Skip to main content
Log in

Planetary Magnetodiscs: Some Unanswered Questions

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Characteristic of giant planet magnetospheres is a near equatorial region in which a radially stretched magnetic field confines a region of high density plasma. The structure, referred to as a magnetodisc, is present over a large range of local time. This introductory chapter describes some of the physics relevant to understanding the formation of this type of structure. Although many features of the magnetodisc are well understood, some puzzles remain. For example, Jupiter’s magnetodisc moves north-south as the planet rotates. The displacement has been attributed to the motion of the dipole equator, but at Saturn the dipole equator does not change its location. This chapter argues that the reasons for flapping may be similar at the two planets and suggests a role for compressional waves in producing the displacement. The development of thermal plasma anisotropy and its role in the structure of Jupiter’s magnetodisc are explored. Finally, localized plasma enhancements encountered by the New Horizons spacecraft at large downtail distances in Jupiter’s nightside magnetodisc are noted and a firehose instability of stretched flux tubes is proposed as a possible interpretation of the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Thanks to David Southwood for inspiring this set of comments.

References

  • M. Ashour-Abdalla, J.P. Berchem, J. Büchner, L.M. Zelenyi, Shaping of the magnetotail from the mantle: Global and local structuring. J. Geophys. Res. 98, 5651–5686 (1993)

    Article  ADS  Google Scholar 

  • F. Bagenal, Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res. 99, 11,043 (1994)

    Article  ADS  Google Scholar 

  • F. Bagenal, The magnetosphere of Jupiter: Coupling the equator to the poles. J. Atmos. Terr. Phys. 69, 387–402 (2007)

    Article  ADS  Google Scholar 

  • F. Bagenal, S. Bartlett, http://lasp.colorado.edu/mop/resources/graphics/ (2013)

  • F. Bagenal, P.A. Delamere, Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. 116, A05209 (2011). doi:10.1029/2010JA016294

    ADS  Google Scholar 

  • F. Bagenal, R.L. McNutt Jr., J.W. Belcher, H.S. Bridge, J.D. Sullivan, Revised ion temperatures for Voyager plasma measurements in the Io plasma torus. J. Geophys. Res. 90(A2), 1755 (1985)

    Article  ADS  Google Scholar 

  • J.T. Clarke, D. Grodent, S.W.H. Cowley, E.J. Bunce, P. Zarka, J.E.P. Connerney, T. Satoh, Jupiter’s aurora in Jupiter, in The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 639–670. ISBN 0-521-81808-7

    Google Scholar 

  • M.E. Davies et al., Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates (1996)

  • I. de Pater, J.J. Lissauer, Planetary Sciences, 2nd edn. (Cambridge Univ. Press, New York, 2010)

    Book  Google Scholar 

  • L.A. Frank, W.R. Paterson, Plasmas observed near local noon in Jupiter’s magnetosphere with the Galileo spacecraft. J. Geophys. Res. 109, A11217 (2004). doi:10.1029/2002JA009795

    Article  ADS  Google Scholar 

  • L.A. Frank, W.R. Paterson, K.K. Khurana, Observations of thermal plasmas in Jupiter’s magnetotail. J. Geophys. Res. 107, A11003 (2002). doi:10.1029/2001JA000077

    ADS  Google Scholar 

  • C.M. Hammond, M.G. Kivelson, R.J. Walker, Imaging the effect of dipole tilt on magnetotail boundaries. J. Geophys. Res. 99, 6079 (1994). (UCLA IGPP Pub. No. 3667), 1993

    Article  ADS  Google Scholar 

  • T.W. Hill, Inertial limit on corotation. J. Geophys. Res. 84, 6554 (1979)

    Article  ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere: Magnetotail response to dual sources. J. Geophys. Res. 117, A11219 (2012). doi:10.1029/2012JA018183

    Article  ADS  Google Scholar 

  • X. Jia, M.G. Kivelson, T.I. Gombosi, Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. J. Geophys. Res., Atmos. 117, A04215 (2012). doi:10.1029/2011JA017367

    ADS  Google Scholar 

  • S.P. Joy, M.G. Kivelson, R.J. Walker, K.K. Khurana, C.T. Russell, T. Ogino, Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. 107, A101309 (2002). doi:10.1029/2001JA009146

    ADS  Google Scholar 

  • K.K. Khurana, A generalized hinged-magnetodisc model of Jupiter’s nightside current sheet. J. Geophys. Res. 97, 6269 (1992)

    Article  ADS  Google Scholar 

  • K.K. Khurana, Eular potential models of Jupiter’s magnetospheric field. J. Geophys. Res. 102, 11,195 (1997)

    Google Scholar 

  • K.K. Khurana, H.K. Schwarzl, Global structure of Jupiter’s magnetospheric current sheet. J. Geophys. Res. 110, A07227 (2005). doi:10.1029/2004JA010757

    ADS  Google Scholar 

  • K.K. Khurana, D.G. Mitchell, C.S. Arridge, M.K. Dougherty, C.T. Russell, C. Paranicas, N. Krupp, A.J. Coates, Sources of rotational signals in Saturn’s magnetosphere. J. Geophys. Res. 114, A02211 (2009). doi:10.1029/2008JA013312

    ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, Properties of the magnetic field in the Jovian magnetotail. J. Geophys. Res. 107(A8), 1196 (2002). doi:10.1029/2001JA000249

    Article  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. 110, A12209 (2005). doi:10.1029/2005JA011176

    Article  ADS  Google Scholar 

  • M.G. Kivelson, P.J. Coleman Jr., L. Froidevaux, R.L. Rosenberg, A time dependent model of the Jovian current sheet. J. Geophys. Res. 83, 4823 (1978)

    Article  ADS  Google Scholar 

  • N. Krupp, A. Lagg, S. Livi, B. Wilken, J. Woch, E.C. Roelof, D.J. Williams, Global flows of energetic ions in Jupiter’s equatorial plane: First-order approximation. J. Geophys. Res. 106, 26,017 (2001)

    Article  ADS  Google Scholar 

  • B.H. Mauk, S.M. Krimigis, Radial force balance within Jupiter’s dayside magnetosphere. J. Geophys. Res. 92, 9931 (1987)

    Article  ADS  Google Scholar 

  • D.J. McComas et al., Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 217 (2007)

    Article  ADS  Google Scholar 

  • M. Moncuquet, F. Bagenal, N. Meyer-Vernet, Latitudinal structure of outer Io plasma torus. J. Geophys. Res. 107(A9), 1260 (2002). doi:10.1029/2001JA900124

    Article  Google Scholar 

  • T.G. Northrop, T.J. Birmingham, Adiabatic charged particle motion in rapidly rotating magnetospheres. J. Geophys. Res. 87(A2), 661–669 (1982)

    Article  ADS  Google Scholar 

  • T.G. Northrop, C.K. Goertz, M.F. Thomsen, The magnetosphere of Jupiter as observed with Pioneer 10, 2, Nonrigid rotation of the magnetodisc. J. Geophys. Res. 79, 3579 (1974)

    Article  ADS  Google Scholar 

  • C.P. Paranicas, B.H. Mauk, S.M. Krimigis, Pressure anisotropy and radial stress balance in the jovian neutral sheet. J. Geophys. Res. 96, 21,135 (1991)

    Article  ADS  Google Scholar 

  • K. Szego, Z. Nemeth, G. Erdos, L. Foldy, M. Thomsen, D. Delapp, The plasma environment of Titan: The magnetodisc of Saturn near the encounters as derived from ion densities measured by the Cassini/CAPS plasma spectrometer. J. Geophys. Res. 116, A10219 (2011). doi:10.1029/2011JA016629

    Article  ADS  Google Scholar 

  • V.M. Vasyliūnas, Plasma distribution and flow, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (Cambridge Univ. Press, New York, 1983), p. 395

    Chapter  Google Scholar 

  • V.M. Vasyliūnas, Role of the plasma acceleration time in the dynamics of the Jovian magnetosphere. Geophys. Res. Lett. 21(6), 401 (1994)

    Article  ADS  Google Scholar 

  • M.F. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, B. Bonfond, D. Grodent, A. Radioti, Improved mapping of Jupiter’s auroral features to magnetospheric sources. J. Geophys. Res. 116, A03220 (2011). doi:10.1029/2010JA016148

    ADS  Google Scholar 

  • M. Vogt, M.G. Kivelson, K.K. Khurana, R.J. Walker, M. Ashour-Abdalla, Simulating the effect of centrifugal forces in Jupiter’s magnetosphere. J. Geophys. Res. 119, 1925 (2014). doi:10.1002/2013JA019381

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NNX12AK34G and 1416974 at the University of Michigan and NNX10AF16G at UCLA. Useful conversations with David Southwood, Xianzhe Jia, Krishan Khurana are gratefully acknowledged. Fran Bagenal provided insightful and helpful comments on an early draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Galland Kivelson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kivelson, M.G. Planetary Magnetodiscs: Some Unanswered Questions. Space Sci Rev 187, 5–21 (2015). https://doi.org/10.1007/s11214-014-0046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0046-6

Keywords

Navigation