Skip to main content
Log in

Nonclassical Transport and Particle-Field Coupling: from Laboratory Plasmas to the Solar Wind

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • S. Abdullaev, Structure of motion near saddle points and chaotic transport in Hamiltonian systems. Phys. Rev. E 62, 3508 (2000)

    MathSciNet  ADS  Google Scholar 

  • O. Adriani et al. (PAMELA collaboration), PAMELA measurements of cosmic-ray proton and helium spectra. Science 332, 69 (2011)

    ADS  Google Scholar 

  • O. Alexandrova, J. Saur, C. Lacombe et al., Universality of the solar wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103, 165003 (2009)

    ADS  Google Scholar 

  • F. Anderegg, C.F. Driscoll, D.H. Dubin et al., Electron acoustic waves in pure ion plasmas. Phys. Plasmas 16, 055705 (2009)

    ADS  Google Scholar 

  • S.V. Annibaldi, G. Manfredi, R.O. Dendy et al., Evidence for strange kinetics in Hasegawa-Mima turbulent transport. Plasma Phys. Control. Fusion 42, L13 (2000)

    ADS  Google Scholar 

  • S.V. Annibaldi, G. Manfredi, R.O. Dendy, Non-Gaussian transport in strong plasma turbulence. Phys. Plasmas 9, 791 (2002)

    ADS  Google Scholar 

  • J.A. Araneda, E. Marsch, A.F. Viñas, Proton core heating and beam formation via parametrically unstable Alfvén-cyclotron waves. Phys. Rev. Lett. 100, 125003 (2008)

    ADS  Google Scholar 

  • J.A. Araneda, Y. Maneva, E. Marsch, Preferential heating and acceleration of α particles by Alfvén-cyclotron waves. Phys. Rev. Lett. 102, 175001 (2009)

    ADS  Google Scholar 

  • P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381 (1987)

    MathSciNet  ADS  Google Scholar 

  • P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality. Phys. Rev. A 38, 364 (1988)

    MathSciNet  ADS  MATH  Google Scholar 

  • S.D. Bale, P.J. Kellogg, F.S. Mozer et al., Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94, 215002 (2005)

    ADS  Google Scholar 

  • J.W. Bieber, W.H. Matthaeus, C.W. Smith, Proton and electron mean free paths: the Palmer consensus revisited. Astrophys. J. 420, 294 (1994)

    ADS  Google Scholar 

  • C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985)

    Google Scholar 

  • R. Bitane, G. Zimbardo, P. Veltri, Electron transport in coronal loops: the influence of the exponential separation of magnetic field lines. Astrophys. J. 719, 1912 (2010)

    ADS  Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, Correlations between the proton temperature anisotropy and transverse high frequency waves in the solar wind. Geophys. Res. Lett. 37, L14104 (2010)

    ADS  Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, On the relative speed and temperature ratio of solar wind alpha particles and protons: collisions versus wave effects. Astrophys. J. 728, L3 (2011a)

    ADS  Google Scholar 

  • S. Bourouaine, E. Marsch, F.M. Neubauer, Temperature anisotropy and differential streaming of solar wind ions. Correlations with transverse fluctuations. Astron. Astrophys. 536, A39 (2011b)

    ADS  Google Scholar 

  • A. Bovet, A. Fasoli, I. Furno et al., Investigation of fast ion transport in TORPEX. Nucl. Fusion 52, 094017 (2012)

    ADS  Google Scholar 

  • R. Bruno, V. Carbone, The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4 (2005)

    ADS  Google Scholar 

  • G.S. Burillo, B.P. van Milligen, A. Thyagaraja, Analysis of the radial transport of tracers in a turbulence simulation. Phys. Plasmas 16, 042319 (2009)

    ADS  Google Scholar 

  • E. Camporeale, D. Burgess, The dissipation of solar wind turbulent fluctuations at electron scales. Astrophys. J. 730, 114 (2011)

    ADS  Google Scholar 

  • B.A. Carreras, V.E. Lynch, D.E. Newman, A model realization of self-organized criticality for plasma confinement. Phys. Plasmas 3, 2903 (1996)

    ADS  Google Scholar 

  • S.C. Chapman, N. Watkins, R.O. Dendy et al., A simple avalanche model as an analogue for magnetospheric activity. Geophys. Res. Lett. 25, 2397 (1998)

    ADS  Google Scholar 

  • S.C. Chapman, R.O. Dendy, G. Rowlands, A sandpile model with dual scaling regimes for laboratory, space and astrophysical plasmas. Phys. Plasmas 6, 4169 (1999)

    ADS  Google Scholar 

  • S.C. Chapman, R.O. Dendy, B. Hnat, A sandpile model with tokamak-like enhanced confinement phenomenology. Phys. Rev. Lett. 86, 2814 (2001a)

    ADS  Google Scholar 

  • S.C. Chapman, R.O. Dendy, B. Hnat, A simple avalanche model for astroplasma and laboratory confinement systems. Phys. Plasmas 8, 1969 (2001b)

    ADS  Google Scholar 

  • S.C. Chapman, R.O. Dendy, B. Hnat, Self organisation of edge and internal pedestals in a sandpile. Plasma Phys. Control. Fusion 45, 301 (2003)

    ADS  Google Scholar 

  • C.H.K. Chen, A. Mallet, T.A. Yousef et al., Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon. Not. R. Astron. Soc. 415, 3219 (2011)

    ADS  Google Scholar 

  • R.-B. Decker, S.M. Krimigis, E.C. Roelof et al., Mediation of the solar wind termination shock by non-thermal ions. Nature 454, 67 (2008)

    ADS  Google Scholar 

  • D. del-Castillo-Negrete, Asymmetric transport and non-Gaussian statistics of passive scalars in vortices in shear. Phys. Fluids 10, 576 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  • D. del-Castillo-Negrete, B.A. Carreras, V.E. Lynch, Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004a)

    ADS  Google Scholar 

  • D. del-Castillo-Negrete, B.A. Carreras, V.E. Lynch, Nondiffusive transport in plasma turbulence: a fractional diffusion approach. Phys. Rev. Lett. 94, 065003 (2004b)

    ADS  Google Scholar 

  • R.O. Dendy, P. Helander, Sandpiles, silos and tokamak phenomenology: a brief review. Plasma Phys. Control. Fusion 39, 1947 (1997)

    ADS  Google Scholar 

  • R.O. Dendy, P. Helander, On the appearance and non-appearance of self-organised criticality in sandpiles. Phys. Rev. E 57, 3641 (1998)

    ADS  Google Scholar 

  • R.O. Dendy, P. Helander, M. Tagger, On the role of self-organised criticality in accretion systems. Astron. Astrophys. 337, 962 (1998)

    ADS  Google Scholar 

  • R.O. Dendy, S.C. Chapman, Characterisation and interpretation of strongly nonlinear phenomena in fusion, space, and astrophysical plasmas. Plasma Phys. Control. Fusion 48, B313 (2006)

    Google Scholar 

  • R.O. Dendy, S.C. Chapman, M. Paczuski, Fusion, space, and solar plasmas as complex systems. Plasma Phys. Control. Fusion 49, A95 (2007)

    ADS  Google Scholar 

  • J.M. Dewhurst, B. Hnat, R.O. Dendy, The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence. Phys. Plasmas 16, 072306 (2009)

    ADS  Google Scholar 

  • J.M. Dewhurst, B. Hnat, R.O. Dendy, Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence. Plasma Phys. Control. Fusion 52, 025004 (2010). doi:10.1088/0741-3335/52/2/025004

    ADS  Google Scholar 

  • A. Diallo, A. Fasoli, I. Furno et al., Dynamics of plasma blobs in a shear flow. Phys. Rev. Lett. 101, 115005 (2008)

    ADS  Google Scholar 

  • P.H. Diamond, S.-I. Itoh, T.S. Hahm, Zonal flows in plasmas—a review. Plasma Phys. Control. Fusion 47, R35 (2005)

    ADS  Google Scholar 

  • P.H. Diamond, A. Hasegawa, K. Mima, Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead. Plasma Phys. Control. Fusion 53, 124001 (2011)

    ADS  Google Scholar 

  • A. Dosch, A. Shalchi, Diffusive shock acceleration at interplanetary perpendicular shock waves: influence of the large scale structure of turbulence on the maximum particle energy. Adv. Space Res. 46, 1208 (2010)

    ADS  Google Scholar 

  • P. Duffy, J.-G. Kirk, Y.-A. Gallant et al., Anomalous transport and particle acceleration at shocks. Astron. Astrophys. 302, L21 (1995)

    ADS  Google Scholar 

  • A. Fasoli, B. Labit, M. McGrath et al., Electrostatic turbulence and transport in a simple magnetized plasma. Phys. Plasmas 13, 055902 (2006)

    ADS  Google Scholar 

  • A. Fasoli, A. Burckel, L. Federspiel et al., Electrostatic instabilities, turbulence and fast ion interactions in the TORPEX device. Plasma Phys. Control. Fusion 52, 124020 (2010)

    ADS  Google Scholar 

  • J. Feder, Fractals (Plenum, New York, 1988)

    MATH  Google Scholar 

  • L.A. Fisk, M.A. Lee, Shock acceleration of energetic particles in corotating interaction regions in the solar wind. Astrophys. J. 237, 620 (1980)

    ADS  Google Scholar 

  • V. Florinski, R.B. Decker, J.A. le Roux et al., An energetic-particle-mediated termination shock observed by Voyager 2. Geophys. Res. Lett. 36, L12101 (2009)

    ADS  Google Scholar 

  • A. Fujisawa, Experimental studies of mesoscale structure and its interactions with microscale waves in plasma turbulence. Plasma Phys. Control. Fusion 53, 124015 (2011)

    ADS  Google Scholar 

  • I. Furno, B. Labit, M. Podestà et al., Experimental observation of the blob-generation mechanism from interchange waves in a plasma. Phys. Rev. Lett. 100, 055004 (2008a)

    ADS  Google Scholar 

  • I. Furno, B. Labit, A. Fasoli et al., Mechanism for blob generation in the TORPEX toroidal plasma. Phys. Plasmas 15, 055903 (2008b)

    ADS  Google Scholar 

  • I. Furno, M. Spolaore, C. Theiler et al., Direct two-dimensional measurements of the field-aligned current associated with plasma blobs. Phys. Rev. Lett. 106, 245001 (2011)

    ADS  Google Scholar 

  • S.P. Gary, S. Saito, H. Li, Cascade of whistler turbulence: particle-in-cell simulations. Geophys. Res. Lett. 35, L02104 (2008)

    ADS  Google Scholar 

  • J. Giacalone, Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452 (2004)

    ADS  Google Scholar 

  • J. Giacalone, Cosmic-ray transport and interaction with shocks. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9763-2

    Google Scholar 

  • J.P. Graves, R.O. Dendy, K.I. Hopcraft et al., The role of clustering effects in non-diffusive transport in tokamaks. Phys. Plasmas 9, 1596 (2002)

    ADS  Google Scholar 

  • S. Günter, C. Angioni, M. Apostoliceanu et al., Overview of ASDEX upgrade results—development of integrated operating scenarios for ITER. Nucl. Fusion 45, S98 (2005)

    Google Scholar 

  • D.A. Gurnett, E. Marsch, W. Pilipp et al., Ion-acoustic waves and related plasma observations in the solar wind. J. Geophys. Res. 84, 2029 (1979)

    ADS  Google Scholar 

  • K. Gustafson, D. Del-Castillo-Negrete, W. Dorland, Finite Larmor radius effects on nondiffusive tracer transport in a zonal flow. Phys. Plasmas 15, 102309 (2008)

    ADS  Google Scholar 

  • K. Gustafson, P. Ricci, A. Bovet et al., Suprathermal ion transport in simple magnetized torus configurations. Phys. Plasmas 19, 062306 (2012a)

    ADS  Google Scholar 

  • K. Gustafson, P. Ricci, I. Furno et al., Nondiffusive suprathermal ion transport in simple magnetized toroidal plasmas. Phys. Rev. Lett. 108, 035006 (2012b)

    ADS  Google Scholar 

  • K. Gustafson, P. Ricci, Lévy walk description of suprathermal ion transport. Phys. Plasmas 19, 032304 (2012)

    ADS  Google Scholar 

  • T. Hauff, F. Jenko, S. Eule, Intermediate non-Gaussian transport in plasma core turbulence. Phys. Plasmas 14, 102316 (2007)

    ADS  Google Scholar 

  • T. Hauff, F. Jenko, Mechanisms and scalings of energetic ion transport via tokamak microturbulence. Phys. Plasmas 15, 2307 (2008)

    Google Scholar 

  • P. Helander, S.C. Chapman, R.O. Dendy et al., Exactly solvable sandpile with fractal avalanching. Phys. Rev. 59, 6356 (1999)

    ADS  Google Scholar 

  • W.A. Hornsby, A.R. Bell, R.J. Kingham et al., A code to solve the Vlasov Fokker-Planck equation applied to particle transport in magnetic turbulence. Plasma Phys. Control. Fusion 52, 075011 (2010)

    ADS  Google Scholar 

  • D. Hughes, M. Paczuski, R.O. Dendy et al., Solar flares as cascades of reconnecting magnetic loops. Phys. Rev. Lett. 90, 131101 (2003)

    ADS  Google Scholar 

  • S. Inagaki, T. Tokuzawa, K. Itoh et al., Observations of long-distance radial correlation in toroidal plasma turbulence. Phys. Rev. Lett. 107, 115001 (2011)

    ADS  Google Scholar 

  • J.R. Jokipii, Cosmic-ray propagation. I. Charged particles in a random magnetic field. Astrophys. J. 146, 480 (1966)

    ADS  Google Scholar 

  • J.G. Kirk, P. Duffy, Y.A. Gallant, Stochastic particle acceleration at shocks in the presence of braided magnetic fields. Astron. Astrophys. 314, 1010 (1996)

    ADS  Google Scholar 

  • J.G. Kirk, R.O. Dendy, Shock acceleration of cosmic rays: a critical review. J. Phys. G 27, 1589 (2001)

    ADS  Google Scholar 

  • J. Klafter, A. Blumen, M.F. Shlesinger, Stochastic pathway to anomalous diffusion. Phys. Rev. A 35, 3081 (1987)

    MathSciNet  ADS  Google Scholar 

  • A.J. Klimas, J.A. Valdivia, D. Vassiliadis et al., Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet. J. Geophys. Res. 105(A8), 18765 (2000)

    ADS  Google Scholar 

  • J. Kóta, J.R. Jokipii, Velocity correlation and the spatial diffusion coefficients of cosmic rays: compound diffusion. Astrophys. J. 531, 1067 (2000)

    ADS  Google Scholar 

  • J.A. Krommes, C. Oberman, R.B. Kleva, Plasma transport in stochastic magnetic fields. Part 3. Kinetics of test particle diffusion. J. Plasma Phys. 30, 11 (1983)

    ADS  Google Scholar 

  • B. Labit, C. Theiler, A. Fasoli et al., Blob-induced toroidal momentum transport in simple magnetized plasmas. Phys. Plasmas 18, 032308 (2011)

    ADS  Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, Cosmic-ray shock acceleration in the presence of self-excited waves. Astron. Astrophys. 118, 223 (1983a)

    ADS  MATH  Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, The maximum energy of cosmic rays accelerated by supernova shocks. Astron. Astrophys. 125, 249 (1983b)

    ADS  MATH  Google Scholar 

  • L.D. Landau, On the vibrations of the electronic plasma. J. Phys. (Moscow) 10, 25 (1946)

    MATH  Google Scholar 

  • M.A. Lee, L.A. Fisk, Shock acceleration of energetic particles in the heliosphere. Space Sci. Rev. 32, 205 (1982)

    ADS  Google Scholar 

  • R.E. Lee, S.C. Chapman, R.O. Dendy, Ion acceleration processes at reforming collisionless shocks. Phys. Plasmas 12, 012901 (2005a)

    ADS  Google Scholar 

  • R.E. Lee, S.C. Chapman, R.O. Dendy, Reforming perpendicular shocks in the presence of pickup protons: initial ion acceleration. Ann. Geophys. 23, 643 (2005b)

    ADS  Google Scholar 

  • R.P. Lin, Non-relativistic solar electrons. Space Sci. Rev. 16, 189 (1974)

    ADS  Google Scholar 

  • R.P. Lin, Relationship of solar flare accelerated particles to solar energetic particles (SEPs) observed in the interplanetary medium. Adv. Space Res. 35, 1857 (2005)

    ADS  Google Scholar 

  • E. Lu, R. Hamilton, Avalanches of the distribution of solar flares. Astrophys. J. 380, L89 (1991)

    ADS  Google Scholar 

  • F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (1996)

    MathSciNet  Google Scholar 

  • M.A. Malkov, P.H. Diamond, Weak hysteresis in a simplified model of the L-H transition. Phys. Plasmas 16, 012504 (2009)

    ADS  Google Scholar 

  • B.B. Mandelbrot, J.W. van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10, 422 (1968)

    MathSciNet  ADS  MATH  Google Scholar 

  • G. Manfredi, R.O. Dendy, Test-particle transport in strong electrostatic drift turbulence with finite Larmor radius effects. Phys. Rev. Lett. 76, 4360 (1996)

    ADS  Google Scholar 

  • G. Manfredi, M. Shoucri, R.O. Dendy et al., Vlasov gyrokinetic simulations of ion-temperature-gradient driven instabilities. Phys. Plasmas 3, 202 (1996)

    ADS  Google Scholar 

  • G. Manfredi, R.O. Dendy, Transport properties of energetic particles in a turbulent electrostatic field. Phys. Plasmas 4, 628 (1997)

    ADS  Google Scholar 

  • G. Manfredi, C.M. Roach, R.O. Dendy, Zonal flow and streamer generation in drift turbulence. Plasma Phys. Control. Fusion 43, 825 (2001)

    ADS  Google Scholar 

  • A. Mangeney, F. Califano, C. Cavazzoni et al., A numerical scheme for the integration of the Vlasov-Maxwell system of equations. J. Comput. Phys. 179, 405 (2002)

    MathSciNet  Google Scholar 

  • E. Marsch, K.-H. Mühlhäuser, R. Schwenn et al., Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, A1 (1982a)

    Google Scholar 

  • E. Marsch, K.-H. Mühlhäuser, R. Schwenn et al., Solar wind helium ions: observations of the Helios solar probes between 0.3 and 1 AU. J. Geophys. Res. 35, A1 (1982b)

    Google Scholar 

  • E. Marsch, Kinetic physics of the solar corona and solar wind. Living Rev. Sol. Phys. 3, 1 (2006)

    ADS  Google Scholar 

  • J.A. Mier, R. Sanchez, L. Garcia et al., Characterization of non-diffusive transport in plasma turbulence via a novel Lagrangian method. Phys. Rev. Lett. 101, 165001 (2008)

    ADS  Google Scholar 

  • J.A. Miller, Particle acceleration in impulsive solar flares. Space Sci. Rev. 86, 79 (1998)

    ADS  Google Scholar 

  • E.W. Montroll, G.H. Weiss, Random walks on lattices. II. J. Math. Phys. 6, 167 (1965)

    MathSciNet  ADS  Google Scholar 

  • S.H. Müller, A. Diallo, A. Fasoli et al., Plasma blobs in a basic toroidal experiment: origin, dynamics, and induced transport. Phys. Plasmas 14, 110704 (2007)

    Google Scholar 

  • D.E. Newman, B.A. Carreras, P.H. Diamond et al., The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport. Phys. Plasmas 3, 1858 (1996)

    ADS  Google Scholar 

  • T.N. Parashar, S. Servidio, B. Breech et al., Kinetic driven turbulence: structure in space and time. Phys. Plasmas 17, 102304 (2010)

    ADS  Google Scholar 

  • T.N. Parashar, S. Servidio, M.A. Shay et al., Effect of driving frequency on excitation of turbulence in a kinetic plasma. Phys. Plasmas 18, 092302 (2011)

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. 671, L177 (2007)

    ADS  Google Scholar 

  • S. Perri, F. Lepreti, V. Carbone et al., Position and velocity space diffusion of test particles in stochastic electromagnetic fields. Europhys. Lett. 78, 40003 (2007)

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113, A03107 (2008a). doi:10.1029/2007JA012695

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Observations of anomalous transport of energetic electrons in the heliosphere. Astrophys. Space Sci. Trans. 4, 27 (2008b)

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Ion and electron superdiffusive transport in the interplanetary space. Adv. Space Res. 44, 465 (2009a)

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Ion superdiffusion at the solar wind termination shock. Astrophys. J. 693, L118 (2009b)

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, A. Greco, On the energization of protons interacting with 3-D time-dependent electromagnetic fields in the Earth’s magnetotail. J. Geophys. Res. 116, A05221 (2011). doi:10.1029/2010JA016328

    ADS  Google Scholar 

  • S. Perri, G. Zimbardo, Superdiffusive shock acceleration. Astrophys. J. 750, 87 (2012)

    ADS  Google Scholar 

  • D. Perrone, F. Valentini, P. Veltri, The role of alpha particles in the evolution of the solar-wind turbulence toward short spatial scales. Astrophys. J. 741, 43 (2011)

    ADS  Google Scholar 

  • D. Perrone, F. Valentini, S. Servidio, S. Dalena, P. Veltri, Vlasov simulations of multi-ion plasma turbulence in the solar wind. Astrophys. J. 762, 99 (2013)

    ADS  Google Scholar 

  • G. Plyushchev, A. Diallo, A. Fasoli et al., Fast ion source and detector for investigating the interaction of turbulence with suprathermal ions in a low temperature toroidal plasma. Rev. Sci. Instrum. 77, 10F503 (2006)

    Google Scholar 

  • M. Podestà, A. Fasoli, B. Labit et al., Cross-field transport by instabilities and blobs in a magnetized toroidal plasma. Phys. Rev. Lett. 101, 045001 (2008)

    ADS  Google Scholar 

  • P. Pommois, P. Veltri, G. Zimbardo, Anomalous and Gaussian transport regimes in anisotropic three-dimensional magnetic turbulence. Phys. Rev. E 59, 2244 (1999)

    ADS  Google Scholar 

  • P. Pommois, P. Veltri, G. Zimbardo, Field line diffusion in solar wind magnetic turbulence and energetic particle propagation across heliographic latitudes. J. Geophys. Res. 106, 24965 (2001)

    ADS  Google Scholar 

  • P. Pommois, G. Zimbardo, P. Veltri, Anomalous, non-Gaussian transport of charged particles in anisotropic magnetic turbulence. Phys. Plasmas 14, 012311 (2007)

    ADS  Google Scholar 

  • G. Qin, W.H. Matthaeus, J.W. Bieber, Subdiffusive transport of charged particles perpendicular to the large scale magnetic field. Geophys. Res. Lett. 29, 1048 (2002a). doi:10.1029/2001GL014035

    ADS  Google Scholar 

  • G. Qin, W.H. Matthaeus, J.W. Bieber, Perpendicular transport of charged particles in composite model turbulence: recovery of diffusion. Astrophys. J. 578, L117 (2002b)

    ADS  Google Scholar 

  • B.R. Ragot, J.G. Kirk, Anomalous transport of cosmic ray electrons. Astron. Astrophys. 327, 432 (1997)

    ADS  Google Scholar 

  • D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413 (1999)

    ADS  Google Scholar 

  • A.B. Rechester, M.N. Rosenbluth, Electron heat transport in a Tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38 (1978)

    ADS  Google Scholar 

  • P. Ricci, C. Theiler, A. Fasoli et al., Langmuir probe-based observables for plasma-turbulence code validation and application to the TORPEX basic plasma physics experiment. Phys. Plasmas 16, 055703 (2009)

    ADS  Google Scholar 

  • P. Ricci, B.N. Rogers, Transport scaling in interchange-driven toroidal plasmas. Phys. Plasmas 16, 062303 (2009)

    ADS  Google Scholar 

  • P. Ricci, B.N. Rogers, Turbulence phase space in simple magnetized toroidal plasmas. Phys. Rev. Lett. 104, 145001 (2010)

    ADS  Google Scholar 

  • P. Ricci, C. Theiler, A. Fasoli et al., Methodology for turbulence code validation: quantification of simulation-experiment agreement and application to the TORPEX experiment. Phys. Plasmas 18, 032109 (2011)

    ADS  Google Scholar 

  • D. Ruffolo, W.H. Matthaeus, P. Chuychai, Trapping of solar energetic particles by the small-scale topology of solar wind turbulence. Astrophys. J. 597, L169 (2003)

    ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont et al., Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010)

    ADS  Google Scholar 

  • S. Saito, S.P. Gary, H. Li et al., Whistler turbulence: particle-in-cell simulations. Phys. Plasmas 15, 102305 (2008)

    ADS  Google Scholar 

  • G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Distributions (Chapman & Hall, New York, 1994)

    Google Scholar 

  • R. Sanchez, B.A. Carreras, B. ph. van Milligen, Fluid limits of nonintegrable CTRWs in terms of fractional differential equations. Phys. Rev. E 71, 011111 (2005)

    MathSciNet  ADS  Google Scholar 

  • R. Sanchez, B.A. Carreras, D.E. Newman et al., Renormalization of tracer turbulence leading to fractional differential equations. Phys. Rev. E 74, 016305 (2006)

    MathSciNet  ADS  Google Scholar 

  • R. Sanchez, D.E. Newman, J.-N. Leboeuf et al., Nature of transport across sheared zonal flows in electrostatic ion-temperature-gradient gyrokinetic plasma turbulence. Phys. Rev. Lett. 101, 205002 (2008)

    ADS  Google Scholar 

  • R. Sanchez, D.E. Newman, J.-N. Leboeuf et al., Nature of turbulent transport across sheared zonal flows: insights from gyrokinetic simulations. Plasma Phys. Control. Fusion 53, 074018 (2011)

    ADS  Google Scholar 

  • H. Schmitz, S.C. Chapman, R.O. Dendy, Electron pre-acceleration mechanisms in the foot region of high Alfvénic Mach number shocks. Astron. Astrophys. 579, 327 (2002b)

    ADS  Google Scholar 

  • H. Schmitz, S.C. Chapman, R.O. Dendy, The influence of electron temperature and magnetic field on cosmic ray injection at high Mach number shocks. Astron. Astrophys. 570, 637 (2002a)

    ADS  Google Scholar 

  • S. Servidio, F. Valentini, F. Califano et al., Local kinetic effects in two-dimensional plasma turbulence. Phys. Rev. Lett. 108, 045001 (2012)

    ADS  Google Scholar 

  • A. Shalchi, I. Kourakis, A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470, 405 (2007)

    ADS  MATH  Google Scholar 

  • A. Shalchi, Applicability of the Taylor-Green-Kubo formula in particle diffusion theory. Phys. Rev. E 83, 046402 (2011)

    ADS  Google Scholar 

  • M.F. Shlesinger, J. Klafter, Y.M. Wong, Random walks with infinite spatial and temporal moments. J. Stat. Phys. 27, 499 (1982)

    MathSciNet  ADS  MATH  Google Scholar 

  • W.J. Shugard, H. Reiss, Transient nucleation in H2O–H2SO4 mixtures: a stochastic approach. J. Chem. Phys. 65, 2827 (1976)

    ADS  Google Scholar 

  • T. Sugiyama, D. Shiota, Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. 731, L34 (2011)

    ADS  Google Scholar 

  • R.C. Tautz, Simulation results on the influence of magneto-hydrodynamic waves on cosmic ray particles. Plasma Phys. Control. Fusion 52, 045016 (2010)

    ADS  Google Scholar 

  • R.C. Tautz, A. Shalchi, On the diffusivity of cosmic ray transport. J. Geophys. Res. 115, A03104 (2010). doi:10.1029/2009JA014944

    ADS  Google Scholar 

  • C. Theiler, A. Diallo, A. Fasoli et al., The role of the density gradient on intermittent cross-field transport events in a simple magnetized toroidal plasma. Phys. Plasmas 15, 042303 (2008)

    ADS  Google Scholar 

  • C. Theiler, I. Furno, P. Ricci et al., Cross-field motion of plasma blobs in an open magnetic field line configuration. Phys. Rev. Lett. 103, 065001 (2009)

    ADS  Google Scholar 

  • G.R. Tynan, A. Fujisawa, G. McKee, A review of experimental drift turbulence studies. Plasma Phys. Control. Fusion 51, 113001 (2009)

    ADS  Google Scholar 

  • F. Valentini, P. Veltri, A. Mangeney, A numerical scheme for the integration of the Vlasov–Poisson system of equations, in the magnetized case. J. Comput. Phys. 210, 730 (2005)

    ADS  MATH  Google Scholar 

  • F. Valentini, P. Trávníček, F. Califano et al., A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. J. Comput. Phys. 225, 753 (2007)

    MathSciNet  ADS  MATH  Google Scholar 

  • F. Valentini, P. Veltri, F. Califano et al., Cross-scale effects in solar-wind turbulence. Phys. Rev. Lett. 101, 025006 (2008)

    ADS  Google Scholar 

  • F. Valentini, P. Veltri, Electrostatic short-scale termination of solar-wind turbulence. Phys. Rev. Lett. 102, 225001 (2009)

    ADS  Google Scholar 

  • F. Valentini, F. Califano, P. Veltri, Two-dimensional kinetic turbulence in the solar wind. Phys. Rev. Lett. 104, 205002 (2010)

    ADS  Google Scholar 

  • F. Valentini, F. Califano, D. Perrone et al., New ion-wave path in the energy cascade. Phys. Rev. Lett. 106, 165002 (2011a)

    ADS  Google Scholar 

  • F. Valentini, F. Califano, D. Perrone et al., Excitation of nonlinear electrostatic waves with phase velocity close to the ion-thermal speed. Plasma Phys. Control. Fusion 53, 105017 (2011b)

    ADS  Google Scholar 

  • F. Valentini, D. Perrone, P. Veltri, Short-wavelength electrostatic fluctuations in the solar wind. Astrophys. J. 739, 54 (2011c)

    ADS  Google Scholar 

  • B.Ph. van Milligen, R. Sanchez, B.A. Carreras, Probabilistic finite-size transport models for fusion: anomalous transport and scaling laws. Phys. Plasmas 11, 2272 (2004)

    ADS  Google Scholar 

  • F. Wagner, A quarter-century of H-mode studies. Plasma Phys. Control. Fusion 49, B1 (2007)

    ADS  Google Scholar 

  • N.W. Watkins, S.C. Chapman, R.O. Dendy et al., Robustness of collective behaviour in strongly driven avalanche models: magnetospheric implications. Geophys. Res. Lett. 26, 2617 (1999)

    ADS  Google Scholar 

  • N.W. Watkins, M.P. Freeman, S.C. Chapman et al., Testing the SOC hypothesis for the magnetosphere. J. Atmos. Sol.-Terr. Phys. 63, 1435 (2001)

    ADS  Google Scholar 

  • G.M. Webb, G.P. Zank, E.Kh. Kaghashvili et al., Compound and perpendicular diffusion of cosmic rays and random walk of the field lines. I. Parallel particle transport models. Astrophys. J. 651, 211 (2006)

    ADS  Google Scholar 

  • T. Yamada, S.-I. Itoh, T. Maruta et al., Anatomy of plasma turbulence. Nat. Phys. 4, 721 (2008)

    Google Scholar 

  • G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461 (2002)

    MathSciNet  ADS  MATH  Google Scholar 

  • S. Zhou, W.W. Heidbrink, H. Boehmer et al., Turbulent transport of fast ions in the large plasma device. Phys. Plasmas 17, 092103 (2010)

    ADS  Google Scholar 

  • S. Zhou, W.W. Heidbrink, H. Boehmer et al., Dependence of fast-ion transport on the nature of the turbulence in the large plasma device. Phys. Plasmas 18, 082104 (2011)

    ADS  Google Scholar 

  • G. Zimbardo, P. Veltri, P. Pommois, Anomalous, quasilinear, and percolative regimes for magnetic-field-line transport in axially symmetric turbulence. Phys. Rev. E 61, 1940 (2000a)

    ADS  Google Scholar 

  • G. Zimbardo, A. Greco, P. Veltri, Superballistic transport in tearing driven magnetic turbulence. Phys. Plasmas 7, 1071 (2000b)

    ADS  Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Magnetic flux tube evolution in solar wind anisotropic magnetic turbulence. J. Geophys. Res. 109, A02113 (2004). doi:10.1029/2003JA010162

    ADS  Google Scholar 

  • G. Zimbardo, Anomalous particle diffusion and Lévy random walk of magnetic field lines in three-dimensional solar wind turbulence. Plasma Phys. Control. Fusion 47, B755 (2005)

    Google Scholar 

  • G. Zimbardo, P. Pommois, P. Veltri, Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. 639, L91 (2006)

    ADS  Google Scholar 

  • G. Zimbardo, R. Bitane, P. Pommois et al., Kolmogorov entropy of magnetic field lines in the percolation regime. Plasma Phys. Control. Fusion 51, 015005 (2009)

    ADS  Google Scholar 

  • G. Zimbardo, A. Greco, L. Sorriso-Valvo et al., Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89 (2010)

    ADS  Google Scholar 

  • G. Zimbardo, S. Perri, P. Pommois et al., Anomalous particle transport in the heliosphere. Adv. Space Res. 49, 1633 (2012)

    ADS  Google Scholar 

  • G. Zumofen, A. Blumen, J. Klafter et al., Lévy-walks for turbulence: a numerical study. J. Stat. Phys. 54, 1519 (1989)

    MathSciNet  ADS  Google Scholar 

  • G. Zumofen, J. Klafter, Scale-invariant motion in intermittent chaotic systems. Phys. Rev. E 47, 851 (1993)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was part-funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The TORPEX experiments and simulations were supported in part by the Swiss National Science Foundation. The authors wish to acknowledge the valuable support of the CRPP technical team. K.G. was supported by US-NSF IRFP grant OISE-0853498. The hybrid Vlasov-Maxwell numerical simulations discussed in the present work were performed on the Fermi supercomputer at Cineca (Bologna, Italy), within the project ASWTURB 2011 (HP10BO2REM), supported by the Italian Super-computing research allocation (ISCRA), and within the European project PRACE Pra04-771 (Partnership for advanced computing in Europe). D.P. is supported by the Italian Ministry for University and Research (MIUR) PRIN 2009 funds (grant number 20092YP7EY). G.Z. acknowledges support from the European Union FP7, Marie Curie project 269198 – Geoplasmas. S. P.’s research has been supported by “Borsa Post-doc POR Calabria FSE 2007/2013 Asse IV Capitale Umano - Obiettivo Operativo M.2”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Perrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrone, D., Dendy, R.O., Furno, I. et al. Nonclassical Transport and Particle-Field Coupling: from Laboratory Plasmas to the Solar Wind. Space Sci Rev 178, 233–270 (2013). https://doi.org/10.1007/s11214-013-9966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-9966-9

Keywords

Navigation