Skip to main content
Log in

Astrophysical Hydromagnetic Turbulence

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Recent progress in astrophysical hydromagnetic turbulence is being reviewed. The physical ideas behind the now widely accepted Goldreich–Sridhar model and its extension to compressible magnetohydrodynamic turbulence are introduced. Implications for cosmic ray diffusion and acceleration is being discussed. Dynamo-generated magnetic fields with and without helicity are contrasted against each other. Certain turbulent transport processes are being modified and often suppressed by anisotropy and inhomogeneities of the turbulence, while others are being produced by such properties, which can lead to new large-scale instabilities of the turbulent medium. Applications of various such processes to astrophysical systems are being considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. The Reynolds number \(\mathit{Re}\equiv L_{\mathrm{f}}V/\nu=(V/L_{\mathrm{f}})/(\nu/L^{2}_{\mathrm{f}})\) characterizes the ratio of the eddy turnover rate \(\tau^{-1}_{\mathrm{eddy}}=V/L_{\mathrm{f}}\) and the viscous dissipation rate \(\tau_{\mathrm{dis}}^{-1}=\eta/L^{2}_{\mathrm{f}}\). Therefore large values of Re correspond to negligible viscous dissipation of large eddies over the cascading time τ casc which is equal to τ eddy in Kolmogorov turbulence.

  2. The arguments in Eyink et al. (2011) should be distinguished from the arguments based on attempted renormalization of the effective magnetic Reynolds numbers in Blackman and Field (2008). Eyink et al. (2011) do not introduce artificial “turbulent diffusivities” but appeal to the established and tested concept of Richardson diffusion.

  3. For the single-scale model, L RR∼30L and the diffusion over distance Δ takes L RR/Lss steps, i.e. Δ2L RR L, which decreases the corresponding diffusion coefficient \(\kappa_{e,{\rm single}}\sim\Delta^{2}/\delta t\) by a factor 30.

  4. The resonant scattering is happening on the magnetic scales of the order of the cosmic ray gyroradius. If the Alfvénic eddies are strongly elongated, the particles interacts with many eddies within its radius and the scattering effect is dramatically reduced. Scattering efficiency and the acceleration efficiencies are closely related for the second order Fermi acceleration of cosmic rays by turbulence (see Schlickeiser 2002).

References

  • J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)

    ADS  Google Scholar 

  • R. Banerjee, K. Jedamzik, Evolution of cosmic magnetic fields: from the very early universe, to recombination, to the present. Phys. Rev. D 70, 123003 (2004)

    ADS  Google Scholar 

  • S. Banerjee, S. Galtier, Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys. Rev. E 87, 013019 (2013)

    ADS  Google Scholar 

  • G.K. Batchelor, On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. A 201, 405–416 (1950)

    MathSciNet  ADS  MATH  Google Scholar 

  • R. Beck, A. Brandenburg, D. Moss, A. Shukurov, D. Sokoloff, Galactic magnetism: recent developments and perspectives. Annu. Rev. Astron. Astrophys. 34, 155–206 (1996)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    ADS  Google Scholar 

  • A. Beresnyak, Spectral slope and Kolmogorov constant of MHD turbulence. Phys. Rev. Lett. 106, 075001 (2011)

    ADS  Google Scholar 

  • A. Beresnyak, Basic properties of magnetohydrodynamic turbulence in the inertial range. Mon. Not. R. Astron. Soc. 422, 3495–3502 (2012)

    ADS  Google Scholar 

  • A. Beresnyak, A. Lazarian, Strong imbalanced turbulence. Astrophys. J. Lett. 682, 1070–1075 (2008)

    ADS  Google Scholar 

  • A. Beresnyak, A. Lazarian, Comparison of spectral slopes of magnetohydrodynamic and hydrodynamic turbulence and measurements of alignment effects. Astrophys. J. Lett. 702, 1190–1198 (2009)

    ADS  Google Scholar 

  • A. Beresnyak, A. Lazarian, Scaling laws and diffuse locality of balanced and imbalanced magnetohydrodynamic turbulence. Astrophys. J. Lett. 722, L110–L113 (2010)

    ADS  Google Scholar 

  • A. Beresnyak, A. Lazarian, J. Cho, Density scaling and anisotropy in supersonic magnetohydrodynamic turbulence. Astrophys. J. Lett. 624, L93–L96 (2005)

    ADS  Google Scholar 

  • A. Beresnyak, T.W. Jones, A. Lazarian, Turbulence-induced magnetic fields and structure of cosmic ray modified shocks. Astrophys. J. 707, 1541–1549 (2009)

    ADS  Google Scholar 

  • P. Bhat, K. Subramanian, Fluctuation dynamos and their Faraday rotation signatures. Mon. Not. R. Astron. Soc. 429, 2469–2481 (2013)

    ADS  Google Scholar 

  • D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  • D. Biskamp, W.-C. Müller, Decay laws for three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 83, 2195–2198 (1999)

    ADS  Google Scholar 

  • E.G. Blackman, A. Brandenburg, Doubly helical coronal ejections from dynamos and their role in sustaining the solar cycle. Astrophys. J. Lett. 584, L99–L102 (2003)

    ADS  Google Scholar 

  • E.G. Blackman, G.B. Field, Dimensionless measures of turbulent magnetohydrodynamic dissipation rates. Mon. Not. R. Astron. Soc. 386, 1481–1486 (2008)

    ADS  Google Scholar 

  • S. Boldyrev, On the spectrum of magnetohydrodynamic turbulence. Astrophys. J. Lett. 626, L37–L40 (2005)

    ADS  Google Scholar 

  • S. Boldyrev, Spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 96, 115002 (2006)

    ADS  Google Scholar 

  • S.A. Boldyrev, F. Cattaneo, Magnetic-field generation in Kolmogorov turbulence. Phys. Rev. Lett. 92, 144501 (2004)

    ADS  Google Scholar 

  • S. Boldyrev, Å. Nordlund, P. Padoan, Scaling relations of supersonic turbulence in star-forming molecular clouds. Astrophys. J. 573, 678–684 (2002)

    ADS  Google Scholar 

  • S. Boldyrev, J.C. Perez, J.E. Borovsky, J.J. Podesta, Spectral scaling laws in magnetohydrodynamic turbulence simulations and in the solar wind. Astrophys. J. 741, L19 (2011)

    ADS  Google Scholar 

  • A. Brandenburg, The case for a distributed solar dynamo shaped by near-surface shear. Astrophys. J. 625, 539–547 (2005)

    ADS  Google Scholar 

  • A. Brandenburg, Nonlinear small-scale dynamos at low magnetic Prandtl numbers. Astrophys. J. 741, 92 (2011a)

    ADS  Google Scholar 

  • A. Brandenburg, Å. Nordlund, Astrophysical turbulence modeling. Rep. Prog. Phys. 74, 046901 (2011b)

    ADS  Google Scholar 

  • A. Brandenburg, K. Subramanian, Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 417, 1–209 (2005)

    MathSciNet  ADS  Google Scholar 

  • A. Brandenburg, K. Enqvist, P. Olesen, Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 54, 1291–1300 (1996)

    ADS  Google Scholar 

  • A. Brandenburg, P. Käpylä, A. Mohammed, Non-Fickian diffusion and tau-approximation from numerical turbulence. Phys. Fluids 16, 1020–1027 (2004)

    ADS  Google Scholar 

  • A. Brandenburg, K.-H. Rädler, M. Rheinhardt, K. Subramanian, Magnetic quenching of alpha and diffusivity tensors in helical turbulence. Astrophys. J. 676, 740-L52 (2008a)

    ADS  Google Scholar 

  • A. Brandenburg, K.-H. Rädler, M. Schrinner, Scale dependence of alpha effect and turbulent diffusivity. Astron. Astrophys. 482, 739–746 (2008b)

    ADS  MATH  Google Scholar 

  • A. Brandenburg, N. Kleeorin, I. Rogachevskii, Large-scale magnetic flux concentrations from turbulent stresses. Astron. Nachr. 331, 5–13 (2010)

    ADS  MATH  Google Scholar 

  • A. Brandenburg, N. Kleeorin, I. Rogachevskii, Self-assembly of shallow magnetic spots through strongly stratified turbulence. Astrophys. J. Lett. (2013, submitted). arXiv:1306.4915

  • A. Brandenburg, K. Subramanian, A. Balogh, M.L. Goldstein, Scale-dependence of magnetic helicity in the solar wind. Astrophys. J. 734, 9 (2011a)

    ADS  Google Scholar 

  • A. Brandenburg, K. Kemel, N. Kleeorin, D. Mitra, I. Rogachevskii, Detection of negative effective magnetic pressure instability in turbulence simulations. Astrophys. J. 740, L50 (2011b)

    ADS  Google Scholar 

  • A. Brandenburg, K. Kemel, N. Kleeorin, I. Rogachevskii, The negative effective magnetic pressure in stratified forced turbulence. Astrophys. J. 749, 179 (2012a)

    ADS  Google Scholar 

  • A. Brandenburg, K.-H. Rädler, K. Kemel, Mean-field transport in stratified and/or rotating turbulence. Astron. Astrophys. 539, A35 (2012b)

    ADS  Google Scholar 

  • A. Brandenburg, D. Sokoloff, K. Subramanian, Current status of turbulent dynamo theory: from large-scale to small-scale dynamos. Space Sci. Rev. 169, 123–157 (2012c)

    ADS  Google Scholar 

  • B.P. Brown, M.K. Browning, A.S. Brun, M.S. Miesch, J. Toomre, Persistent magnetic wreaths in a rapidly rotating sun. Astrophys. J. 711, 424–438 (2010)

    ADS  Google Scholar 

  • B.P. Brown, M.S. Miesch, M.K. Browning, A.S. Brun, J. Toomre, Magnetic cycles in a convective dynamo simulation of a young solar-type star. Astrophys. J. 731, 69 (2011)

    ADS  Google Scholar 

  • G. Brunetti, A. Lazarian, Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration. Mon. Not. R. Astron. Soc. 378, 245–275 (2007)

    ADS  Google Scholar 

  • B. Burkhart, A. Lazarian, V. Ossenkopf, J. Stutzki, The turbulence power spectrum in optically thick interstellar clouds. Astrophys. J. 771, 123 (2013)

    ADS  Google Scholar 

  • A.M. Bykov, A. Brandenburg, M.A. Malkov, S.M. Osipov, Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. (2013). doi:10.1007/s11214-013-9988-3

    MATH  Google Scholar 

  • S. Candelaresi, A. Brandenburg, How much helicity is needed to drive large-scale dynamos? Phys. Rev. E 87, 043104 (2013)

    ADS  Google Scholar 

  • B.D.G. Chandran, Scattering of energetic particles by anisotropic magnetohydrodynamic turbulence with a Goldreich-Sridhar power spectrum. Phys. Rev. Lett. 85, 4656–4659 (2000)

    ADS  Google Scholar 

  • B.D.G. Chandran, S.C. Cowley, Thermal conduction in a tangled magnetic field. Phys. Rev. Lett. 80, 3077–3080 (1998)

    ADS  Google Scholar 

  • L. Chamandy, K. Subramanian, A. Shukurov, Galactic spiral patterns and dynamo action. I. A new twist on magnetic arms. Mon. Not. R. Astron. Soc. 428, 3569–3589 (2013)

    ADS  Google Scholar 

  • P. Chatterjee, G. Guerrero, A. Brandenburg, Magnetic helicity fluxes in interface and flux transport dynamos. Astron. Astrophys. 525, A5 (2011)

    ADS  Google Scholar 

  • A. Chepurnov, A. Lazarian, Turbulence spectra from Doppler-broadened spectral lines: tests of the velocity channel analysis and velocity coordinate spectrum techniques. Astrophys. J. 693, 1074–1083 (2009)

    ADS  Google Scholar 

  • A. Chepurnov, A. Lazarian, Extending the big power law in the sky with turbulence spectra from Wisconsin Hα mapper data. Astrophys. J. 710, 853–858 (2010)

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, Compressible sub-Alfvénic MHD turbulence in low-β plasmas. Phys. Rev. Lett. 88, 245001 (2002). CL02

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003). CL03

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, Thermal conduction in magnetized turbulent gas. J. Korean Astron. Soc. 37, 557–562 (2004)

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, Grain alignment by radiation in dark clouds and cores. Astrophys. J. 631, 361–370 (2005)

    ADS  Google Scholar 

  • J. Cho, A. Lazarian, E.T. Vishniac, Simulations of magnetohydrodynamic turbulence in a strongly magnetized medium. Astrophys. J. 564, 291–301 (2002)

    ADS  Google Scholar 

  • J. Cho, E.T. Vishniac, The generation of magnetic fields through driven turbulence. Astrophys. J. 538, 217–225 (2000)

    ADS  Google Scholar 

  • J. Crovisier, J.M. Dickey, The spatial power spectrum of galactic neutral hydrogen from observations of the 21-cm emission line. Astron. Astrophys. 122, 282–296 (1983)

    ADS  Google Scholar 

  • R.M. Crutcher, B. Wandelt, C. Heiles, E. Falgarone, T.H. Troland, Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010)

    ADS  Google Scholar 

  • F. Del Sordo, G. Guerrero, A. Brandenburg, Turbulent dynamo with advective magnetic helicity flux. Mon. Not. R. Astron. Soc. 429, 1686–1694 (2013)

    ADS  Google Scholar 

  • R.L. Dickman, S.C. Kleiner, Large-scale structure of the Taurus molecular complex. Part 3. Methods for turbulence. Astrophys. J. 295, 479–484 (1985)

    ADS  Google Scholar 

  • W. Dobler, N.E.L. Haugen, T.A. Yousef, A. Brandenburg, Bottleneck effect in three-dimensional turbulence simulations. Phys. Rev. E 68, 026304 (2003)

    ADS  Google Scholar 

  • T.A. Enßlin, C. Vogt, Magnetic turbulence in cool cores of galaxy clusters. Astron. Astrophys. 453, 447–458 (2006)

    ADS  Google Scholar 

  • A. Esquivel, A. Lazarian, S. Horibe, J. Cho, V. Ossenkopf, J. Stutzki, Statistics of velocity centroids: effects of density-velocity correlations and non-Gaussianity. Mon. Not. R. Astron. Soc. 381, 1733–1744 (2007)

    ADS  Google Scholar 

  • G.L. Eyink, A. Lazarian, E.T. Vishniac, Fast magnetic reconnection and spontaneous stochasticity. Astrophys. J. 743, 51 (2011)

    ADS  Google Scholar 

  • B.G. Elmegreen, J. Scalo, Interstellar turbulence. I. Observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004)

    ADS  Google Scholar 

  • G. Falkovich, Bottleneck phenomenon in developed turbulence. Phys. Fluids 6, 1411–1414 (1994)

    ADS  MATH  Google Scholar 

  • S. Galtier, S. Banerjee, Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107, 134501 (2011)

    ADS  Google Scholar 

  • S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000)

    ADS  Google Scholar 

  • M. Ghizaru, P. Charbonneau, P.K. Smolarkiewicz, Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. 715, L133–L137 (2010)

    ADS  Google Scholar 

  • P.A. Gilman, Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell. II. Dynamos with cycles and strong feedbacks. Astrophys. J. Suppl. Ser. 53, 243–268 (1983)

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2. Strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995). GS95

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680–688 (1997)

    ADS  Google Scholar 

  • G.A. Glatzmaier, Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone. Astrophys. J. 291, 300–307 (1985)

    ADS  Google Scholar 

  • J. Goodman, R. Narayan, Slow pulsar scintillation and the spectrum of interstellar electron density fluctuations. Mon. Not. R. Astron. Soc. 214, 519–537 (1985)

    ADS  Google Scholar 

  • D.A. Green, A power spectrum analysis of the angular scale of galactic neutral hydrogen emission towards L=140, B=0, Monthly Notices Roy. Mon. Not. R. Astron. Soc. 262, 327–342 (1993)

    ADS  Google Scholar 

  • A. Gruzinov, S. Cowley, R. Sudan, Small-scale-field dynamo. Phys. Rev. Lett. 77, 4342–4345 (1996)

    ADS  Google Scholar 

  • N.E.L. Haugen, A. Brandenburg, Hydrodynamic and hydromagnetic energy spectra from large eddy simulations. Phys. Fluids 18, 075106 (2006)

    ADS  Google Scholar 

  • N.E.L. Haugen, A. Brandenburg, W. Dobler, Is nonhelical hydromagnetic turbulence peaked at small scales? Astrophys. J. 597, L141–L144 (2003)

    ADS  Google Scholar 

  • N.E.L. Haugen, A. Brandenburg, W. Dobler, Simulations of nonhelical hydromagnetic turbulence. Phys. Rev. E 70, 016308 (2004)

    ADS  Google Scholar 

  • J.C. Higdon, Density fluctuations in the interstellar medium: evidence for anisotropic magnetogas turbulence. I. Model and astrophysical sites. Astrophys. J. 285, 109–123 (1984)

    ADS  Google Scholar 

  • A. Hubbard, A. Brandenburg, Memory effects in turbulent transport. Astrophys. J. 706, 712–726 (2009)

    ADS  Google Scholar 

  • A. Hubbard, A. Brandenburg, Magnetic helicity fluxes in an α 2 dynamo embedded in a halo. Geophys. Astrophys. Fluid Dyn. 104, 577–590 (2010)

    MathSciNet  ADS  Google Scholar 

  • R.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566–571 (1963)

    MathSciNet  ADS  Google Scholar 

  • A.B. Iskakov, A.A. Schekochihin, S.C. Cowley, J.C. McWilliams, M.R.E. Proctor, Numerical demonstration of fluctuation dynamo at low magnetic Prandtl numbers. Phys. Rev. Lett. 98, 208501 (2007)

    ADS  Google Scholar 

  • J.R. Jokipii, Pitch-angle scattering of charged particles in a random magnetic field. Astrophys. J. 194, 465–469 (1974)

    ADS  Google Scholar 

  • T. Kahniashvili, A. Brandenburg, A.G. Tevzadze, B. Ratra, Numerical simulations of the decay of primordial magnetic turbulence. Phys. Rev. D 81, 123002 (2010)

    ADS  Google Scholar 

  • T. Kahniashvili, A.G. Tevzadze, A. Brandenburg, A. Neronov, Evolution of primordial magnetic fields from phase transitions. Phys. Rev. D 87, 083007 (2013)

    ADS  Google Scholar 

  • P.J. Käpylä, M.J. Korpi, A. Brandenburg, D. Mitra, R. Tavakol, Convective dynamos in spherical wedge geometry. Astron. Nachr. 331, 73–81 (2010)

    ADS  MATH  Google Scholar 

  • P.J. Käpylä, M.J. Mantere, A. Brandenburg, Cyclic magnetic activity due to turbulent convection in spherical wedge geometry. Astrophys. J. Lett. 755, L22 (2012a)

    ADS  Google Scholar 

  • P.J. Käpylä, A. Brandenburg, N. Kleeorin, M.J. Mantere, I. Rogachevskii, Negative effective magnetic pressure in turbulent convection. Mon. Not. R. Astron. Soc. 422, 2465–2473 (2012b)

    ADS  Google Scholar 

  • A.P. Kazantsev, Enhancement of a magnetic field by a conducting fluid. Sov. Phys. JETP 26, 1031–1034 (1968)

    ADS  Google Scholar 

  • K. Kemel, A. Brandenburg, N. Kleeorin, D. Mitra, I. Rogachevskii, Spontaneous formation of magnetic flux concentrations in stratified turbulence. Sol. Phys. 280, 321–333 (2012)

    ADS  Google Scholar 

  • K. Kemel, A. Brandenburg, N. Kleeorin, D. Mitra, I. Rogachevskii, Active region formation through the negative effective magnetic pressure instability. Sol. Phys. (2013). doi:10.1007/s11207-012-0031-8

    Google Scholar 

  • S. Kida, S. Yanase, J. Mizushima, Statistical properties of MHD turbulence and turbulent dynamo. Phys. Fluids A 3, 457–465 (1991)

    ADS  Google Scholar 

  • L.L. Kitchatinov, A. Brandenburg, Transport of angular momentum and chemical species by anisotropic mixing in stellar radiative interiors. Astron. Nachr. 333, 230–236 (2012)

    ADS  Google Scholar 

  • N. Kleeorin, I. Rogachevskii, Effective Ampère force in developed magnetohydrodynamic turbulence. Phys. Rev. E 50, 2716–2730 (1994)

    ADS  Google Scholar 

  • N.I. Kleeorin, I.V. Rogachevskii, A.A. Ruzmaikin, Negative magnetic pressure as a trigger of large-scale magnetic instability in the solar convective zone. Sov. Astron. Lett. 15, 274–277 (1989)

    ADS  Google Scholar 

  • N.I. Kleeorin, I.V. Rogachevskii, A.A. Ruzmaikin, Magnetic force reversal and instability in a plasma with advanced magnetohydrodynamic turbulence. Sov. Phys. JETP 70, 878–883 (1990)

    Google Scholar 

  • N. Kleeorin, M. Mond, I. Rogachevskii, Magnetohydrodynamic instabilities in developed small-scale turbulence. Phys. Fluids 5, 4128–4134 (1993)

    Google Scholar 

  • N. Kleeorin, M. Mond, I. Rogachevskii, Magnetohydrodynamic turbulence in the solar convective zone as a source of oscillations and sunspots formation. Astron. Astrophys. 307, 293–309 (1996)

    ADS  Google Scholar 

  • A.N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. CR Acad. Sci. USSR 30, 299–303 (1941)

    Google Scholar 

  • G. Kowal, A. Lazarian, A. Beresnyak, Density fluctuations in MHD turbulence: spectra, intermittency, and topology. Astrophys. J. 658, 423–445 (2007)

    ADS  Google Scholar 

  • G. Kowal, A. Lazarian, Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings. Astrophys. J. 720, 742–756 (2010)

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    MathSciNet  ADS  Google Scholar 

  • F. Krause, K.-H. Rädler, Mean-Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  • A.G. Kritsuk, M.L. Norman, P. Padoan, R. Wagner, The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416–431 (2007)

    ADS  Google Scholar 

  • A.G. Kritsuk, Å. Nordlund, D. Collins, P. Padoan, M.L. Norman, T. Abel, R. Banerjee, C. Federrath, M. Flock, D. Lee, P.S. Li, W.-C. Müller, R. Teyssier, S.D. Ustyugov, C. Vogel, H. Xu, Comparing numerical methods for isothermal magnetized supersonic turbulence. Astrophys. J. 737, 13 (2011)

    ADS  Google Scholar 

  • R.M. Kulsrud, A critical review of galactic dynamos. Annu. Rev. Astron. Astrophys. 37, 37–64 (1999)

    ADS  Google Scholar 

  • A. Lazarian, Astrophysical implications of turbulent reconnection: from cosmic rays to star formation, in Magnetic Fields in the Universe, ed. by E. de Gouveia Dal Pino, G. Lugones, A. Lazarian. AIP, vol. 784, (2005), pp. 42–54

    Google Scholar 

  • A. Lazarian, Enhancement and suppression of heat transfer by MHD turbulence. Astrophys. J. Lett. 645, L25–L28 (2006). L06

    ADS  Google Scholar 

  • A. Lazarian, Obtaining spectra of turbulent velocity from observations. Space Sci. Rev. 143, 357–385 (2009)

    ADS  Google Scholar 

  • A. Lazarian, A. Esquivel, Statistics of velocity from spectral data: modified velocity centroids. Astrophys. J. 592, L37–L40 (2003)

    ADS  Google Scholar 

  • A. Lazarian, A. Esquivel, Velocity centroids as tracers of the turbulent velocity statistics. Astrophys. J. 631, 320–350 (2005)

    ADS  Google Scholar 

  • A. Lazarian, D. Pogosyan, Velocity modification of HI power spectrum. Astrophys. J. 537, 720–748 (2000). LP00

    ADS  Google Scholar 

  • A. Lazarian, D. Pogosyan, Velocity modification of the power spectrum from an absorbing medium. Astrophys. J. 616, 943–965 (2004)

    ADS  Google Scholar 

  • A. Lazarian, D. Pogosyan, Statistics of fluctuations along velocity coordinate: effects of absorption. Astrophys. J. 652, 1348 (2006)

    ADS  Google Scholar 

  • A. Lazarian, D. Pogosyan, Studying velocity turbulence from Doppler-broadened absorption lines: statistics of optical depth fluctuations. Astrophys. J. 686, 350–362 (2008)

    ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999). LV99

    ADS  Google Scholar 

  • A. Lazarian, E.T. Vishniac, Model of reconnection of weakly stochastic magnetic field and its implications. Rev. Mex. Astron. Astrofís. Conf. Ser. 36, 81–88 (2009)

    ADS  Google Scholar 

  • A. Lazarian, A. Esquivel, R. Crutcher, Magnetization of cloud cores and envelopes and other observational consequences of reconnection diffusion. Astrophys. J. 757, 154 (2012a)

    ADS  Google Scholar 

  • A. Lazarian, L. Vlahos, G. Kowal, H. Yan, A. Beresnyak, E.M. de Gouveia Dal Pino, Turbulence, magnetic reconnection in turbulent fluids and energetic particle acceleration. Space Sci. Rev. 173, 557–622 (2012b)

    ADS  Google Scholar 

  • M. Lesieur, Turbulence in Fluids (Nijhoff, Dordrecht, 1990)

    MATH  Google Scholar 

  • Y. Lithwick, P. Goldreich, Imbalanced weak magnetohydrodynamic turbulence. Astrophys. J. 582, 1220–1240 (2003)

    ADS  Google Scholar 

  • Y. Lithwick, P. Goldreich, S. Sridhar, Imbalanced strong MHD turbulence. Astrophys. J. 655, 269–274 (2007)

    ADS  Google Scholar 

  • J. Maron, P. Goldreich, Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175–1196 (2001)

    ADS  Google Scholar 

  • W.H. Matthaeus, M.L. Goldstein, C. Smith, Evaluation of magnetic helicity in homogeneous turbulence. Phys. Rev. Lett. 48, 1256–1259 (1982)

    ADS  Google Scholar 

  • D.B. Melrose, The emission and absorption of waves by charged particles in magnetized plasmas. Astrophys. Space Sci. 2, 171–235 (1968)

    MathSciNet  ADS  Google Scholar 

  • M. Meneguzzi, U. Frisch, A. Pouquet, Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47, 1060–1064 (1981)

    ADS  Google Scholar 

  • M. Meneguzzi, A. Pouquet, Turbulent dynamos driven by convection. J. Fluid Mech. 205, 297–312 (1989)

    ADS  Google Scholar 

  • M.S. Miesch, J. Toomre, Turbulence, magnetism, and shear in stellar interiors. Ann. Rev. Fluid Dyn. 41, 317–345 (2009)

    ADS  Google Scholar 

  • M.S. Miesch, J. Scalo, J. Bally, Velocity field statistics in star-forming regions. I. Centroid velocity observations. Astrophys. J. 524, 895–922 (1999)

    ADS  Google Scholar 

  • D. Mitra, P.J. Käpylä, R. Tavakol, A. Brandenburg, Alpha effect and diffusivity in helical turbulence with shear. Astron. Astrophys. 495, 1–8 (2009)

    ADS  MATH  Google Scholar 

  • D. Mitra, S. Candelaresi, P. Chatterjee, R. Tavakol, A. Brandenburg, Equatorial magnetic helicity flux in simulations with different gauges. Astron. Nachr. 331, 130–135 (2010)

    ADS  MATH  Google Scholar 

  • M.-A. Miville-Deschênes, G. Joncas, E. Falgarone, F. Boulanger, High resolution 21 cm mapping of the Ursa Major Galactic cirrus: power spectra of the high-latitude H I gas. Astron. Astrophys. 411, 109–121 (2003)

    ADS  Google Scholar 

  • H.K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978)

    Google Scholar 

  • G. Münch, Internal motions in the Orion nebula. Rev. Mod. Phys. 30, 1035–1041 (1958)

    ADS  Google Scholar 

  • R. Narayan, M.V. Medvedev, Thermal conduction in clusters of galaxies. Astrophys. J. 562, L129–L132 (2001)

    ADS  Google Scholar 

  • C.S. Ng, A. Bhattacharjee, Interaction of shear-Alfvén wave packets: implication for weak magnetohydrodynamic turbulence in astrophysical plasmas. Astrophys. J. 465, 845–854 (1996)

    ADS  Google Scholar 

  • Å. Nordlund, A. Brandenburg, R.L. Jennings, M. Rieutord, J. Ruokolainen, R.F. Stein, I. Tuominen, Dynamo action in stratified convection with overshoot. Astrophys. J. 392, 647–652 (1992)

    ADS  Google Scholar 

  • C.R. O’dell, H.O. Castaneda, Evidence for turbulence in H II regions. Astrophys. J. 317, 686–692 (1987)

    ADS  Google Scholar 

  • P. Padoan, M. Juvela, A. Kritsuk, M.L. Norman, The power spectrum of supersonic turbulence in Perseus. Astrophys. J. Lett. 653, 125–128 (2006)

    ADS  Google Scholar 

  • P. Padoan, M. Juvela, A. Kritsuk, M.L. Norman, The power spectrum of turbulence in NGC 1333: outflows or large-scale driving? Astrophys. J. Lett. 707, L153–L157 (2009)

    ADS  Google Scholar 

  • E.N. Parker, Cosmical Magnetic Fields (Clarendon, Oxford, 1979)

    Google Scholar 

  • J.C. Perez, S. Boldyrev, Role of cross-helicity in magnetohydrodynamic turbulence. Phys. Rev. Lett. 102, 025003 (2009)

    ADS  Google Scholar 

  • V. Petrosian, H. Yan, A. Lazarian, Damping of magnetohydrodynamic turbulence in solar flares. Astrophys. J. 644, 603–612 (2006)

    ADS  Google Scholar 

  • V.V. Pipin, The mean electro-motive force and current helicity under the influence of rotation, magnetic field and shear. Geophys. Astrophys. Fluid Dyn. 102, 21–49 (2008)

    MathSciNet  ADS  Google Scholar 

  • J.J. Podesta, D.A. Roberts, M.L. Goldstein, Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543–548 (2007)

    ADS  Google Scholar 

  • J.J. Podesta, S.P. Gary, Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field. Astrophys. J. 734, 15 (2011)

    ADS  Google Scholar 

  • É. Racine, P. Charbonneau, M. Ghizaru, A. Bouchat, P.K. Smolarkiewicz, On the mode of dynamo action in a global large-eddy simulation of solar convection. Astrophys. J. 735, 46 (2011)

    ADS  Google Scholar 

  • K.-H. Rädler, On some electromagnetic phenomena in electrically conducting turbulently moving matter, especially in the presence of Coriolis forces. Geod. Geophys. Veröff., Reihe 2 13, 131–135 (1969)

    ADS  Google Scholar 

  • K.-H. Rädler, On the influence of a large-scale magnetic field on turbulent motions in an electrically conducting medium. Astron. Nachr. 295, 265–273 (1974)

    MATH  Google Scholar 

  • K.-H. Rädler, A. Brandenburg, F. Del Sordo, M. Rheinhardt, Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows. Phys. Rev. E 84, 4 (2011)

    Google Scholar 

  • A.B. Rechester, M.N. Rosenbluth, Electron heat transport in a Tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 38–41 (1978)

    ADS  Google Scholar 

  • M. Rheinhardt, A. Brandenburg, Test-field method for mean-field coefficients with MHD background. Astron. Astrophys. 520, A28 (2010)

    ADS  Google Scholar 

  • M. Rheinhardt, A. Brandenburg, Modeling spatio-temporal nonlocality in mean-field dynamos. Astron. Nachr. 333, 71–77 (2012)

    ADS  Google Scholar 

  • I. Rogachevskii, N. Kleeorin, Intermittency and anomalous scaling for magnetic fluctuations. Phys. Rev. E 56, 417–426 (1997)

    ADS  Google Scholar 

  • I. Rogachevskii, N. Kleeorin, Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection. Phys. Rev. E 76, 056307 (2007)

    MathSciNet  ADS  Google Scholar 

  • I. Rogachevskii, N. Kleeorin, A. Brandenburg, D. Eichler, Cosmic ray current-driven turbulence and mean-field dynamo effect. Astrophys. J. 753, 6 (2012)

    ADS  Google Scholar 

  • G. Rüdiger, On the Reynolds stresses in mean-field hydrodynamics III. two-dimensional turbulence and the problem of differential rotation. Astron. Nachr. 295, 229–252 (1974)

    ADS  MATH  Google Scholar 

  • G. Rüdiger, L.L. Kitchatinov, A. Brandenburg, Cross helicity and turbulent magnetic diffusivity in the solar convection zone. Sol. Phys. 269, 3–12 (2011)

    ADS  Google Scholar 

  • R. Santos-Lima, A. Lazarian, E.M. de Gouveia Dal Pino, J. Cho, Diffusion of magnetic field and removal of magnetic flux from clouds via turbulent reconnection. Astrophys. J. 714, 442–461 (2010)

    ADS  Google Scholar 

  • R. Santos-Lima, E.M. de Gouveia Dal Pino, A. Lazarian, The role of turbulent magnetic reconnection in the formation of rotationally supported protostellar disks. Astrophys. J. 747, 21 (2012)

    ADS  Google Scholar 

  • A.A. Schekochihin, J.L. Maron, S.C. Cowley, J.C. McWilliams, The small-scale structure of magnetohydrodynamic turbulence with large magnetic Prandtl numbers. Astrophys. J. 576, 806–813 (2002)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, J.L. Maron, J.C. McWilliams, Critical magnetic Prandtl number for small-scale dynamo. Phys. Rev. Lett. 92, 054502 (2004a)

    ADS  Google Scholar 

  • A.A. Schekochihin, S.C. Cowley, S.F. Taylor, J.L. Maron, J.C. McWilliams, Simulations of the small scale turbulent dynamo. Astrophys. J. 612, 276–307 (2004b)

    ADS  Google Scholar 

  • A.A. Schekochihin, N.E.L. Haugen, A. Brandenburg, S.C. Cowley, J.L. Maron, J.C. McWilliams, Onset of small scale dynamo at small magnetic Prandtl numbers. Astrophys. J. 625, L115–L118 (2005)

    ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics. Astron. Astrophys. Lib. (Springer, Berlin, 2002)

    Google Scholar 

  • J.V. Shebalin, W.H. Matthaeus, D. Montgomery, Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525–547 (1983)

    ADS  Google Scholar 

  • A. Skumanich, Time scales for CA II emission decay, rotational braking, and lithium depletion. Astrophys. J. 171, 565–567 (1972)

    ADS  Google Scholar 

  • C.W. Smith, J.W. Bieber, Detection of steady magnetic helicity in low-frequency IMF turbulence, in 23rd International Cosmic Ray Conference, vol. 3, ed. by D.A. Leahy, R.B. Hicks, D. Venkatesan (World Scientific, Singapore, 1993), pp. 493–496

    Google Scholar 

  • S. Spangler, C. Gwinn, Evidence for an inner scale to the density turbulence in the interstellar medium. Astrophys. J. 353, L29–L32 (1990)

    ADS  Google Scholar 

  • S. Stanimirovic, L. Staveley-Smith, J.M. Dickey, R.J. Sault, S.L. Snowden, The large-scale HI structure of the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 302, 417–436 (1999)

    ADS  Google Scholar 

  • L.G. Stenholm, Molecular cloud fluctuations. II. Methods of analysis of cloud maps. Astron. Astrophys. 232, 495–509 (1990)

    ADS  Google Scholar 

  • K. Subramanian, Can the turbulent galactic dynamo generate large-scale magnetic fields? Mon. Not. R. Astron. Soc. 294, 718–728 (1998)

    ADS  Google Scholar 

  • S. Sur, A. Brandenburg, K. Subramanian, Kinematic alpha effect in isotropic turbulence simulations. Mon. Not. R. Astron. Soc. 385, L15–L19 (2008)

    ADS  Google Scholar 

  • H. Tennekes, J.L. Lumley, First Course in Turbulence (MIT Press, Cambridge, 1972)

    Google Scholar 

  • A.G. Tevzadze, L. Kisslinger, A. Brandenburg, T. Kahniashvili, Magnetic fields from QCD phase transitions. Astrophys. J. 759, 54 (2012)

    ADS  Google Scholar 

  • H. Yan, A. Lazarian, Scattering of cosmic rays by magnetohydrodynamic turbulence. Phys. Rev. Lett. 89, 281102 (2002)

    ADS  Google Scholar 

  • H. Yan, A. Lazarian, Cosmic-ray scattering and streaming in compressible magnetohydrodynamic turbulence. Astrophys. J. 614, 757–769 (2004)

    ADS  Google Scholar 

  • H. Yan, A. Lazarian, Cosmic-ray propagation: nonlinear diffusion parallel and perpendicular to mean magnetic field. Astrophys. J. 673, 942–953 (2008)

    ADS  Google Scholar 

  • S.I. Vainshtein, Ya.B. Zeldovich, Origin of magnetic fields in astrophysics. Sov. Phys. Usp. 15, 159–172 (1972)

    ADS  Google Scholar 

  • J. Warnecke, P.J. Käpylä, M.J. Mantere, A. Brandenburg, Solar-like differential rotation in a convective dynamo with a coronal envelope. Astrophys. J. (2013, submitted). arXiv:1301.2248

Download references

Acknowledgements

We thank Andre Balogh for providing an inspiring atmosphere at the International Space Science Institute in Bern in 2012, which has led to new collaborations and scientific progress. Computing resources were provided by the Swedish National Allocations Committee at the Center for Parallel Computers at the Royal Institute of Technology in Stockholm and the High Performance Computing Center North in Umeå. This work was supported in part by the European Research Council under the AstroDyn Research Project No. 227952 and the Swedish Research Council under the project grants 621-2011-5076 and 2012-5797. A.L. acknowledges the support of the NSF grant AST-1212096, the NASA grant NNX09AH78G, the Vilas Associate Award as well as the support of the NSF Center for Magnetic Self-Organization. In addition, A.L. thanks the International Institute of Physics (Natal, Brazil) for its hospitality during the work on this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brandenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, A., Lazarian, A. Astrophysical Hydromagnetic Turbulence. Space Sci Rev 178, 163–200 (2013). https://doi.org/10.1007/s11214-013-0009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-013-0009-3

Keywords

Navigation