Skip to main content
Log in

Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Collisionless shocks are loosely defined as shocks where the transition between pre-and post-shock states happens on a length scale much shorter than the collisional mean free path. In the absence of collision to enforce thermal equilibrium post-shock, electrons and ions need not have the same temperatures. While the acceleration of electrons for injection into shock acceleration processes to produce cosmic rays has received considerable attention, the related problem of the shock heating of quasi-thermal electrons has been relatively neglected.

In this paper we review the state of our knowledge of electron heating in astrophysical shocks, mainly associated with supernova remnants (SNRs), shocks in the solar wind associated with the terrestrial and Saturnian bowshocks, and galaxy cluster shocks. The solar wind and SNR samples indicate that the ratio of electron temperature, (T e ) to ion temperature (T p ) declining with increasing shock speed or Alfvén Mach number. We discuss the extent to which such behavior can be understood on the basis of waves generated by cosmic rays in a shock precursor, which then subsequently damp by heating electrons, and speculate that a similar explanation may work for both solar wind and SNR shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • A.A. Abdo, M. Ackermann, M. Ajello et al., Observations of the Young supernova remnant RX J1713.7-3946 with the Fermi large area telescope. Astrophys. J. 734, 28 (2011). doi:10.1088/0004-637X/734/1/28

    Article  ADS  Google Scholar 

  • F. Acero, F. Aharonian, A.G. Akhperjanian et al., First detection of VHE γ-rays from SN 1006 by HESS. Astron. Astrophys. 516, A62 (2010). doi:10.1051/0004-6361/200913916

    Article  ADS  Google Scholar 

  • N. Achilleos, C. Bertucci, C.T. Russell et al., Orientation, location and velocity of Saturn’s bow shock: initial results from the Cassini spacecraft. J. Geophys. Res. 111, A03201 (2006). doi:10.1029/2005JA011297

    ADS  Google Scholar 

  • F. Aharonian et al., On the origin of TeV radiation of SN 1006. Astron. Astrophys. 351, 330 (1999)

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi et al., A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with HESS. Astron. Astrophys. 449, 223–242 (2006). doi:10.1051/0004-6361:20054279

    Article  ADS  Google Scholar 

  • T. Amano, M. Hoshino, A critical mach number for electron injection in collisionless shocks. Phys. Rev. Lett. 104(20), 181102 (2010). doi:10.1103/PhysRevLett.104.181102

    Article  ADS  Google Scholar 

  • E. Amato, P. Blasi, A kinetic approach to cosmic-ray-induced streaming instability at supernova shocks. Mon. Not. R. Astron. Soc. 392, 1591–1600 (2009). doi:10.1111/j.1365-2966.2008.14200.x

    Article  ADS  Google Scholar 

  • S.D. Bale, F.S. Mozer, Measurement of large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock. Phys. Rev. Lett. 98(20), 205001 (2007). doi:10.1103/PhysRevLett.98.205001

    Article  ADS  Google Scholar 

  • M. Balikhin, M. Gedalin, A. Petrukovich, New mechanism for electron heating in shocks. Phys. Rev. Lett. 70, 1259–1262 (1993). doi:10.1103/PhysRevLett.70.1259

    Article  ADS  Google Scholar 

  • J. Ballet, X-ray synchrotron emission from supernova remnants. Adv. Space Res. 37, 1902–1908 (2006). doi:10.1016/j.asr.2005.03.047

    Article  ADS  Google Scholar 

  • A. Bamba, R. Yamazaki, T. Yoshida, T. Terasawa, K. Koyama, A spatial and spectral study of nonthermal filaments in historical supernova remnants: observational results with Chandra. Astrophys. J. 621, 793–802 (2005). doi:10.1086/427620

    Article  ADS  Google Scholar 

  • A.R. Bell, The interaction of cosmic rays and magnetized plasma. Mon. Not. R. Astron. Soc. 358, 181–187 (2004). doi:10.1111/j.1365-2966.2005.08774.x

    Article  ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2005). doi:10.1111/j.1365-2966.2004.08097.x

    Article  ADS  Google Scholar 

  • A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433–438 (2001). doi:10.1046/j.1365-8711.2001.04063.x

    Article  ADS  Google Scholar 

  • E.G. Berezhko, L.T. Ksenofontov, H.J. Völk, Confirmation of strong magnetic field amplification and nuclear cosmic ray acceleration in SN 1006. Astron. Astrophys. 412, L11–L14 (2003). doi:10.1051/0004-6361:20031667

    Article  ADS  Google Scholar 

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 1–75 (1987). doi:10.1016/0370-1573(87)90134-7

    Article  ADS  Google Scholar 

  • P. Blasi, G. Morlino, R. Bandiera, E. Amato, D. Caprioli, Collisionless shocks in a partially ionized medium. I. Neutral return flux and its effects on acceleration of test particles. Astrophys. J. 755, 121 (2012). doi:10.1088/0004-637X/755/2/121

    Article  ADS  Google Scholar 

  • R. Bruno, V. Carbone, The Solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005)

    ADS  Google Scholar 

  • P. Cargill, Electron heating in superhigh Mach number shocks. Astrophys. Space Sci. 144, 535–547 (1988)

    Google Scholar 

  • P.J. Cargill, K. Papadopoulos, A mechanism for strong shock electron heating in supernova remnants. Astrophys. J. 329, L29–L32 (1988). doi:10.1086/185170

    Article  ADS  Google Scholar 

  • C.L. Carilli, G.B. Taylor, Cluster magnetic fields. Annu. Rev. Astron. Astrophys. 40, 319–348 (2002). doi:10.1146/annurev.astro.40.060401.093852

    Article  ADS  Google Scholar 

  • R.A. Chevalier, J.C. Raymond, Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. 225, L27–L30 (1978). doi:10.1086/182785

    Article  ADS  Google Scholar 

  • R.A. Chevalier, R.P. Kirshner, J.C. Raymond, The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980). doi:10.1086/157623

    Article  ADS  Google Scholar 

  • D.P. Cox, J.C. Raymond, Preionization-dependent families of radiative shock waves. Astrophys. J. 298, 651–659 (1985). doi:10.1086/163649

    Article  ADS  Google Scholar 

  • F. de Hoffmann, E. Teller, Magneto-hydrodynamic shocks. Phys. Rev. 80, 692–703 (1950). doi:10.1103/PhysRev.80.692

    Article  ADS  MATH  Google Scholar 

  • A. Decourchelle, D. Ellison, Thermal x-ray emission and cosmic-ray production in Young supernova remnants. Astrophys. J. Lett. 543, L57–L60 (2000). doi:10.1086/318167

    Article  ADS  Google Scholar 

  • M.E. Dieckmann, A. Bret, G. Sari, E. Perez Alvaro, I. Kourakis, M. Borghesi, Particle simulation study of electron heating by counter-streaming ion beams ahead of supernova remnant shocks. Plasma Phys. Control. Fusion 54, 085015 (2012). doi:10.1088/0741-3335/54/8/085015

    Article  ADS  Google Scholar 

  • A.P. Dimmock, M.A. Balikhin, Y. Hobara, Comparison of three methods for the estimation of cross-shock electric potential using cluster data. Ann. Geophys. 29, 815–822 (2011). doi:10.5194/angeo-29-815-2011

    Article  ADS  Google Scholar 

  • B.T. Draine, C.F. McKee, Theory of interstellar shocks. Annu. Rev. Astron. Astrophys. 31, 373–432 (1993). doi:10.1146/annurev.aa.31.090193.002105

    Article  ADS  Google Scholar 

  • L.O.C. Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys. 309, 1002–1010 (1996)

    ADS  Google Scholar 

  • J.P. Edmiston, C.F. Kennel, A parametric survey of the first critical Mach number for a fast MHD shock. J. Plasma Phys. 32, 429–441 (1984). doi:10.1017/S002237780000218X

    Article  ADS  Google Scholar 

  • D.C. Ellison, D.J. Patnaude, P. Slane, P. Blasi, S. Gabici, Particle acceleration in supernova remnants and the production of thermal and nonthermal radiation. Astrophys. J. 661, 879–891 (2007). doi:10.1086/517518

    Article  ADS  Google Scholar 

  • K.A. Eriksen, J.P. Hughes, C. Badenes, R. Fesen, P. Ghavamian, D. Moffett, P.P. Plucinsky, C.E. Rakowski, E.M. Reynoso, P. Slane, Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho’s supernova remnant. Astrophys. J. 728, L28 (2011). doi:10.1088/2041-8205/728/2/L28

    Article  ADS  Google Scholar 

  • K. France, R. McCray, S.V. Penton, R.P. Kirshner, P. Challis, J.M. Laming, P. Bouchet, R. Chevalier, P.M. Garnavich, C. Fransson, K. Heng, J. Larsson, S. Lawrence, P. Lundqvist, N. Panagia, C.S.J. Pun, N. Smith, J. Sollerman, G. Sonneborn, B. Sugerman, J.C. Wheeler, HST-COS observations of hydrogen, helium, carbon, and nitrogen emission from the SN 1987A reverse shock. Astrophys. J. 743, 186 (2011). doi:10.1088/0004-637X/743/2/186

    Article  ADS  Google Scholar 

  • A.A. Galeev, Collisionless shocks, in Physics of Solar Planetary Environments, ed. by D.J. Williams (1976), pp. 464–490

    Google Scholar 

  • M. Gedalin, M.A. Balikhin, D. Eichler, Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow. Phys. Rev. E 77, 026403 (2008). doi:10.1103/PhysRevE.77.026403

    Article  ADS  Google Scholar 

  • P. Ghavamian, Optical spectroscopy and numerical models of nonradiative shocks in supernova remnants. PhD Thesis, Rice University, 1999

  • P. Ghavamian, J.C. Raymond, P. Hartigan, W.P. Blair, Evidence for shock precursors in Tycho’s supernova remnant. Astrophys. J. 535, 266–274 (2000). doi:10.1086/308811

    Article  ADS  Google Scholar 

  • P. Ghavamian, J.C. Raymond, R.C. Smith, P. Hartigan, Balmer-dominated spectra of nonradiative shocks in the Cygnus loop, RCW 86, and Tycho supernova remnants. Astrophys. J. 547, 995–1009 (2001). doi:10.1086/318408

    Article  ADS  Google Scholar 

  • P. Ghavamian, P.F. Winkler, J.C. Raymond, K.S. Long, The optical spectrum of the SN 1006 supernova remnant revisited. Astrophys. J. 572, 888–896 (2002). doi:10.1086/340437

    Article  ADS  Google Scholar 

  • P. Ghavamian, C.E. Rakowski, J.P. Hughes, T.B. Williams, The physics of supernova blast waves. I. kinematics of DEM L71 in the large Magellanic cloud. Astrophys. J. 590, 833–845 (2003). doi:10.1086/375161

    Article  ADS  Google Scholar 

  • P. Ghavamian, J.M. Laming, C.E. Rakowski, A physical relationship between electron-proton temperature equilibration and Mach number in fast collisionless shocks. Astrophys. J. 654, L69–L72 (2007). doi:10.1086/510740

    Article  ADS  Google Scholar 

  • C.C. Goodrich, J.D. Scudder, The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves. J. Geophys. Res. 89, 6654–6662 (1984). doi:10.1029/JA089iA08p06654

    Article  ADS  Google Scholar 

  • E. Gosset, M. De Becker, Y. Nazé, S. Carpano, G. Rauw, I.I. Antokhin, J.-M. Vreuz, A.M.T. Pollock, XMM-Newton observation of the enigmatic object WR 46. Astron. Astrophys. 527, A66 (2011). doi:10.1051/0004-6361/200912510

    Article  ADS  Google Scholar 

  • E.W. Greenstadt, M.M. Mellott, Plasma wave evidence for reflected ions in front of subcritical shocks—ISEE 1 and 2 observations. J. Geophys. Res. 92, 4730–4734 (1987). doi:10.1029/JA092iA05p04730

    Article  ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G.H. Bassa, A. Bamba, J.A.M. Bleeker, S. Funk, P. Ghavamian, K.J. van der Heyden, F. Verbunt, R. Yamazaki, Measuring the cosmic-ray acceleration efficiency of a supernova remnant. Science 325, 719 (2009). doi:10.1126/science.1173383

    Article  ADS  Google Scholar 

  • E.A. Helder, D. Kosenko, J. Vink, Cosmic ray acceleration efficiency versus temperature equilibration: the case of SNR 0509-67.5. Astrophys. J. Lett. 719, L140 (2010). doi:10.1088/2041-8205/719/2/L140

    Article  ADS  Google Scholar 

  • E.A. Helder, J. Vink, C.G. Bassa, Temperature equilibration behind the shock front: an optical and X-ray study of RCW 86. Astrophys. J. 737, 85 (2011). doi:10.1088/0004-637X/737/2/85

    Article  ADS  Google Scholar 

  • K. Heng, R. McCray, Balmer dominated shocks revisited. Astrophys. J. 654, 923–937 (2007). doi:10.1086/509601

    Article  ADS  Google Scholar 

  • K. Heng, M. van Adellsberg, R. McCray, J.C. Raymond, The transition zone in Balmer dominated shocks. Astrophys. J. 668, 275–284 (2007). doi:10.1086/521298

    Article  ADS  Google Scholar 

  • J.J. Hester, J.C. Raymond, W.P. Blair, The Balmer-dominated northeast limb of the Cygnus loop supernova remnant. Astrophys. J. 420, 721–745 (1994). doi:10.1086/173598

    Article  ADS  Google Scholar 

  • H. Itoh, Two-fluid blast-wave model for supernova remnants. Publ. Astron. Soc. Jpn. 30, 489–498 (1978)

    ADS  Google Scholar 

  • F.C. Jones, D.C. Ellison, The plasma physics of shock acceleration. Space Sci. Rev. 58, 259–346 (1991). doi:10.1007/BF01206003

    Article  ADS  Google Scholar 

  • C.F.F. Karney, Stochastic ion heating by a lower hybrid wave. Phys. Fluids 21, 1584–1599 (1978). doi:10.1063/1.862406

    Article  ADS  MATH  Google Scholar 

  • S. Katsuda, R. Petre, J.P. Hughes, U. Hwang, H. Yamagauchi, A. Hayato, K. Mori, H. Tsunemi, X-ray measured dynamics of Tycho’s supernova remnant. Astrophys. J. 709, 1387–1395 (2010b). doi:10.1088/0004-637X/709/2/1387

    Article  ADS  Google Scholar 

  • S. Katsuda, R. Petre, K. Mori, S.P. Reynolds, K.S. Long, P.F. Winkler, H. Tsunemi, Steady X-ray synchrotron emission in the northeastern limb of SN 1006. Astrophys. J. 723, 383–392 (2010a). doi:10.1088/0004-637X/723/1/383

    Article  ADS  Google Scholar 

  • S. Katsuda, K.S. Long, R. Petre, S.P. Reynolds, B.J. Williams, P.F. Winkler, X-ray proper motions and shock speeds along the northwest rim of SN 1006 (2012). arXiv:1211.6443

  • C.F. Kennel, J.P. Edmiston, T. Hada, A quarter century of collisionless shock research. Am. Geophys. Union Monograph Ser. 34, 1–36 (1985)

    Google Scholar 

  • R. Kirshner, P.F. Winkler, R.A. Chevalier, High-velocity emission in young supernova remnants: SN 1006 and SN 1572. Astrophys. J. 315, L135–L139 (1987). doi:10.1086/184875

    Article  ADS  Google Scholar 

  • K.E. Korreck, J.C. Raymond, T.H. Zurbuchen, P. Ghavamian, Far ultraviolet spectroscopic explorer observation of the nonradiative collisionless shock in the remnant of SN 1006. Astrophys. J. 615, 280–285 (2004). doi:10.1086/424481

    Article  ADS  Google Scholar 

  • K. Koyama, R. Petre, E.V. Gotthelf, U. Hwang, M. Matsuura, M. Ozaki, S.S. Holt, Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 378, 255–258 (1995). doi:10.1038/378255a0

    Article  ADS  Google Scholar 

  • K. Koyama, K. Kinugasa, K. Matsuzaki, M. Nishiuchi, M. Sugizaki, K. Torii, S. Yamauchi, B. Aschenbach, Discovery of non-thermal X-rays from the northwest shell of the new SNR RX J1713.7-3946: the second SN 1006? Publ. Astron. Soc. Jpn. 49, L7–L11 (1997)

    ADS  Google Scholar 

  • V.V. Krasnoselskikh, B. Lembège, P. Savoini, V.V. Lobzin, Nonstationarity of strong collisionless quasiperpendicular shocks: theory and full particle numerical simulations. Phys. Plasmas 9, 1192–1209 (2002). doi:10.1063/1.1457465

    Article  MathSciNet  ADS  Google Scholar 

  • R.M. Kulsrud, C.J. Cesarsky, The effectiveness of instabilities for the confinement of high energy cosmic rays in the galactic disk. Astrophys. J. Lett. 8, 189 (1971)

    Google Scholar 

  • J.M. Laming, Electron heating at SNR collisionless shocks. Astrophys. J. Suppl. Ser. 127, 409–413 (2000). doi:10.1086/313325

    Article  ADS  Google Scholar 

  • J.M. Laming, Accelerated electrons in Cassiopeia A: an explanation for the hard X-ray tail. Astrophys. J. 546, 1149–1158 (2001). doi:10.1086/318317

    Article  ADS  Google Scholar 

  • J.M. Laming, J.C. Raymond, B.M. McLaughlin, W.P. Blair, Electron-ion equilibration in nonradiative shocks associated with SN 1006. Astrophys. J. 472, 267–274 (1996). doi:10.1086/178061

    Article  ADS  Google Scholar 

  • J.J. Lee, B.-C. Koo, J.C. Raymond, P. Ghavamian, T.-S. Pyo, A. Tajitsu, M. Hayashi, Subaru HDS observations of a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. Lett. 659, L133–L136 (2007). doi:10.1086/517520

    Article  ADS  Google Scholar 

  • J.J. Lee, J.C. Raymond, S. Park, W.P. Blair, P. Ghavamian, P.F. Winkler, K. Korreck, Resolved shock structure of the Balmer-dominated filaments in Tycho’s supernova remnant: cosmic-ray precursor? Astrophys. J. Lett. 715, L146–L149 (2010). doi:10.1088/2041-8205/715/2/L146

    Article  ADS  Google Scholar 

  • B. Lefebvre, S.J. Schwartz, A.F. Fazakerley, P. Décréau, Electron dynamics and cross-shock potential at the quasi-perpendicular Earth’s bow shock. J. Geophys. Res. 112, A09212 (2007). doi:10.1029/2007JA012277

    ADS  Google Scholar 

  • Q. Luo, D. Melrose, Saturated magnetic field amplification at supernova shocks. Mon. Not. R. Astron. Soc. 397, 1402–1409 (2009). doi:10.1111/j.1365-2966.2009.14872.x

    Article  ADS  Google Scholar 

  • M.A. Malkov, L.O.C. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

    Article  ADS  Google Scholar 

  • M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007). doi:10.1016/j.physrep.2007.01.001

    Article  ADS  Google Scholar 

  • M. Markevitch, F. Govoni, G. Brunetti, D. Jerius, Bow shock and radio halo in the merging cluster A520. Astrophys. J. 627, 733–738 (2005). doi:10.1086/430695

    Article  ADS  Google Scholar 

  • A. Masters, S.J. Schwartz, E.M. Henley, M.F. Thomsen, B. Zieger, A.J. Coates, N. Achilleos, J. Mitchell, K.C. Hansen, M.K. Dougherty, Electron heating at Saturn’s bow shock. J. Geophys. Res. 116, A10107 (2011). doi:10.1029/2011JA016941

    Article  ADS  Google Scholar 

  • S. Matsukiyo, Mach number dependence of electron heating in high Mach number quasiperpendicular shocks. Phys. Plasmas 17, 042901 (2010). doi:10.1063/1.3372137

    Article  ADS  Google Scholar 

  • K.G. McClements, R.O. Dendy, R. Bingham, J.G. Kirk, L.O.C. Drury, Acceleration of cosmic ray electrons by ion-excited waves at quasi-perpendicular shocks. Mon. Not. R. Astron. Soc. 291, 241–249 (1997)

    Article  ADS  Google Scholar 

  • G. Morlino, R. Bandiera, P. Blasi, E. Amato, Collisionless shocks in a partially ionized medium. II. Balmer emission. Astrophys. J. 760, 137 (2012a). doi:10.1088/0004-637X/760/2/137

    Article  ADS  Google Scholar 

  • G. Morlino, P. Blasi, R. Bandiera, E. Amato, D. Caprioli, Collisionless shocks in a partially ionized medium: III. Efficient cosmic ray acceleration (2012b). arXiv:1211.6148

  • S. Orlando, F. Bocchino, F. Reale, F. Peres, O. Petruk, On the origin of asymmetries in bilateral supernova remnants. Astron. Astrophys. 470, 927–939 (2007). doi:10.1051/0004-6361:20066045

    Article  ADS  Google Scholar 

  • O. Petruk, F. Bocchino, G. Castelletti, G. Dubner, D. Lakubovskyi, M. Kirsch, M. Miceli, I. Telezhinsky, X-ray emission of the shock of SN1006. Constraints on electron kinetics, in Proc. “The X-ray Universe 2008”, vol. 109, Granada, Spain (2008)

    Google Scholar 

  • C.E. Rakowski, P. Ghavamian, J.P. Hughes, The physics of supernova remnant blast waves. II. Electron-ion equilibration in DEM L71 in the large Magellanic cloud. Astrophys. J. 590, 846–857 (2003). doi:10.1086/375162

    Article  ADS  Google Scholar 

  • C.E. Rakowski, J.M. Laming, P. Ghavamian, The heating of thermal electron in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008). doi:10.1086/590245

    Article  ADS  Google Scholar 

  • C.E. Rakowski, P. Ghavamian, J.M. Laming, The Hα diagnostic of electron heating: the case of DEM L71. Astrophys. J. 696, 2195–2205 (2009). doi:10.1088/0004-637X/696/2/2195

    Article  ADS  Google Scholar 

  • J.C. Raymond, W.P. Blair, K.S. Long, Detection of ultraviolet emission lines in SN 1006 with the Hopkins ultraviolet telescope. Astrophys. J. 454, L31–L34 (1995). doi:10.1086/309772

    ADS  Google Scholar 

  • J.C. Raymond, J. Vink, E.A. Helder, A. de, Laat Effects of neutral hydrogen on cosmic-ray precursors in supernova remnant shock waves. Astrophys. J. 731, L14 (2011). doi:10.1088/2041-8205/731/1/L14

    Article  ADS  Google Scholar 

  • B. Reville, J.G. Kirk, P. Duffy, S. O’Sullivan, A cosmic ray current-driven instability in partially ionised media. Astron. Astrophys. 475, 435–439 (2007). doi:10.1051/0004-6361:20078336

    Article  ADS  MATH  Google Scholar 

  • M.A. Riquelme, A. Spitkovsky, Electron injection by Whistler waves in non-relativistic shocks. Astrophys. J. 733, 63 (2011). doi:10.1088/0004-637X/733/1/63

    Article  ADS  Google Scholar 

  • H.R. Russell, B.R. McNamara, J.S. Sanders, A.C. Fabian, P.E.J. Nulsen, R.E.A. Canning, S.A. Baum, M. Donahue, A. Edge, L.J. King, C.P. O’Dea, Shock fronts, electron-ion equilibration and ICM transport processes in the merging cluster Abell 2146. Mon. Not. R. Astron. Soc. 423, 236–255 (2012). doi:10.1111/j.1365-2966.2012.20808.x

    Article  ADS  Google Scholar 

  • K.M. Schure, A.R. Bell, L.O.C. Drury, A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173, 491–519 (2012). doi:10.1007/s11214-012-9871-7

    Article  ADS  Google Scholar 

  • S.J. Schwartz, M.F. Thomsen, S.J. Bame, J. Stansberry, Electron heating and the potential jump across fast mode shocks. J. Geophys. Res. 93, 12923–12931 (1988). doi:10.1029/JA093iA11p12923

    Article  ADS  Google Scholar 

  • S.J. Schwartz, E.G. Zweibel, M. Goldman, Microphysics in astrophysical plasmas. Space Sci. Rev. (2013 in press). doi:10.1007/s11214-013-9975-8 (this issue)

    Google Scholar 

  • J.D. Scudder, T.L. Aggson, A. Mangeney, C. Lacombe, C.C. Harvey, The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I—Rankine-Hugoniot geometry, currents, and stationarity. J. Geophys. Res. 91, 11019–11052 (1986a). doi:10.1029/JA091iA10p11019

    Article  ADS  Google Scholar 

  • J.D. Scudder, A. Mangeney, C. Lacombe, C.C. Harvey, C.S. Wu, The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. III—Vlasov electrodynamics. J. Geophys. Res. 91, 11075–11097 (1986b). doi:10.1029/JA091iA10p11075

    Article  ADS  Google Scholar 

  • M.J. Seaton, Excitation of coronal lines by proton impact. Mon. Not. R. Astron. Soc. 127, 191–194 (1964)

    ADS  Google Scholar 

  • J.M. Shull, C.F. McKee, Theoretical models of interstellar shocks. I—Radiative transfer and UV precursors. Astrophys. J. 327, 149–191 (1979). doi:10.1086/156712

    Google Scholar 

  • L. Sironi, A. Spitkovsky, Particle acceleration in relativistic magnetized collisionless electron-ion shocks. Astrophys. J. 726, 75 (2011). doi:10.1088/0004-637X/726/2/75

    Article  ADS  Google Scholar 

  • J. Skilling, Cosmic ray streaming. Nature 258, 687–688 (1975). doi:10.1038/258687a0

    Article  ADS  Google Scholar 

  • P. Slane, B.M. Gaensler, T.M. Dame, J.P. Hughes, P. Plucinsky, A. Green, Nonthermal X-ray emission from the shell-type supernova remnant G347.3-0.5. Astrophys. J. 525, 357–367 (1999). doi:10.1086/307893

    Article  ADS  Google Scholar 

  • R.C. Smith, R.P. Kirshner, W.P. Blair, P.F. Winkler, Six Balmer dominated supernova remnants. Astrophys. J. 375, 652–662 (1991). doi:10.1086/170228

    Article  ADS  Google Scholar 

  • R.C. Smith, J.C. Raymond, J.M. Laming, High-resolution spectroscopy of Balmer-dominated shocks in the large Magellanic cloud. Astrophys. J. 4220, 286–293 (1994). doi:10.1086/1735581

    Article  ADS  Google Scholar 

  • J. Sollerman, P. Ghavamian, P. Lundqvist, R.C. Smith, High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron. Astrophys. 407, 249–257 (2003). doi:10.1051/0004-6361:20030839

    Article  ADS  Google Scholar 

  • L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1964)

    MATH  Google Scholar 

  • T. Tanaka, Y. Uchiyama, F.A. Aharonian, T. Takahashi, A. Bamba, J.S. Hiraka, J. Kataoka, T. Kishishita, M. Kokubun, K. Mori, K. Nakazawa, R. Petre, H. Tajima, S. Watanabe, Study of nonthermal emission from SNR RX J1713.7-3946 with Suzaku. Astrophys. J. 685, 988–1004 (2008). doi:10.1086/591020

    Article  ADS  Google Scholar 

  • R.A. Treumann, Fundamentals of collisionless shocks for astrophysical application. I. Non-relativistic shocks. Astron. Astrophys. Rev. 17, 409–535 (2009). doi:10.1007/s00159-009-0024-2

    Article  ADS  Google Scholar 

  • R. A. Treumann, Jaroschek, Fundamentals of non-relativistic shock physics: I. The shock problem (2008). arXiv:0805.2132

  • D. Tseliakhovich, C.M. Hirata, K. Heng, Excitation and charge transfer in H–H+ collisions at 5–80 keV and application to astrophysical shocks. Mon. Not. R. Astron. Soc. 422, 2357–2371 (2012). doi:10.1111/j.1365-2966.2012.20787.x

    Article  ADS  Google Scholar 

  • T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Modified two-stream instability at perpendicular collisionless shocks: full particle simulations. J. Geophys. Res. 117, A03206 (2012a). doi:10.1029/2011JA017182

    ADS  Google Scholar 

  • T. Umeda, Y. Kidani, S. Matsukiyo, R. Yamazaki, Microinstabilities at perpendicular collisionless shocks: a comparison of full particle simulations with different ion to electron mass ratio. Phys. Plasmas 19, 042109 (2012b). doi:10.1063/1.3703319

    Article  ADS  Google Scholar 

  • M. van Adelsberg, K. Heng, R. McCray, J.C. Raymond, Spatial structure and collisionless electron heating in Balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008). doi:10.1086/592680

    Article  ADS  Google Scholar 

  • J. Vink, J.M. Laming, On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758–769 (2003). doi:10.1086/345832

    Article  ADS  Google Scholar 

  • J. Vink, R. Yamazaki, E.A. Helder, K.M. Schure, The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks. Astrophys. J. 722, 1727–1734 (2010). doi:10.1088/0004-637X/722/2/1727

    Article  ADS  Google Scholar 

  • A.Y. Wagner, J.-J. Lee, J.C. Raymond, T.W. Hartquist, S.A.E.G. Falle, A cosmic-ray precursor model for a Balmer-dominated shock in Tycho’s supernova remnant. Astrophys. J. 690, 1412–1423 (2009). doi:10.1088/0004-637X/690/2/1412

    Article  ADS  Google Scholar 

  • J. Warren, J.P. Hughes, Raising the dead: clues to type Ia supernova physics from the remnant 0509–67.5. Astrophys. J. 608, 261–273 (2004). doi:10.1086/392528

    Article  ADS  Google Scholar 

  • J.S. Warren, J.P. Hughes, C. Badenes, P. Ghavamian, C.F. McKee, D. Moffett, P. Plucinsky, C.E. Rakowski, E. Reynoso, P. Slane, Cosmic-ray acceleration at the forward shock in Tycho’s supernova remnant: evidence from Chandra X-ray observations. Astrophys. J. 634, 376–389 (2005). doi:10.1086/496941

    Article  ADS  Google Scholar 

  • B.J. Williams, W.P. Blair, J.M. Blondin, K.J. Borkowski, P. Ghavamian, K.S. Long, J.C. Raymond, S.P. Reynolds, J. Rho, P.F. Winkler, RCW 86: a type Ia supernova in a wind-blown bubble. Astrophys. J. 741, 96 (2011). doi:10.1088/0004-637X/741/2/96

    Article  ADS  Google Scholar 

  • C.S. Wu, D. Winske, M. Tanaka, K. Papadopoulos, K. Akimoto, C.C. Goodrich, Y.M. Zhou, S.T. Tsai, P. Rodriguez, C.S. Lin, Microinstabilities associated with a high Mach number, perpendicular bow shock. Space Sci. Rev. 37, 63–109 (1984). doi:10.1007/BF00213958

    ADS  Google Scholar 

  • S.A. Zhekov, R. McCray, D. Dewey, C.R. Canizares, K.J. Borkowski, D.N. Burrows, S. Park, High-resolution X-ray spectroscopy of SNR 1987A: Chandra Letg and HETG observations in 2007. Astrophys. J. 692, 1190–1204 (2009). doi:10.1088/0004-637X/692/2/1190

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.G. acknowledges support by HST grant HST-GO-11184.07-A to Towson University. JML acknowledges support by grant NNH10A009I from the NASA Astrophysics Data Analysis Program, and by basic research funds of the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Ghavamian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghavamian, P., Schwartz, S.J., Mitchell, J. et al. Electron-Ion Temperature Equilibration in Collisionless Shocks: The Supernova Remnant-Solar Wind Connection. Space Sci Rev 178, 633–663 (2013). https://doi.org/10.1007/s11214-013-9999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-9999-0

Keywords

Navigation