Skip to main content

Microphysics of Quasi-parallel Shocks in Collisionless Plasmas

Abstract

Shocks in collisionless plasmas require dissipation mechanisms which couple fields and particles at scales much less than the conventional collisional mean free path. For quasi-parallel geometries, where the upstream magnetic field makes a small angle to the shock normal direction, wave-particle coupling produces a broad transition zone with large amplitude, nonlinear magnetic pulsations playing an important role. At high Mach numbers, ion reflection and acceleration are dominant processes which control the structure and dissipation at the shock. Accelerated particles produce a precursor, or foreshock, characterized by low frequency magnetic waves which are convected by the plasma flow into the shock transition zone. The interplay between energetic particles, waves, ion reflection and acceleration leads to a complicated interdependent system. This review discusses the spacecraft observations which have motivated the current view of the high Mach number quasi-parallel shock, and the theories and simulation studies which have led to a better understanding of the microphysics on which the quasi-parallel shock depends.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. D. Burgess, Cyclical behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345–349 (1989)

    ADS  Article  Google Scholar 

  2. D. Burgess, Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res. 15, 159–169 (1995). doi:10.1016/0273-1177(94)00098-L

    ADS  Article  Google Scholar 

  3. D. Burgess, E. Möbius, M. Scholer, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. 173(1–4), 5–47 (2012). doi:10.1007/s11214-012-9901-5

    ADS  Article  Google Scholar 

  4. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi:10.1007/s11214-005-3832-3

    ADS  Article  Google Scholar 

  5. J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The foreshock. Space Sci. Rev. 118, 41–94 (2005). doi:10.1007/s11214-005-3824-3

    ADS  Article  Google Scholar 

  6. L. Gargaté, A. Spitkovsky, Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J. 744, 67 (2012). doi:10.1088/0004-637X/744/1/67

    ADS  Article  Google Scholar 

  7. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Ion injection and acceleration at parallel shocks—Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993). doi:10.1086/172157

    ADS  Article  Google Scholar 

  8. K.I. Golden, L.M. Linson, S.A. Mani, Ion streaming instabilities with application to collisionless shock wave structure. Phys. Fluids 16, 2319–2325 (1973). doi:10.1063/1.1694299

    ADS  Article  Google Scholar 

  9. J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, Ion reflection and downstream thermalization at the quasi-parallel bow shock. J. Geophys. Res. 94, 10027–10037 (1989). doi:10.1029/JA094iA08p10027

    ADS  Article  Google Scholar 

  10. E.W. Greenstadt, F.L. Scarf, C.T. Russell, R.E. Holzer, V. Formisano, P.C. Hedgecock, M. Neugebauer, Structure of a quasi-parallel, quasi-laminar bow shock. J. Geophys. Res. 82, 651–666 (1977). doi:10.1029/JA082i004p00651

    ADS  Article  Google Scholar 

  11. J.R. Kan, D.W. Swift, Structure of the quasi-parallel bow shock—Results of numerical simulations. J. Geophys. Res. 88, 6919–6925 (1983). doi:10.1029/JA088iA09p06919

    ADS  Article  Google Scholar 

  12. D. Krauss-Varban, Waves associated with quasi-parallel shocks: Generation, mode conversion and implications. Adv. Space Res. 15, 271–284 (1995). doi:10.1016/0273-1177(94)00107-C

    ADS  Article  Google Scholar 

  13. D. Krauss-Varban, N. Omidi, Structure of medium Mach number quasi-parallel shocks—Upstream and downstream waves. J. Geophys. Res. 961, 17715 (1991). doi:10.1029/91JA01545

    ADS  Article  Google Scholar 

  14. E.A. Lucek, T.S. Horbury, I. Dandouras, H. Rème, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. (Space Phys.) 113, 7 (2008). doi:10.1029/2007JA012756

    Article  Google Scholar 

  15. G. Mann, H. Luehr, W. Baumjohann, Statistical analysis of short large-amplitude magnetic field structures in the vicinity of the quasi-parallel bow shock. J. Geophys. Res. 99, 13315 (1994). doi:10.1029/94JA00440

    ADS  Article  Google Scholar 

  16. T.G. Onsager, D. Winske, M.F. Thomsen, Interaction of a finite-length ion beam with a background plasma—Reflected ions at the quasi-parallel bow shock. J. Geophys. Res. 96, 1775–1788 (1991a). doi:10.1029/90JA02008

    ADS  Article  Google Scholar 

  17. T.G. Onsager, D. Winske, M.F. Thomsen, Ion injection simulations of quasi-parallel shock re-formation. J. Geophys. Res. 962, 21183 (1991b). doi:10.1029/91JA01986

    ADS  Article  Google Scholar 

  18. T.G. Onsager, M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res. 95, 2261–2271 (1990). doi:10.1029/JA095iA03p02261

    ADS  Article  Google Scholar 

  19. F.G.E. Pantellini, A. Heron, J.C. Adam, A. Mangeney, The role of the whistler precursor during the cyclic reformation of a quasi-parallel shock. J. Geophys. Res. 97, 1303–1311 (1992). doi:10.1029/91JA02653

    ADS  Article  Google Scholar 

  20. E.N. Parker, A quasi-linear model of plasma shock structure in a longitudinal magnetic field. J. Nucl. Energy 2, 146–153 (1961). doi:10.1088/0368-3281/2/1/323

    ADS  Article  Google Scholar 

  21. M. Scholer, Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J. Geophys. Res. 98, 47–57 (1993). doi:10.1029/92JA01875

    ADS  Article  Google Scholar 

  22. M. Scholer, D. Burgess, The role of upstream waves in supercritical quasi-parallel shock re-formation. J. Geophys. Res. 97, 8319–8326 (1992). doi:10.1029/92JA00312

    ADS  Article  Google Scholar 

  23. M. Scholer, T. Terasawa, Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett. 17, 119–122 (1990). doi:10.1029/GL017i002p00119

    ADS  Article  Google Scholar 

  24. M. Scholer, M. Fujimoto, H. Kucharek, Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation. J. Geophys. Res. 98, 18971 (1993). doi:10.1029/93JA01647

    ADS  Article  Google Scholar 

  25. M. Scholer, H. Kucharek, V. Jayanti, Waves and turbulence in high Mach number nearly parallel collisionless shocks. J. Geophys. Res. 102, 9821–9834 (1997). doi:10.1029/97JA00345

    ADS  Article  Google Scholar 

  26. M. Scholer, H. Kucharek, I. Shinohara, Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J. Geophys. Res. (Space Phys.) 108, 1273 (2003). doi:10.1029/2002JA009820

    ADS  Article  Google Scholar 

  27. S.J. Schwartz, D. Burgess, Quasi-parallel shocks—A patchwork of three-dimensional structures. Geophys. Res. Lett. 18, 373–376 (1991). doi:10.1029/91GL00138

    ADS  Article  Google Scholar 

  28. S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Luehr, Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209–4227 (1992). doi:10.1029/91JA02581

    ADS  Article  Google Scholar 

  29. T. Sugiyama, Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas 18(2), 022302 (2011). doi:10.1063/1.3552026

    ADS  Article  Google Scholar 

  30. V.A. Thomas, D. Winske, N. Omidi, Re-forming supercritical quasi-parallel shocks. I—One- and two-dimensional simulations. J. Geophys. Res. 951, 18809–18819 (1990). doi:10.1029/JA095iA11p18809

    ADS  Article  Google Scholar 

  31. M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res. 95, 957–966 (1990a). doi:10.1029/JA095iA02p00957

    ADS  Article  Google Scholar 

  32. M.F. Thomsen, J.T. Gosling, S.J. Bame, T.G. Onsager, C.T. Russell, Two-state ion heating at quasi-parallel shocks. J. Geophys. Res. 95, 6363–6374 (1990b). doi:10.1029/JA095iA05p06363

    ADS  Article  Google Scholar 

  33. W.P. Wilkinson, A.K. Pardaens, S.J. Schwartz, D. Burgess, H. Luehr, R.L. Kessel, M. Dunlop, C.J. Farrugia, Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth’s bow shock. J. Geophys. Res. 98, 3889–3905 (1993). doi:10.1029/92JA01669

    ADS  Article  Google Scholar 

  34. D. Winske, V.A. Thomas, N. Omidi, K.B. Quest, Re-forming supercritical quasi-parallel shocks. II—Mechanism for wave generation and front re-formation. J. Geophys. Res. 95, 18821–18832 (1990). doi:10.1029/JA095iA11p18821

    ADS  Article  Google Scholar 

Download references

Acknowledgements

D. Burgess acknowledges support of STFC grant ST/J001546/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Burgess.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burgess, D., Scholer, M. Microphysics of Quasi-parallel Shocks in Collisionless Plasmas. Space Sci Rev 178, 513–533 (2013). https://doi.org/10.1007/s11214-013-9969-6

Download citation

Keywords

  • Space plasma
  • Collisionless shock
  • Particle acceleration