Advertisement

Space Science Reviews

, Volume 175, Issue 1–4, pp 125–164 | Cite as

Solar Wind Conditions and Composition During the Genesis Mission as Measured by in situ Spacecraft

  • Daniel B. Reisenfeld
  • Roger C. Wiens
  • Bruce L. Barraclough
  • John T. Steinberg
  • Marcia Neugebauer
  • Jim Raines
  • Thomas H. Zurbuchen
Special Communication

Abstract

We describe the Genesis mission solar-wind sample collection period and the solar wind conditions at the L1 point during this 2.3-year period. In order to relate the solar wind samples to solar composition, the conditions under which the samples were collected must be understood in the context of the long-term solar wind. We find that the state of the solar wind was typical of conditions over the past four solar cycles. However, Genesis spent a relatively large fraction of the time in coronal-hole flow as compared to what might have been expected for the declining phase of the solar cycle. Data from the Solar Wind Ion Composition Spectrometer (SWICS) on the Advanced Composition Explorer (ACE) are used to determine the effectiveness of the Genesis solar-wind regime selection algorithm. The data collected by SWICS confirm that the Genesis algorithm successfully separated and collected solar wind regimes having distinct solar origins, particularly in the case of the coronal hole sample. The SWICS data also demonstrate that the different regimes are elementally fractionated. When compared with Ulysses composition data from the previous solar cycle, we find a similar degree of fractionation between regimes as well as fractionation relative to the average photospheric composition.

The Genesis solar wind samples are under long-term curation at NASA Johnson Space Center so that as sample analysis techniques evolve, pristine solar wind samples will be available to the scientific community in the decades to come. This article and a companion paper (Wiens et al. 2013, this issue) provide post-flight information necessary for the analysis of the Genesis array and foil solar wind samples and the Genesis solar wind ion concentrator samples, and thus serve to complement the Space Science Review volume, The Genesis Mission (v. 105, 2003).

Keywords

Solar wind Solar wind composition Solar wind sample collection Solar composition 

Definitions, Abbreviations, and Acronyms

B

Bulk collectors that were at the top of the stack and in the Canister lid. These were exposed continuously during the science collection period

E

Collector array directly below the B array. This array was exposed to coronal mass ejection flows and questionable flows

H

Collector array below the E array. This array was exposed to high-speed, or coronal hole flows

L

Bottom collector array in the stack. This array was exposed to low-speed, or interstream wind

S

Collectors in the SRC lid, primarily to investigate radioactive nuclei in the solar wind

CME

Coronal mass ejections

CH

Coronal hole, or fast wind

IS

Insterstream, or slow wind

S/C

Spacecraft

SRC

Science return capsule

SKM

Station keeping maneuvers, which occurred approximately every 2 months

LOI

L1 orbit insertion, which occurred prior to the beginning of the science collection phase of the mission

L1

The Lagrangian point between the Earth and the Sun

Unshaded position

Rotational position of the deployable solar-wind collector arrays where individual, regime-specific arrays were exposed.

Deployed position

Rotational position of the deployable solar-wind collector arrays where the B array remained during collection, and where the regime-specific arrays were positioned when they were not exposed or acting as a contamination barrier

Notes

Acknowledgements

The authors wish to acknowledge the NASA Laboratory Analysis of Returned Samples (LARS) program (Grants NNX10AH57G and NNH10A046I) and the International Space Science Institute (ISSI) for supporting this work. The OMNI data were obtained from the GSFC/SPDF OMNIWeb interface at http://omniweb.gsfc.nasa.gov. The authors thank the ACE science team for making their data available for this study. T.H.Z. and J.R. were supported in part by NASA grant NNX08AI11G.

Supplementary material

11214_2013_9960_MOESM1_ESM.pdf (136 kb)
(PDF 136 kB)

References

  1. M. Asplund, N. Grevesse, A.J. Sauval, The solar chemical composition. Astron. Soc. Pac. Conf. Ser. 336, 25–38 (2005) ADSGoogle Scholar
  2. M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009). arXiv:0909.0948 ADSCrossRefGoogle Scholar
  3. B.L. Barraclough, E.E. Dors, R.A. Abeyta, J.F. Alexander, F.P. Ameduri, J.R. Baldonado, S.J. Bame, P.J. Casey, G. Dirks, D.T. Everett, J.T. Gosling, K.M. Grace, D.R. Guerrero, J.D. Kolar, J.L. Kroesche Jr., W.L. Lockhart, D.J. McComas, D.E. Mietz, J. Roese, J. Sanders, J. Steinberg, R.L. Tokar, C. Urdiales, R.C. Wiens, Genesis electron and ion spectrometers. Space Sci. Rev. 105, 627–660 (2003) ADSCrossRefGoogle Scholar
  4. S. Bravo, G.A. Stuart, Fast and slow solar wind from solar coronal holes. Astrophys. J. 482, 992 (1997) ADSCrossRefGoogle Scholar
  5. D.S. Burnett, B.L. Barraclough, R. Bennett, M. Neugebauer, L.P. Oldham, C.N. Sasaki, D. Sevilla, N. Smith, E. Stansbery, D. Sweetnam, R.C. Wiens, The genesis discovery mission: return of solar matter to Earth. Space Sci. Rev. 105, 509–534 (2003) ADSCrossRefGoogle Scholar
  6. H.V. Cane, I.G. Richardson, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 108, 1156 (2003). doi: 10.1029/2002JA009817 CrossRefGoogle Scholar
  7. S.A. Crowther, J.D. Gilmour, Solar wind Xe composition measured in Si collectors from the Genesis mission, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1969 Google Scholar
  8. R.W. Ebert, D.J. McComas, H.A. Elliott, R.J. Forsyth, J.T. Gosling, Bulk properties of the slow and fast solar wind and interplanetary coronal mass ejections measured by Ulysses: Three polar orbits of observations. J. Geophys. Res. 114, A01109 (2009). doi: 10.1029/2008JA013631 ADSCrossRefGoogle Scholar
  9. W.C. Feldman, J.R. Asbridge, S.J. Bame, J.T. Gosling, Plasma and magnetic fields from the Sun, in The Solar Output and Its Variation, ed. by O.R. White (Colorado Associated University Press, Boulder, 1977), pp. 351–382 Google Scholar
  10. P.R. Gazis, Solar cycle variation in the heliosphere. Rev. Geophys. 34, 379–402 (1996). doi: 10.1029/96RG00892 ADSCrossRefGoogle Scholar
  11. J. Geiss, Processes affecting abundances in the solar wind. Space Sci. Rev. 33, 201 (1982) ADSCrossRefGoogle Scholar
  12. G. Gloeckler, J. Cain, F.M. Ipavich, E.O. Turns, P. Bedini, L.A. Fisk, T.H. Zurbuchen, P. Bochsler, J. Fischer, R.F. Wimmer-Schweingruber, J. Geiss, R. Kallenbach, Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft. Space Sci. Rev. 86, 497–539 (1998) ADSCrossRefGoogle Scholar
  13. G. Gloeckler, J. Geiss, The composition of the solar wind in polar coronal holes. Space Sci. Rev. 130, 139 (2007). doi: 10.1007/s11214-007-9189-z ADSCrossRefGoogle Scholar
  14. J.T. Gosling, R.M. Skoug, D.J. McComas, C.W. Smith, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107 (2005). doi: 10.1029/2004JA010809 ADSCrossRefGoogle Scholar
  15. N. Grevesse, A.J. Sauval, Standard solar composition. Space Sci. Rev. 85, 161–174 (1998) ADSCrossRefGoogle Scholar
  16. A. Grimberg, H. Baur, P. Bochsler, F. Bühler, D.S. Burnett, C.C. Hays, V.S. Heber, A.J.G. Jurewicz, R. Wieler, Solar wind neon from Genesis: implications from the lunar noble gas record. Science 314, 1133–1135 (2006) ADSCrossRefGoogle Scholar
  17. A. Grimberg, H. Baur, F. Bühler, P. Bochsler, R. Wieler, Solar wind helium, neon, and argon isotopic and elemental composition: data from the metallic glass flown on NASA’s Genesis mission. Geochim. Cosmochim. Acta 72, 626–645 (2008) ADSCrossRefGoogle Scholar
  18. V.S. Heber, H. Baur, R. Wieler, P. Bochsler, D.S. Burnett, D.B. Reisenfeld, R.C. Wiens, Fractionation processes in the solar wind detected by Genesis: He, Ne, and Ar isotopic and elemental composition of different solar wind regimes. Astrophys. J. (2012). doi: 10.1088/0004-637X/759/2/121 zbMATHGoogle Scholar
  19. Hefti et al., Kinetic properties of solar wind minor ions and protons measured with SOHO/CELIAS. J. Geophys. Res. 103, 29697–29704 (1998) ADSCrossRefGoogle Scholar
  20. M. Humayun, A.J.G. Jurewicz, D.S. Burnett, Preliminary Mg isotopic composition of solar wind from Genesis SoS, in 42nd Lunar and Planetary Science Conference (2011). LPI Contribution No. 1211 Google Scholar
  21. G.R. Huss, K. Nagashima, D.S. Burnett, A.J.G. Jurewicz, C.T. Olinger, A new upper limit on the D/H ratio in the solar wind, in 43rd Lunar and Planetary Science Conference (2012). LPI Contribution No. 1659, id. 1709 Google Scholar
  22. L. Jian, C.T. Russell, J.G. Kuhmann, R.G. Skoug, Properties of interplanetary coronal mass ejections at one AU during 1995–2004. Sol. Phys. 239, 393–436 (2006) ADSCrossRefGoogle Scholar
  23. J.C. Kasper, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, A. Szabo, Physics-based tests to identify the accuracy of solar wind ion measurements: a case study with the wind Faraday cups. J. Geophys. Res. 111, A03105 (2006). doi: 10.1029/2005JA011442 ADSCrossRefGoogle Scholar
  24. J.C. Kasper, M.L. Stevens, A.J. Lazarus, J.T. Steinberg, K.W. Ogilvie, The solar wind helium abundance as a function of speed and heliographic latitude. Astrophys. J. 660, 901 (2007) ADSCrossRefGoogle Scholar
  25. J.H. King, N.E. Papitashvili, Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02209 (2004). doi: 10.1029/2004JA010804 Google Scholar
  26. K. Kitts, Y. Choi, P.J. Eng, S.K. Ghose, S.R. Sutton, B. Rout, Application of grazing incidence X-ray fluorescence technique to discriminate and quantify implanted solar wind. J. Appl. Phys. 105, 64905–64908 (2009) CrossRefGoogle Scholar
  27. E. Landi, R.L. Alexander, J.R. Gruesbeck, J.A. Gilbert, S.T. Lepri, W.B. Manchester, T.H. Zurbuchen, Carbon ionization stages as a diagnostic of the solar wind. Astrophys. J. 744, 100 (2012). doi: 10.1088/0004-637X/744/2/100 ADSCrossRefGoogle Scholar
  28. D.J. McComas, S.J. Bame, P. Barker, W.C. Feldman, J.L. Phillips, P. Riley, J.W. Griffee, Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer. Space Sci. Rev. 86, 563–612 (1998a) ADSCrossRefGoogle Scholar
  29. D.J. McComas, S.J. Bame, B.L. Barraclough, W.C. Feldman, H.O. Funsten, J.T. Gosling, P. Riley, R. Skoug, A. Balogh, R. Forsyth, B.E. Goldstein, M. Neugebauer, Ulysses’ return to the slow solar wind. Geophys. Res. Lett. 25, 1–4 (1998b). doi: 10.1029/97GL03444 ADSCrossRefGoogle Scholar
  30. D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Munoz, R. Skoug, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2000) ADSCrossRefGoogle Scholar
  31. McComas et al., Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10433 (2001) ADSCrossRefGoogle Scholar
  32. M. Maksimovic, J.L. Bougeret, C. Perch, J.T. Steinberg, A.J. Lazarus, A.F. Vinas, R.J. Fitzenreiter, Solar wind density intercomparisons on the WIND spacecraft using WAVES and SWE experiements. Geophys. Res. Lett. 25, 1265 (1998) ADSCrossRefGoogle Scholar
  33. P.H. Mao, D.S. Burnett, C.D. Coath, G. Jarzebinski, T. Kunihiro, K.D. McKeegan, MegaSIMS: a SIMS/AMS hybrid for measurement of the sun’s oxygen isotopic composition. Appl. Surf. Sci. 255, 1461–1464 (2008) ADSCrossRefGoogle Scholar
  34. B. Marty, M. Chaussidon, R.C. Wiens, A.J.G. Jurewicz, D.S. Burnett, A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples. Science 332, 1533–1536 (2011). doi: 10.1126/science.1204656 ADSCrossRefGoogle Scholar
  35. K.D. McKeegan, A.P.A. Kallio, V.S. Heber, G. Jarzebinski, P.H. Mao, C.D. Coath, T. Kunihiro, R.C. Wiens, J.E. Nordholt, R.W. Moses Jr., D.B. Reisenfeld, A.J.G. Jurewicz, D.S. Burnett, The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 1528–1532 (2011). doi: 10.1126/science.1204636 ADSCrossRefGoogle Scholar
  36. A. Meshik, J. Mabry, C. Hohenberg, Y. Marrocchi, O. Pravdivtseva, D. Burnett, C. Olinger, R. Wiens, D. Reisenfeld, J. Alton, K. McNamara, E. Stansbery, A.J.G. Jurewicz, Constraints on neon and argon isotopic fractionation in solar wind. Science 318, 433 (2007) ADSCrossRefGoogle Scholar
  37. M.P. Miralles, S.R. Cranmer, J.L. Kohl, Low-latitude coronal holes during solar maximum. Adv. Space Res. 33, 696 (2004). doi: 10.1016/S0273-117(03)00239-4 ADSCrossRefGoogle Scholar
  38. M. Neugebauer, Observations of solar wind helium. Fundam. Cosm. Phys. 7, 131 (1981) ADSGoogle Scholar
  39. M. Neugebauer, The quasi-stationary and transient states of the solar wind. Science 252, 404–409 (1991) ADSCrossRefGoogle Scholar
  40. M. Neugebauer, P.C. Liewer, E.J. Smith, R.M. Skoug, T.H. Zurbuchen, Sources of the solar wind at solar activity maximum. J. Geophys. Res. 107, 1488 (2002). doi: 10.1029/2001JA000306 CrossRefGoogle Scholar
  41. M. Neugebauer, J.T. Steinberg, R.L. Tokar, B.L. Barraclough, E.E. Dors, R.C. Wiens, D.E. Gingerich, D. Luckey, D.B. Whiteaker, Genesis on-board determination of the solar wind flow regime. Space Sci. Rev. 105, 661–679 (2003) ADSCrossRefGoogle Scholar
  42. K.W. Ogilvie, D.J. Chornay, R.J. Fritzenreiter, F. Husaker, J. Keller, J. Lobell, G. Miller, J.D. Scudder, E.C. Sittler, R.B. Torert, D. Bodet, G. Needell, A. Lazarus, J.T. Steinberg, J.H. Tappan, A. Mavertic, E. Gergin, SWE, a comprehensive plasma instrument for the wind spacecraft. Space Sci. Rev. 71, 55–77 (1995) ADSCrossRefGoogle Scholar
  43. C.T. Olinger, R.C. Wiens, Interpreting measured solar wind implant profiles through simulation. Lunar Planet. Sci. XLII, 2219 (2010) Google Scholar
  44. R.O. Pepin, D.J. Schlutter, R.H. Becker, D.B. Reisenfeld, Helium, neon, and argon composition of the solar wind as recorded in gold and other Genesis collector materials. Geochim. Cosmochim. Acta 89, 62–80 (2012). doi: 10.1016/j.gca.2012.04.024 ADSCrossRefGoogle Scholar
  45. J.M. Raines, S.T. Lepri, T.H. Zurbuchen, G. Gloeckler, L.A. Fisk, Heavy ions in the solar wind: a new dataset from ACE, in Solar Wind Eleven, ed. by B. Fleck, T.H. Zurbuchen. ESA Conf. Proc. SP-592, (2005), pp. 539–542 Google Scholar
  46. D.B. Reisenfeld, J.T. Steinberg, B.L. Barraclough, E.E. Dors, R.C. Wiens, M. Neugebauer, A. Reinard, T. Zurbuchen, Comparison of the Genesis solar wind regime algorithm results with solar wind composition observed by ACE, in Solar Wind Ten, ed. by M. Velli, R. Bruno, F. Malara. AIP Conf. Proc., 679, (2003), p. 632 Google Scholar
  47. D.B. Reisenfeld, R.C. Wiens, B.L. Barraclough, J.T. Steinberg, C. DeKoning, T. Zurbuchen, D.S. Burnett, The Genesis mission: solar wind conditions, and implications for the FIP fractionation of the solar wind, in Proc. Solar Wind 11 Conference SP592 (ESA, Noordwijk, 2005), pp. 187–190 Google Scholar
  48. D.B. Reisenfeld, D.S. Burnett, R.H. Becker, A.G. Grimberg, V.S. Heber, C.M. Hohenberg, A.J.G. Jurewicz, A. Meshik, R.O. Pepin, J.M. Raines, D.J. Schlutter, R. Wieler, R.C. Wiens, T.H. Zurbuchen, Elemental abundances of the bulk solar wind: analyses from Genesis and ACE. Space Sci. Rev. 130, 79–86 (2007). doi: 10.1007/s11214-007-9215-1 ADSCrossRefGoogle Scholar
  49. I.G. Richardson, H.V. Cane, Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies. J. Geophys. Res. 109, A09104 (2004). doi: 10:1029/2004JA010598 ADSCrossRefGoogle Scholar
  50. J.D. Richardson, C. Wang, K.I. Paularena, The solar wind: from solar minimum to solar maximum. Adv. Space Res. 27, 471–479 (2001) ADSCrossRefGoogle Scholar
  51. P. Riley, C. Schatzman, H.V. Cane, I.G. Richardsion, N. Goplaswamy, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648 (2006) ADSCrossRefGoogle Scholar
  52. R. Schwenn, Large-scale structure of the interplanetary medium, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 99–180 CrossRefGoogle Scholar
  53. SIDC-team, World Data Center for the Sunspot Index, Royal Observatory of Belgium, Monthly Report on the International Sunspot Number (2001–2004), online catalogue of the sunspot index. http://www.sidc.be/sunspot-data/
  54. R.M. Skoug, J.T. Gosling, J.T. Steinberg, D.J. McComas, C.W. Smith, N.F. Ness, Q. Hu, L.F. Burlaga, Extremely high speed solar wind: 29–30 October 2003. J. Geophys. Res. 109, A09102 (2004). 2003. doi: 10.1029/2004JA010494 ADSCrossRefGoogle Scholar
  55. J.T. Steinberg, J.T. Gosling, R.M. Skoug, R.C. Wiens, Suprathermal electrons in high-speed streams from coronal holes: counterstreaming on open field lines at 1 AU. J. Geophys. Res. 110, A06103 (2005) ADSCrossRefGoogle Scholar
  56. E.C. Stone, A.M. Frandsen, R.A. Mewalt, E.R. Christian, D. Margolies, J.F. Ormes, F. Snow, The advanced composition explorer. Space Sci. Rev. 86, 1–22 (1998) ADSCrossRefGoogle Scholar
  57. I.V. Veryovkin, W.F. Calaway, J.F. Moore, M.J. Pellin, D.S. Burnett, SARISA, a sputter atomized resonance ionization surface analysis instrument. Nucl. Instrum. Methods Phys. Res. B 19, 473–479 (2004) ADSCrossRefGoogle Scholar
  58. N. Vogel, V.S. Heber, H. Baur, D.S. Burnett, R. Wieler, Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 75, 3057–3071 (2011). doi: 10.1016/j.gca.2011.02.039 ADSCrossRefGoogle Scholar
  59. R. von Steiger, J. Geiss, Solar-wind composition and expectations for high solar latitudes. Adv. Space Res. 13, 63–74 (1993) ADSCrossRefGoogle Scholar
  60. R. von Steiger, J. Geiss, G. Gloeckler, Composition of the solar wind, in Cosmic Winds and the Heliosphere, ed. by J.R. Jokipii, C.P. Sonett, M.S. Giampapa, Tuscon, Arizona (1997), p. 581 Google Scholar
  61. R. von Steiger, N.A. Schwadron, L.A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R.F. Wimmer-Schweingruber, T.H. Zurbuchen, Composition of quasi-stationary solar wind flows from Ulysses/solar wind ion composition spectrometer. J. Geophys. Res. 105, 27217–27238 (2000) ADSCrossRefGoogle Scholar
  62. R. von Steiger, T.H. Zurbuchen, J. Geiss, G. Gloeckler, L.A. Fisk, N.A. Schwadron, The 3-D heliosphere from the Ulysses and ACE solar wind ion composition experiments. Space Sci. Rev. 97, 123–127 (2001) ADSCrossRefGoogle Scholar
  63. R. von Steiger, T.H. Zurbuchen, Kinetic properties of heavy solar wind ions from Ulysses-SWICS. Geophys. Res. Lett. 33, L09103 (2006). doi: 10.1029/2005GL24998 ADSCrossRefGoogle Scholar
  64. R. von Steiger, T.H. Zurbuchen, Polar coronal holes during the past solar cycle: Ulysses observations. J. Geophys. Res. 116, A01105 (2011). doi: 10.1029/2010JA015835 ADSCrossRefGoogle Scholar
  65. R.C. Wiens, M. Neugebauer, D.B. Reisenfeld, R.W. Moses Jr., J.E. Nordholt, Genesis solar wind concentrator: computer simulations of performance under solar wind conditions. Space Sci. Rev. 105, 601–626 (2003) ADSCrossRefGoogle Scholar
  66. R.C. Wiens, D.B. Reisenfeld, C. Olinger, P. Wurz, V. Heber, D.S. Burnett, The Genesis solar wind concentrator: flight and post-flight conditions and modeling of instrumental fractionation. Space Sci. Rev. (2013, this issue). doi: 10.1007/s11214-013-9961-1
  67. L. Zhao, T.H. Zurbuchen, L.A. Fisk, Global distribution of the solar wind during solar cycle 23: ACE observations. Geophys. Res. Lett. 36, L14104 (2009). doi: 10.1029/2009GL039181 ADSCrossRefGoogle Scholar
  68. T.H. Zurbuchen, L.A. Fisk, G. Gloeckler, von R. Steiger, The solar wind composition throughout the solar cycle: a continuum of dynamic states. Geophys. Res. Lett. 29, 1352–1355 (2002) ADSCrossRefGoogle Scholar
  69. T.H. Zurbuchen, I.G. Richardson, In-situ solar wind and magnetic field signatures for coronal mass ejections. Space Sci. Rev. 21, 31 (2006). doi: 10.1007/978-0-387-45088-9_3 ADSCrossRefGoogle Scholar
  70. T.H. Zurbuchen, R. von Steiger, J. Gruesbeck, E. Landi, S.T. Lepri, L. Zhao, V. Hansteen, Sources of solar wind at solar minimum: constraints from composition data. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9881-5 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Daniel B. Reisenfeld
    • 1
  • Roger C. Wiens
    • 1
  • Bruce L. Barraclough
    • 1
  • John T. Steinberg
    • 1
  • Marcia Neugebauer
    • 1
  • Jim Raines
    • 1
  • Thomas H. Zurbuchen
    • 1
  1. 1.University of MontanaMissoulaUSA

Personalised recommendations