sykes, P.M. Woiceshyn, S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended Mission coverage of polar and intermediate latitudes. J. Geophys. Res. 78, 4331–4351 (1973)

    ADS  Google Scholar 

  • M.A. Kolosov, O.I. Yakovlev, Yu.M. Kruglov, B.P. Trusov, A.I. Efimov, V.V. Kerzhanovich, Radio sounding of the Martian atmosphere by spacecraft. Radio Eng. Electron. Phys. 17, 1993–1999 (1972)

    Google Scholar 

  • M.A. Kolosov et al., Results of two-frequency radio occultation of ‘Mars-2’ by Ionosphere of Mars. Radio Eng. Electron. Phys. 18, 1471–1474 (1973)

    Google Scholar 

  • M.A. Kolosov et al., Results of investigating the Martian atmosphere by radio occultation using Mars 2, Mars 4 and Mars 6 spacecraft. Kosm. Issled 13, 54–59 (1975)

    ADS  Google Scholar 

  • T.Y. Kong, M.B. McElroy, Photochemistry of the Martian atmosphere. Icarus 32, 168–176 (1977)

    ADS  Google Scholar 

  • A.J. Kopf, D.A. Gurnett, D.D. Morgan, D.L. Kirchner, Transient layers in the topside ionosphere of Mars. Geophys. Res. Lett. L17102 (2008). doi:10.1029/2008GL034948

  • E. Kopp, U. Hermann, Ion composition in the lower ionosphere. Ann. Geophys. 2, 83–94 (1984)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107, 5128 (2002)

    Google Scholar 

  • V.A. Krasnopolsky, Spectroscopic mapping of Mars CO mixing ratio: Detection of north south asymmetry. J. Geophys. Res. 108(E2), 5010 (2003a)

    Google Scholar 

  • V.A. Krasnopolsky, Mapping of Mars O2 1.27 mm dayglow at four seasonal points. Icarus 165, 315–325 (2003b)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Ozone photochemistry of the Martian lower atmosphere. Planet. Space Sci. 27, 113–120 (1979)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, S. Bowyer, S. Chakrabarti, G.R. Gladstone, J.S. McDonald, First measurement of helium on Mars: Implications for the problem of radiogenic gases on the terrestrial planets. Icarus 109, 337–351 (1994). doi:10.1006/icar.1994.1098

    ADS  Google Scholar 

  • A.M. Krymskii, T.K. Breus, N.F. Ness, D.P. Hinson, D.I. Bojkov, Effect of crustal magnetic fields on the near terminator ionospheres at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor. J. Geophys. Res. 108, 1431 (2003). doi:10.1029/2002JA009662

    Google Scholar 

  • G.P. Kuiper (ed.), The Atmosphere of Earth and Planets (1952). Chapter XII

    Google Scholar 

  • S. Kumar, D.M. Hunten, Venus: An ionospheric model with an exospheric temperature of 350 K. J. Geophys. Res. 79, 2529–2532 (1974)

    ADS  Google Scholar 

  • A. Kumar, N.K. Lodhi, K.K. Mahajan, Near terminator ionosphere during sunspot cycle 23 from Mars Global Surveyor radio science measurements. Indian J. Radio Space Phys. 36, 457–465 (2007)

    Google Scholar 

  • H. Lammer, S.J. Bauer, Nonthermal atmospheric escape from Mars and Titan. J. Geophys. Res. 96, 1819–1825 (1991). doi:10.1029/90ja01676

    ADS  Google Scholar 

  • H. Lammer, W. Stumptner, S.J. Bauer, Upper limit for the Martian exospheric number density during the Planet B/Nozomi mission. Planet. Space Sci. 48, 1473–1478 (2000)

    ADS  Google Scholar 

  • F. Leblanc, J.G. Luhmann, R.E. Johnson, E. Chassefiere, Some expected impacts of a solar energetic particle event at Mars. J. Geophys. Res. 107, 1058 (2002)

    Google Scholar 

  • F. Leblanc et al., Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA-3 and MARSIS measurements. J. Geophys. Res. 113, A08311 (2008)

    ADS  Google Scholar 

  • S.A. Ledvina, Y.-J. Ma, E. Kallio, Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev. 139, 143–189 (2008). doi:10.1007/s11214-008-9384-6

    ADS  Google Scholar 

  • F. Lefevre, S. Lebonnois, F. Montmessin, F. Forget, Three dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004 (2004). doi:10.1029/2004JE002268

    ADS  Google Scholar 

  • F. Lefevre et al., Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971–975 (2008)

    ADS  Google Scholar 

  • L. Lei, Y. Zhang, Model investigation of the influence of the crustal magnetic field on the oxygen ion distribution in the near Martian tail. J. Geophys. Res. 114, A06215 (2009). doi:10.1029/2008JA013850

    ADS  Google Scholar 

  • R.J. Lillis, D.L. Mitchell, R.P. Lin, M.H. Acuna, Electron reflectometry in the Martian atmosphere. Icarus 194, 544–561 (2008). doi:10.1016/j.icarus.2007.09.030

    ADS  Google Scholar 

  • R.J. Lillis, M.O. Fillingim, L.M. Peticolas, D.A. Brain, R.P. Lin, S.W. Bougher, The nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization. J. Geophys. Res. 114, E11009 (2009)

    ADS  Google Scholar 

  • R.J. Lillis, D.A. Brain, S.L. England, P. Withers, M.O. Fillingim, A. Safaeinili, Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. J. Geophys. Res. 115, A11314 (2010)

    ADS  Google Scholar 

  • R.J. Lillis, M.O. Fillingim, D.A. Brain, Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons. J. Geophys. Res. 116, A12317 (2011)

    ADS  Google Scholar 

  • G.F. Lindal, H.B. Hotz, D.N. Sweetnam, Z. Shippony, J.P. Brenkle, G.V. Hartsell, R.T. Spear, W.H. Michael Jr., Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res. 84, 8443–8456 (1979)

    ADS  Google Scholar 

  • J.L. Lovell, M.L. Dulding, J.E. Humble, An extended analysis of the September 1989 Cosmic ray ground level enhancement. J. Geophys. Res. 103, 23733–23742 (1998). doi:10.1029/98JA02100

    ADS  Google Scholar 

  • R. Lundin et al., Plasma acceleration above Martian magnetic anomalies. Science 311, 980 (2006). doi:10.1126/science.1122071

    ADS  Google Scholar 

  • R. Lundin, S. Barabash, E. Dubinin, D. Winingham, M. Yamauchi, Low latitudeacceleration of ionospheric ions at Mars. Geophys. Res. Lett. 38, L08108 (2011). doi:10.1029/2011GL047064

    ADS  Google Scholar 

  • Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hanse, Three dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109, A07211 (2004)

    ADS  Google Scholar 

  • Y. Ma et al., Plasma flow and related phenomena in planetary aeronomy. Space Sci. Rev. 139, 311–353 (2008). doi:10.1007/s11214-008-9389-1

    ADS  Google Scholar 

  • J.A. Magalhaes, J.T. Schofield, A. Seiff, Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res. 104(E4), 8943–8955 (1999)

    ADS  Google Scholar 

  • K.K. Mahajan, J. Kar, Planetary ionosphere. Space Sci. Rev. 47, 303–397 (1988). doi:10.1007/BF00243558

    ADS  Google Scholar 

  • K.K. Mahajan, S. Singh, A. Kumar, S. Raghuvanshi, S.A. Haider, Mars Global Surveyor radio science electron density profiles: Some anomalous features in the Martian ionosphere. J. Geophys. Res. 112, E10006 (2007). doi:10.1029/2006JE002876

    ADS  Google Scholar 

  • K.K. Mahajan, N.K. Lodhi, S. Singh, Ionospheric effects of solar flares at Mars. Geophys. Res. Lett. 36, L15207 (2009). doi:10.1029/2009GL039454

    ADS  Google Scholar 

  • A.P. Mayo et al., Lander locations, Mars physical ephemeris, and solar system parameters: Determination from Viking Lander tracking data. J. Geophys. Res. 82, 4297–4303 (1977)

    ADS  Google Scholar 

  • M.B. McElroy, The upper atmosphere of Mars. Astrophys. J. 150, 1125–1138 (1967)

    ADS  Google Scholar 

  • M.B. McElroy, T.M. Donahue, Stability of the Martian atmosphere. Science 177, 986–988 (1972)

    ADS  Google Scholar 

  • M.B. McElroy, Y.L. Yung, A.O. Neir, Isotopic composition of nitrogen: Implications for the past history of Mars atmosphere. Science 194, 70–72 (1976)

    ADS  Google Scholar 

  • S. McKenna-Lawlor, P. Goncalves, A. Keating, G. Reitz, D. Matthia, Overview of energetic particle hazards during prospective manned mission to Mars. Planet. Space Sci. 63/64, 12–132 (2012)

    Google Scholar 

  • M. Mendillo, S. Smith, J. Wroten, H. Rishbeth, D. Hinson, Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res. 108, 1432–1443 (2003)

    Google Scholar 

  • M. Mendillo, X. Pi, S. Smith, C. Martinis, J. Wilson, D. Hinson, Ionospheric effects upon a satellite navigation system at Mars. Radio Sci. 39, RS2028 (2004)

    ADS  Google Scholar 

  • M. Mendillo, P. Withers, D. Hinson, H. Rishbeth, B. Reinisch, Effects of solar flares on the ionosphere of Mars. Science 311, 1135–1138 (2006)

    ADS  Google Scholar 

  • M. Mendillo, A. Lollo, P. Withers, M. Matta, M. Pätzold, S. Tellmann, Modeling Mars’ ionosphere with constraints from same-day observations by Mars Global Surveyor and Mars Express. J. Geophys. Res. 116, A11303 (2011)

    ADS  Google Scholar 

  • M. Michael, M. Barani, S.N. Tripathi, Numerical predictions of aerosol charging and electrical conductivity of the lower atmosphere of Mars. Geophys. Res. Lett. 34, L04201 (2007). doi:10.1029/2006GL028434

    ADS  Google Scholar 

  • D.L. Mitchell, R.P. Lin, H. Rème, D.H. Crider, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Oxygen auger electrons observed in Mars ionosphere. Geophys. Res. Lett. 27, 1871–1874 (2000)

    ADS  Google Scholar 

  • D.L. Mitchell, R.J. Lillis, R.P. Lin, J.E.P. Connerney, M.H. Acuña, A global map of Mars’ crustal magnetic field based on electron reflectometer. J. Geophys. Res. 112, E01002 (2007)

    ADS  Google Scholar 

  • R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Simulated solar wind plasma interaction with the Martian exosphere: Influence of the solar EUV flux on the bow shock and the magnetic pile-up boundary. Ann. Geophys. 24, 3403–3410 (2006)

    ADS  Google Scholar 

  • G.J. Molina-Cuberos, H. Lichtenegger, K. Schwingenschuh, J.J. Lopez-Moreno, R. Rodrigo, Ion-neutral chemistry model of the lower ionosphere of Mars. J. Geophys. Res. 105(E5), 31–37 (2002)

    Google Scholar 

  • G.J. Molina-Cuberos, O. Witasse, J.-P. Lebreton, R. Rodrigo, J.J. Loṕez-Moreno, Meteoric ions in the atmosphere of Mars. Planet. Space Sci. 51, 239–249 (2003)

    ADS  Google Scholar 

  • G.J. Molina-Cuberos, J.J. López-Moreno, F. Arnold, Meteoric Layers in planetary atmospheres. Space Sci. Rev. 137, 175–191 (2008)

    ADS  Google Scholar 

  • L. Montabone, S.R. Lewis, P.L. Read, D.P. Hinson, Validation of Martian meteorological data assimilation for MGS/TES using radio occultation measurements. Icarus 185, 113–132 (2006)

    ADS  Google Scholar 

  • D.D. Morgan, D.A. Gurnett, D.L. Kirchner, R.L. Huff, D.A. Brain, W.V. Boynton, M.H. Acuña, J.J. Plaut, G. Picardi, Solar control of radar wave absorption by the Martian ionosphere. Geophys. Res. Lett. 33, L13202 (2006)

    ADS  Google Scholar 

  • D.D. Morgan, D.A. Gurnett, D.L. Kirchner, J.L. Fox, E. Nielsen, J.J. Plaut, Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res. 113, A09303 (2008)

    ADS  Google Scholar 

  • V.I. Moroz, The atmosphere of Mars. Space Sci. Rev. 19, 763–843 (1976)

    ADS  Google Scholar 

  • P.M. Mul, J.W. McGowan, Temperature dependence of dissociative recombination for atmospheric ions NO, O2, N2. J. Phys. B 12, 1591–1602 (1979)

    ADS  Google Scholar 

  • A.F. Nagy, T.E. Cravens, S.G. Smith, H.A. Taylor, H.C. Brinton, Model calculations of the dayside ionosphere of Venus-Ionic composition. J. Geophys. Res. 85, 7795–7801 (1980)

    ADS  Google Scholar 

  • A.F. Nagy, M.W. Liemohn, J.L. Fox, J. Kim, Hot carbon densities in the exosphere of Mars. J. Geophys. Res. 106, 21565–21572 (2001)

    ADS  Google Scholar 

  • A.F. Nagy et al., The plasma environment of Mars. Space Sci. Rev. 111, 33–114 (2004)

    ADS  Google Scholar 

  • H. Nair, M. Allen, A.D. Anbar, Y.L. Yung, R.T. Claney, A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994)

    ADS  Google Scholar 

  • N.F. Ness, M.H. Acuna, J.E.P. Connerney, A.J. Kliore, T.K. Breus, A.M. Krymskii, P. Cloutier, S.J. Bauer, Effects of magnetic anomalies discovered at Mars on the structure of the Martian ionosphere and solar wind interaction as follows from radio occultation experiments. J. Geophys. Res. 105, 15991–16004 (2000)

    ADS  Google Scholar 

  • E. Nielsen, H. Zou, D.A. Gurnett, D.L. Kirchner, D.D. Morgan, R. Huff, R. Orosei, A. Safaeinili, J.J. Plaut, G. Picardi, Observations of vertical reflections from the topside martian ionosphere. Space Sci. Rev. 126, 373–388 (2006)

    ADS  Google Scholar 

  • A.O. Nier, M.B. McElroy, Composition and structure of Mars’ upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2. J. Geophys. Res. 82, 4341–4349 (1977)

    ADS  Google Scholar 

  • K. O’Brien, K.W. Friedberg, H.H. Sauer, D.F. Smart, Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environ. Int. 22, S9–S44 (1996)

    Google Scholar 

  • T. Owen, K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, A.L. Lafleur, The atmosphere of Mars: Detection of Krypton and Xenon. Science 194, 1293–1295 (1976)

    ADS  Google Scholar 

  • T. Owen, K. Biemann, D.R. Rushneck, J.E. Biller, D.W. Howarth, A.L. Lafleur, The composition of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 4635–4644 (1977)

    ADS  Google Scholar 

  • B.M. Pandya, S.A. Haider, Meteor impact perturbation in the lower ionosphere of Mars: MGS observations. Planet. Space Sci. 63/64, 105–109 (2012)

    ADS  Google Scholar 

  • T.D. Parkinson, D.M. Hunten, Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci. 29, 1380–1390 (1972)

    ADS  Google Scholar 

  • M. Pätzold, S. Tellmann, B. Ha¨usler, D. Hinson, R. Schaa, G.L. Tyler, A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005)

    ADS  Google Scholar 

  • J. Perrier et al., Global distribution of total ozone on Mars from SPICAM/MEX UV measurements. J. Geophys. Res. 111, E09S06 (2006). doi:10.1029/2006JE002681

    ADS  Google Scholar 

  • W.D. Pesnell, J.M. Grebowsky, Meteoric Magnesium in the Martian atmosphere. J. Geophys. Res. 105, 1695–1703 (2000)

    ADS  Google Scholar 

  • G. Picardi et al., MARSIS: Mars advanced radar for subsurface and ionospheric sounding, in Mars Express: The Scientific Payload, ed. by A. Wilson, A. Chicarro. Eur. Space Agency Spec. Publ., ESA-SP, vol. 1240 (2004), pp. 51–59

    Google Scholar 

  • S.I. Rasool, R.W. Stewart, Results and interpretation of the S-band occultation experiment on Mars and Venus. J. Atmos. Sci. 28, 869–878 (1971)

    ADS  Google Scholar 

  • S.I. Rasool, J.S. Hogan, R.W. Stewart, L.H. Russell, Temperature distributions in the lower atmosphere of Mars from Mariner 6 and 7 radio occultation data. J. Atmos. Sci. 27, 841–843 (1970)

    ADS  Google Scholar 

  • H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (Elsevier, New York, 1969)

    Google Scholar 

  • H. Rishbeth, M. Mendillo, Patterns of F2 layer variability. J. Atmos. Sol.-Terr. Phys. 63, 1661–1680 (2001)

    ADS  Google Scholar 

  • H. Rishbeth, M. Mendillo, Ionospheric layers of Mars and Earth. Planet. Space Sci. 52, 849–852 (2004)

    ADS  Google Scholar 

  • R. Rodrigo, E. Gracia-Alvarez, M.J. Lopez-Gonzalez, J.J. Lopez-Moreno, A non-steady one dimensional theoretical model of Mars’ neutral atmospheric composition between 30 and 200 km. J. Geophys. Res. 95, 14795–14810 (1990)

    ADS  Google Scholar 

  • R.P. Rohrbaugh, J.S. Nisbet, E. Bleuler, J.R. Herman, The effects of energetically produced \(\mathrm{O}^{+}_{2}\) on the ion temperature of the Martian thermosphere. J. Geophys. Res. 84, 3327–3336 (1979)

    ADS  Google Scholar 

  • A. Safaeinili, W. Kofman, J. Mouginot, Y. Gim, A. Herique, A.B. Ivanov, J.J. Plaut, G. Picardi, Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett. 34, L23204 (2007)

    ADS  Google Scholar 

  • N.A. Savich, V.A. Samovol, The night time ionosphere of Mars from Mars 4 and Mars 5 dual frequency radio occultation measurements. Space Res. XVI, 1009–1010 (1976)

    ADS  Google Scholar 

  • C.J. Schnjver, G.L. Siscoe, Heliophysics (Cambridge Univ. Press, Cambridge, 2010)

    Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionosphere of the terrestrial planets. Rev. Geophys. 18, 813–852 (1980). doi:10.1029/RG018i004p00813

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer in mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977)

    ADS  Google Scholar 

  • S.P. Seth, V. Brahmananda Rao, C.M. Esprito Santo, S.A. Haider, V.R. Choksi, Zonal variations of peak ionization rates in upper atmosphere of Mars at high latitude using Mars Global Surveyor accelerometer data. J. Geophys. Res. 11, A09308 (2006a)

    ADS  Google Scholar 

  • S.P. Seth, U.B. Jayanthi, S.A. Haider, Estimation of peak electron density in the upper ionosphere of Mars at high latitude (50°-70°N) using MGS ACC data. Geophys. Res. Lett. 33, L19204 (2006b)

    ADS  Google Scholar 

  • V. Sheel, S.A. Haider, Calculated production and loss rates of ions due to impact of galactic cosmic rays in the lower atmosphere of Mars. Planet. Space Sci. 63/64, 94–104 (2012)

    ADS  Google Scholar 

  • V. Sheel, S.A. Haider, P. Withers, K. Kozarev, I. Jun, S. Kang, G. Gronoff, C. Simon Wedlund, Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars. J. Geophys. Res. 117, A05312 (2012)

    ADS  Google Scholar 

  • H. Shinagawa, S.W. Bougher, A two-dimensional MHD model of the solar wind interaction with Mars. Earth Planets Space 51, 55–62 (1999)

    ADS  Google Scholar 

  • H. Shinagawa, T.E. Cravens, A one-dimensional multispecies magnetohydrodynamic model of the day side ionosphere of Mars. J. Geophys. Res. 94, 6506–6516 (1989)

    ADS  Google Scholar 

  • M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    ADS  Google Scholar 

  • M.D. Smith, THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus 202, 444–452 (2009)

    ADS  Google Scholar 

  • M.D. Smith, J.C. Pearl, B.J. Conrath, P.R. Christensen, Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res. 106, 945–956 (2001)

    Google Scholar 

  • M.D. Smith, G. Neumann, R.E. Arvidson, E.A. Guinness, S. Slavney, Mars global surveyor laser altimeter mission experiment gridded data record IEG025_A.TAB, MGS-M-MOLA-5-MEGDR-L3-V1.0, NASA Planetary Data System (2003)

  • H. Spinrad, G. Munch, L.D. Kaplan, The detection of water vapor on Mars. Astrophys. J. 137, 1319–1321 (1963)

    ADS  Google Scholar 

  • A.L. Sprague et al., Interannual similarity and variation in seasonal circulation of Mars’atmospheric Ar as seen by Gamma Ray Spectrometer on Mars Odyssey. J. Geophys. Res. 117, E04005 (2012). doi:10.1029/2011JE003873

    ADS  Google Scholar 

  • S. Tellmann, M. Patzold, B. Hausler, D.P. Hinson, G.L. Tyler, The structure of Marslower atmosphere from Mars Express Radio Science (MaRS) occultation measurements. J. Geophys. Res. 118, 306–320 (2013). doi:10.1029/jgre.20058

    Google Scholar 

  • W.K. Tobiska, T. Woods, F. Eparvier, R. Viereck, L. Floyd, D. Bouwer, G. Rottman, O.R. White, The solar 2000 empirical solar irradiance model and forecast tool. J. Atmos. Sol.-Terr. Phys. 62, 1233–1250 (2000). doi:10.1016/S1364-6826(00)00070-5

    ADS  Google Scholar 

  • A.H. Treiman, J.S. Treiman, Cometary dust streams at Mars: Preliminary predictions from meteor streams at Earth and from periodic comets. J. Geophys. Res. 105, 24571–24581 (2000)

    ADS  Google Scholar 

  • G.L. Tyler et al., MGS RST science data products, MGS-M-RSS-5-SDP-V1.0, vol. USA_NASA_JPL_ MORS_1038, NASA Planetary Data System (NASA Goddard Space Flight Center, Greenbelt, 2007)

  • A. Valeille, M.R. Combi, S.W. Bougher, V. Tenishev, A.F. Nagy, Three-dimensionalstudy of Mars upper thermosphere/ionosphere and hot oxygen corona: 2 solar cycle, seasonal variations, and evolution over history. J. Geophys. Res. 114, E11006 (2009a). doi:10.1029/2009JE003389

    ADS  Google Scholar 

  • A. Valeille, V. Tenishev, S.W. Bougher, M.R. Combi, A.F. Nagy, Three-dimensional study of Mars upper thermosphere/ionosphere and hot oxygen corona. J. Geophys. Res. 114, E11005 (2009b). doi:10.1029/2009JE003388

    ADS  Google Scholar 

  • M.B. Vasiliev et al., Preliminary results of dual frequency radio occultation of the Martian ionosphere with the aid of Mars 5 spacecraft. Kosm. Issled 13, 48–51 (1975)

    ADS  Google Scholar 

  • M.I. Verigin, K.I. Gringauz, N.M. Shutte, S.A. Haider, K. Szego, P. Kiraly, A.F. Nagy, T.I. Gombosi, On the possible source of the ionization in the nighttime Martian ionosphere 1. Phobos 2 HARP electron spectrometer measurements. J. Geophys. Res. 96, 19307–19313 (1991)

    ADS  Google Scholar 

  • B.P. Weiss, L.E. Fong, H. Vali, E.A. Lima, F.J. Baudenbacher, Paleointensity of the ancient Martian magnetic field. Geophys. Res. Lett. 35, L23207 (2008). doi:10.1029/2008GL035585

    ADS  Google Scholar 

  • R.C. Whitten, L. Colin, Ionosphere of Mars and Venus. Rev. Geophys. 12, 155–192 (1974)

    ADS  Google Scholar 

  • R.C. Whitten, I.G. Poppoff, J.S. Sims, The ionosphere of Mars below 80 km altitude—I. Quiescent conditions. Planet. Space Sci. 19, 243–250 (1971)

    ADS  Google Scholar 

  • R.C. Whitten, W.J. Borucki, S.N. Tripathi, Predictions of the electrical conductivity and charging of the aerosols in Titan’s nighttime atmosphere. J. Geophys. Res. 112, E04001 (2007). doi:10.1029/2006JE002788

    ADS  Google Scholar 

  • P. Withers, A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res. 44, 277–307 (2009)

    ADS  Google Scholar 

  • P. Withers, Attenuation of radio signals by the ionosphere of Mars: Theoretical development and application to MARSIS observations. Radio Sci. 46, RS2004 (2011)

    ADS  Google Scholar 

  • P. Withers, M. Mendillo, Response of peak electron densities in the Martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planet. Space Sci. 53, 1401–1418 (2005)

    ADS  Google Scholar 

  • P. Withers, M.D. Smith, Atmospheric entry profiles from the Mars exploration rovers spirit and opportunity. Icarus 185, 133–142 (2006)

    ADS  Google Scholar 

  • P. Withers, S.W. Bougher, G.M. Keating, The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003)

    ADS  Google Scholar 

  • P. Withers, M. Mendillo, D.P. Hinson, K. Cahoy, Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars global surveyor radio science experiment. J. Geophys. Res. 113, A12314 (2008). doi:10.1029/2008JA013636

    ADS  Google Scholar 

  • P. Withers, M.O. Fillingim, R.J. Lillis, B. Häusler, D.P. Hinson, G.L. Tyler, M. Pätzold, K. Peter, S. Tellmann, O. Witasse, Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. 117, A12307 (2012)

    ADS  Google Scholar 

  • Ma. Yueha, I.P. Williams, W.H. Ip, W. Chen, The velocity distribution of periodic comets and the meteor shower on Mars. Astron. Astrophys. 394, 311–316 (2002)

    ADS  Google Scholar 

  • M.H.G. Zhang, J.G. Luhmann, A.J. Kliore, An observational study of the nightside ionosphere of Mars and Venus with radio occultation methods. J. Geophys. Res. 95, 17095–17107 (1990)

    ADS  Google Scholar 

  • H. Zou, J.S. Wang, E. Nielsen, Reevaluating the relationship between the Martian ionosphere peak density and the solar radiation. J. Geophys. Res. 111, A07305 (2006)

    ADS  Google Scholar 

Download references

Acknowledgement

We acknowledge C.T. Russell for his encouragement to write this review paper. One of the authors (S.A. Haider) is thankful to Bhavin Pandya for providing graphics support during the preparation of this manuscript. K.K. Mahajan is thankful to the Indian National Science Academy for the award of INSA Honorary Scientist scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Haider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S.A., Mahajan, K.K. Lower and Upper Ionosphere of Mars. Space Sci Rev 182, 19–84 (2014). https://doi.org/10.1007/s11214-014-0058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0058-2

Keywords

Navigation