Space Science Reviews

, Volume 174, Issue 1–4, pp 251–300 | Cite as

Geochemical Reservoirs and Timing of Sulfur Cycling on Mars

  • Fabrice GaillardEmail author
  • Joseph Michalski
  • Gilles Berger
  • Scott M. McLennan
  • Bruno Scaillet


Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.


Sulfur Mars Basalt Mantle Sediment Redox Sulfate Water Core 



F. Gaillard is supported by the ERC grant #279790. We acknowledge the editorial handling of Mike Toplis and the helpful reviews by K. Righter, M. Zolotov, and P. King.


  1. A. Aiuppa, M. Burton, T. Caltabiano, G. Giudice, S. Guerrieri, M. Liuzzo, F. Mure, G. Salerno, Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37, L17303 (2010). doi: 10.1029/2010GL043837 ADSCrossRefGoogle Scholar
  2. C. Allegre, G. Manhes, E. Lewin, Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 185, 49–69 (2001) ADSCrossRefGoogle Scholar
  3. J.C. Andrews-Hanna, K.W. Lewis, Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. J. Geophys. Res. Planets 116, E02007 (2011) ADSCrossRefGoogle Scholar
  4. S. Barabash, A. Fedorov, R. Lundin, J.A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007) ADSCrossRefGoogle Scholar
  5. D. Baratoux, M.J. Toplis, M. Monnereau, O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature 472, 338–341 (2011). doi: 10.1038/nature09903 ADSCrossRefGoogle Scholar
  6. H. Behrens, F. Gaillard, Geochemical aspects of melts: volatiles and redox behavior. Elements 2, 275–280 (2006) CrossRefGoogle Scholar
  7. G. Berger, M.J. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009) ADSCrossRefGoogle Scholar
  8. R.A. Berner, Chemical weathering and its effects on atmospheric CO2 and climate. Rev. Mineral. 31, 565–583 (1995) Google Scholar
  9. R.A. Berner, GEOCARBSULF: a combined model for Phanerozoic atmospheric O(2) and CO(2). Geochim. Cosmochim. Acta 70, 5653–5664 (2005) ADSCrossRefGoogle Scholar
  10. J.P. Bibring et al., Global mineralogical and aqueous mars history derived from OMEGA/Mars express data. Science 312, 400–404 (2006) ADSCrossRefGoogle Scholar
  11. J.P. Bibring et al., Coupled ferric oxides and sulfates on the Martian surface. Science 317(5842), 1206–1210 (2007) ADSCrossRefGoogle Scholar
  12. J.L. Bishop et al., Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res. Planets 114, E00D09 (2009) ADSCrossRefGoogle Scholar
  13. J. Brückner, G. Dreibus, R. Gellert, S.W. Squyres, H. Wänke, A. Yen, J. Zipfel, Mars exploration rovers: chemical compositions by the APXS, in the Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 58–101 CrossRefGoogle Scholar
  14. M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007). doi: 10.1029/2007GL030688 ADSCrossRefGoogle Scholar
  15. A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe-FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75, 2072–2087 (2011) ADSCrossRefGoogle Scholar
  16. A. Burgisser, B. Scaillet, Redox evolution of a degassing magma rising to the surface. Nature 445, 194–197 (2007) ADSCrossRefGoogle Scholar
  17. D.E. Canfield, The evolution of the Earth surface sulfur reservoir. Am. J. Sci. 304, 839–861 (2004) CrossRefGoogle Scholar
  18. J. Carter, F. Poulet, A. Ody, J.P. Bibring, S. Murchie, Global distribution, composition and setting of hydrous minerals on Mars: a reappraisal, in Lunar and Planetary Science Conference (2011), p. 2593 Google Scholar
  19. N.L. Chabot, Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochim. Cosmochim. Acta 68, 3607–3618 (2004) ADSCrossRefGoogle Scholar
  20. M.G. Chapman, K.L. Tanaka, Interior trough deposits on Mars: subice volcanoes? J. Geophys. Res. (Planets) 106(E5), 10087–10100 (2001) ADSCrossRefGoogle Scholar
  21. V. Chevrier, J.-P. Lorand, V. Sautter, Sulfide petrology of four nakhlites: Northwest Africa 817, Northwest Africa 998, Nakhla, and Governador Valadares. Meteorit. Planet. Sci. 46, 769–784 (2011). doi: 10.1111/j.1945-5100.2011.01189.x ADSCrossRefGoogle Scholar
  22. V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007). doi: 10.1038/nature05961 ADSCrossRefGoogle Scholar
  23. P.R. Christensen et al., Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near-surface water. J. Geophys. Res. (Planets) 105(E4), 9623–9642 (2000) ADSCrossRefGoogle Scholar
  24. P.R. Christensen, R.V. Morris, M.D. Lane, J.L. Bandfield, M.C. Malin, Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars. J. Geophys. Res. (Planets) 106(E10), 23873–23885 (2001) ADSCrossRefGoogle Scholar
  25. B.C. Clark, A.K. Baird, H.J. Rose Jr., P. Toulmin III, R.P. Christian, W.C. Kelliher, A.J. Castro, C.D. Rowe, K. Keil, G.R. Huss, The viking X ray fluorescence experiment: analytical methods and early results. J. Geophys. Res. 82(28), 4577–4594 (1977). doi: 10.1029/JS082i028p04577 ADSCrossRefGoogle Scholar
  26. B.C. Clark, A.K. Baird, Is the martian lithosphere sulfur rich. J. Geophys. Res. 84, 8395–8403 (1979) ADSCrossRefGoogle Scholar
  27. B.C. Clark, Geochemical components in martian soil. Geochim. Cosmochim. Acta 57, 4575–4581 (1993). doi: 10.1016/0016-7037(93)90183-W ADSCrossRefGoogle Scholar
  28. B.C. Clark, R.V. Morris et al., Chemistry and mineralogy of outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 240(1), 73–94 (2005) ADSCrossRefGoogle Scholar
  29. E.A. Cloutis et al., Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184(1), 121–157 (2006) ADSCrossRefGoogle Scholar
  30. R.A. Craddock, R. Greeley, Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009) ADSCrossRefGoogle Scholar
  31. V. Debaille, A.D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009). doi: 10.1038/NGEO579 ADSCrossRefGoogle Scholar
  32. E. Dehouck, V. Chevrier, A. Gaudin, N. Mangold, P.-E. Mathé, P. Rochette, Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim. Cosmochim. Acta 90, 47–63 (2012) ADSCrossRefGoogle Scholar
  33. J.E. Dixon, D.A. Clague, P. Wallace, R. Poreda, Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J. Petrol. 38, 911–939 (1997) CrossRefGoogle Scholar
  34. G. Dreibus, H. Palme, Cosmochemical constraints on the sulfur content in the Earth’s core. Geochim. Cosmochim. Acta 60, 1125–1130 (1996) ADSCrossRefGoogle Scholar
  35. G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  36. D.S. Ebel, Sulfur in extraterrestrial bodies and the deep earth. In sulfur in magmas and melts: its importance for natural and technical processes. Rev. Mineral. Geochem. 73, 315–336 (2010) CrossRefGoogle Scholar
  37. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F.F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J.D. Marais, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008) ADSCrossRefGoogle Scholar
  38. B.L. Ehlmann et al., Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9930-0
  39. L.T. Elkins-Tanton, P.C. Hess, E.M. Parmentier, Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110, E12S01 (2005). doi: 10.1029/2005JE002480 ADSCrossRefGoogle Scholar
  40. S. Fabre, G. Berger, A. Nédélec, Continental weathering under high-CO2 atmospheres during Precambrian times. G-cubed 12 (2011). doi: 10.1029/2010GC003444
  41. A.G. Fairen, D. Fernandez-Remolar, J.M. Dohm, V.R. Baker, R. Amils, Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423–426 (2004) ADSCrossRefGoogle Scholar
  42. J. Farquhar, J. Savrino, T.L. Jackson, M.H. Thiemnes, Evidence of atmospheric sulfur in the martian regolith from sulfur isotopes in meteorites. Nature 404, 50–52 (2000). doi: 10.1038/35003517 ADSCrossRefGoogle Scholar
  43. W.H. Farrand, T.D. Glotch, J.W. Rice, J.A. Hurowitz, G.A. Swayze, Discovery of jarosite within the Mawrth Vallis region of Mars: implications for the geologic history of the region. Icarus 204(2), 478–488 (2009) ADSCrossRefGoogle Scholar
  44. C.I. Fassett, J.W. Head, Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011) ADSCrossRefGoogle Scholar
  45. Y.W. Fei, C.T. Prewitt, H.K. Mao, C.M. Bertka, Structure and density of FeS at high-pressure and high-temperature and the internal structure of Mars. Science 268, 1892–1894 (1995) ADSCrossRefGoogle Scholar
  46. Y. Fei, C.M. Bertka, L.W. Finger, High pressure iron sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997) CrossRefGoogle Scholar
  47. J. Filiberto, A.H. Treiman, Martian magmas contained abundant chlorine, but little water. Geology 37, 1087–1090 (2009). doi: 10.1130/G30488A.1 CrossRefGoogle Scholar
  48. C.J.B. Fincham, F.D. Richardson, The behaviour of sulfur in silicate and aluminate melts. Proc. R. Soc. Lond. 223A, 40–61 (1954) ADSGoogle Scholar
  49. K.E. Fishbaugh, F. Poulet, V. Chevrier, Y. Langevin, J.P. Bibring, On the origin of gypsum in the Mars north polar region. J. Geophys. Res. Planets 112(E7), E07002 (2007) ADSCrossRefGoogle Scholar
  50. J. Flahaut, C. Quantin, P. Allemand, P. Thomas, Morphology and geology of the ILD in Capri/Eos Chasma (Mars) from visible and infrared data. Icarus 207(1), 175–185 (2010a) ADSCrossRefGoogle Scholar
  51. J. Flahaut, C. Quantin, P. Allemand, P. Thomas, L. Le Deit, Identification, distribution and possible origins of sulfates in Capri Chasma (Mars), inferred from CRISM data. J. Geophys. Res. Planets 115, E11007 (2010b) ADSCrossRefGoogle Scholar
  52. C.N. Foley, T.E. Economou, R.N. Clayton, J. Brückner, G. Dreibus, R. Rieder, H. Wänke, Martian surface chemistry: APXS results from the Pathfinder landing site, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 35–57 Google Scholar
  53. F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997) ADSCrossRefGoogle Scholar
  54. F. Fueten, J. Flahaut, L. Le Deit, R. Stesky, E. Hauber, K. Gwinner, Interior layered deposits within a perched basin, southern Coprates Chasma, Mars: evidence for their formation, alteration, and erosion. J. Geophys. Res. Planets 116, E02003 (2011) ADSCrossRefGoogle Scholar
  55. F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009) ADSCrossRefGoogle Scholar
  56. F. Gaillard, M. Pichavant, B. Scaillet, Experimental determination of activities of FeO and Fe2O3 components in hydrous silicic melts under oxidizing conditions. Geochim. Cosmochim. Acta 67, 4389–4409 (2003a) ADSCrossRefGoogle Scholar
  57. F. Gaillard, B.C. Schmidt, S. Mackwell, C. McCammon, Rate of hydrogen-iron redox exchange in silicate melts and glasses. Geochim. Cosmochim. Acta 67, 2427–2441 (2003b) CrossRefGoogle Scholar
  58. F. Gaillard, B. Scaillet, N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011) ADSCrossRefGoogle Scholar
  59. A. Gendrin, N. Mangold, J.P. Bibring, Y. Langevin, B. Gondet, F. Poulet, G. Bonello, C. Quantin, J. Mustard, R. Arvidson, S. LeMouélic, Sulfates in martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005) ADSCrossRefGoogle Scholar
  60. E.K. Gibson, C.B. Moore, T.M. Primus, C.F. Lewis, Sulfur in achondritic meteorites. Meteoritics 20, 503–511 (1985) ADSGoogle Scholar
  61. T.D. Glotch, A.D. Rogers, Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars. J. Geophys. Res. Planets 112(E6), E06001 (2007) ADSCrossRefGoogle Scholar
  62. T.D. Glotch, P.R. Christensen, Geologic and mineralogic mapping of Aram Chaos: evidence for a water-rich history. J. Geophys. Res. Planets 110(E9), E09006 (2005) ADSCrossRefGoogle Scholar
  63. T.D. Glotch, J.L. Bandfield, P.R. Christensen, W.M. Calvin, S.M. McLennan, B.C. Clark, A.D. Rogers, S.W. Squyres, Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. J. Geophys. Res. Planets 111(E12), E12S03 (2006a) ADSCrossRefGoogle Scholar
  64. T.D. Glotch, P.R. Christensen, T.G. Sharp, Fresnel modeling of hematite crystal surfaces and application to martian hematite spherules. Icarus 181(2), 408–418 (2006b) ADSCrossRefGoogle Scholar
  65. M.P. Golombek et al., Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res. 111(E12), 1–14 (2006) CrossRefGoogle Scholar
  66. R. Greeley, B.D. Schneid, Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991) ADSCrossRefGoogle Scholar
  67. J.L. Griffes, R.E. Arvidson, F. Poulet, A. Gendrin, Geologic and spectral mapping of etched terrain deposits in northern Meridiani Planum. J. Geophys. Res. Planets 112(E8), E08S09 (2007) ADSCrossRefGoogle Scholar
  68. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011) ADSCrossRefGoogle Scholar
  69. J. Grotzinger et al., Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars. Geology 34(12), 1085–1088 (2006) ADSCrossRefGoogle Scholar
  70. J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, B.C. Clark, D.A. Fike, M. Golombek, R. Greeley, A. Haldemann, K.E. Herkenhoff, B.L. Jolliff, A.H. Knoll, M. Malin, S.M. McLennan, T. Parker, L. Soderblom, J.N. Sohl-Dickstein, S.W. Squyres, N.J. Tosca, W.A. Watters, Stratigraphy, sedimentology and depositional environment of the Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 11–72 (2005) ADSCrossRefGoogle Scholar
  71. I. Halevy, M.T. Zuber, D.P. Schrag, A sulfur dioxide climate feedback on early Mars. Science 318, 1903 (2007). doi: 10.1126/science.1147039 ADSCrossRefGoogle Scholar
  72. C.D.K. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 66(11), 2025–2036 (2002) ADSCrossRefGoogle Scholar
  73. C.D.K. Herd, A.H. Treiman, G.A. McKay, C.K. Shearer, Light lithophile elements in martian basalts: evaluating the evidence for magmatic water degassing. Geochim. Cosmochim. Acta 69, 2431–2440 (2005) ADSCrossRefGoogle Scholar
  74. K.E. Herkenhoff, M.P. Golombek, E.A. Guinness, J.B. Johnson, A. Kusack, L. Richter, R.J. Sullivan, S. Gorevan, In situ observations of the physical properties of the Martian surface, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 451–467 CrossRefGoogle Scholar
  75. A. Holzheid, T.L. Grove, Sulfur saturation limits in silicate melts and their implications for core formation scenarios for terrestrial planets. Am. Mineral. 87, 227–237 (2002) Google Scholar
  76. J.A. Hurowitz, S.M. McLennan, A ∼3.5 Ga record of water-limited, acidic conditions on Mars. Earth Planet. Sci. Lett. 260, 432–443 (2007) ADSCrossRefGoogle Scholar
  77. J.A. Hurowitz, W.W. Fischer, N.J. Tosca, R.E. Milliken, Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010) ADSCrossRefGoogle Scholar
  78. J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schöder, S.W. Squyres, In-situ and experimental evidence for acidic weathering on Mars. J. Geophys. Res. 111, E02S19 (2006). doi: 10.1029/2005JE002515 ADSCrossRefGoogle Scholar
  79. B.M. Hynek, R.E. Arvidson, R.J. Phillips, Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107(E10), 5088 (2002). doi: 10.1029/2002JE001891 CrossRefGoogle Scholar
  80. G. Iacono-Marziano, Y. Morizet, E. Le-Trong, F. Gaillard, New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012). doi: 10.1016/j.gca.2012.08.035 CrossRefGoogle Scholar
  81. B.M. Jakosky, R.J. Phillips, Mars’ volatile and climate history. Nature 412, 237–244 (2001) ADSCrossRefGoogle Scholar
  82. S.S. Johnson, A.A. Pavlov, M.A. Mischna, Fate of SO2 in the ancient Martian atmosphere: implications for transient greenhouse warming. J. Geophys. Res. (Planets) 114, E11011 (2009). doi: 10.1029/2008JE003313 ADSCrossRefGoogle Scholar
  83. J.R. Johnson, J.F. Bell, E. Cloutis, M. Staid, W.H. Farrand, T. Mccoy, M. Rice, A. Wang, A. Yen, Mineralogic constraints on sulfur-rich soils from Pancam spectra at Gusev crater, Mars. Geophys. Res. Lett. 34(13), L13202 (2007) ADSCrossRefGoogle Scholar
  84. S.S. Johnson, M.A. Mischna, T.L. Grove, M.T. Zuber, Sulfur-induced greenhouse warming on early Mars. J. Geophys. Res. 113, E08005 (2008). doi: 10.1029/2007JE002962 CrossRefGoogle Scholar
  85. L. Keszthelyi, S. Self, T. Thordarson, Flood lavas on Earth, Io and Mars. J. Geol. Soc. 163, 253–264 (2006). doi: 10.1144/0016-764904-503 CrossRefGoogle Scholar
  86. M.R. Kilburn, B.J. Wood, Metal-silicate partitioning and the incompatibility of S and Si during core formation. Earth Planet. Sci. Lett. 152, 139–148 (1997) ADSCrossRefGoogle Scholar
  87. P.L. King, H.Y. McSween, Effects of H2O, pH, and oxidation state on the stability of Fe minerals on Mars. J. Geophys. Res. 110, E12S10 (2005). doi: 10.1029/2005JE002482 CrossRefGoogle Scholar
  88. P.L. King, S.M. McLennan, Sulfur on Mars. Elements 6(2), 107–112 (2010) CrossRefGoogle Scholar
  89. P.L. King, D.T. Lescinsky, H.W. Nesbitt, The composition and evolution of primordial solutions on Mars, with application to other planetary bodies. Geochim. Cosmochim. Acta 68, 4993–5008 (2004) ADSCrossRefGoogle Scholar
  90. L.P. Knauth, D.M. Burt, K.H. Wohletz, Impact origin of sediments at the opportunity landing site on Mars. Nature 438, 1123–1128 (2005) ADSCrossRefGoogle Scholar
  91. S.P. Kounaves et al., Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett. 37, L09201 (2010) CrossRefGoogle Scholar
  92. M.D. Kraft, J.R. Michalski, T.G. Sharp, Effects of pure silica coatings on thermal emission spectra of basaltic rocks: considerations for Martian surface mineralogy. Geophys. Res. Lett. 30(24), 2288 (2003) CrossRefGoogle Scholar
  93. M.D. Lane, P.R. Christensen, Thermal infrared emission spectroscopy of salt minerals predicted for Mars. Icarus 135(2), 528–536 (1998) ADSCrossRefGoogle Scholar
  94. M.D. Lane, J.L. Bishop, M.D. Dyar, P.L. King, M. Parente, B.C. Hyde, Mineralogy of the Paso Robles soils on Mars. Am. Mineral. 93(5–6), 728–739 (2008) CrossRefGoogle Scholar
  95. Y. Langevin, F. Poulet, J.P. Bibring, B. Gondet, Sulfates in the North polar region of mars detected by OMEGA/Mars express. Science 307(5715), 1584–1586 (2005) ADSCrossRefGoogle Scholar
  96. L. Le Deit, S. Le Mouelic, O. Bourgeois, J.P. Combe, D. Mege, C. Sotin, A. Gendrin, E. Hauber, N. Mangold, J.-P. Bibring, Ferric oxides in East Candor Chasma, Valles Marineris (Mars) inferred from analysis of OMEGA/Mars Express data: identification and geological interpretation. J. Geophys. Res. Planets 113(E7), E07001 (2008) ADSCrossRefGoogle Scholar
  97. L. Le Deit, O. Bourgeois, D. Mege, E. Hauber, S. Le Mouelic, M. Masse, R. Jaumann, J.-P. Bibring, Morphology, stratigraphy, and mineralogical composition of a layered formation covering the plateaus around Valles Marineris, Mars: implications for its geological history. Icarus 208(2), 684–703 (2010) ADSCrossRefGoogle Scholar
  98. J. Li, C.B. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381, 686–689 (1996) ADSCrossRefGoogle Scholar
  99. J. Li, C.B. Agee, Element partitioning constraints on the light element composition of the Earth’s core. Geophys. Res. Lett. 28, 81–84 (2001). doi: 10.1029/2000GL012114 ADSCrossRefGoogle Scholar
  100. K.A. Lichtenberg et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res. Planets 115, E00D17 (2010) CrossRefGoogle Scholar
  101. J.-P. Lorand, V. Chevrier, V. Sautter, Sulfide mineralogy and redox conditions in some Shergottites. Meteorit. Planet. Sci. Lett. 40, 1257–1272 (2005) ADSCrossRefGoogle Scholar
  102. T.W. Lyons, B.C. Gill, Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010) CrossRefGoogle Scholar
  103. N. Mangold, A. Gendrin, B. Gondet, S. LeMouelic, C. Quantin, V. Ansan, J.P. Bibring, Y. Langevin, P. Masson, G. Neukum, Spectral and geological study of the sulfate-rich region of West Candor Chasma, Mars. Icarus 194(2), 519–543 (2008) ADSCrossRefGoogle Scholar
  104. N. Mangold, L. Roach, R. Milliken, S. Le Mouelic, V. Ansan, J.P. Bibring, P. Masson, J.F. Mustard, S. Murchie, G. Neukum, A late Amazonian alteration layer related to local volcanism on Mars. Icarus 207(1), 265–276 (2010) ADSCrossRefGoogle Scholar
  105. J.C. Marty, G. Balmino, J. Duron, P. Rosenblatt, S. Le Maistre, A. Rivoldini, V. Dehant, T. Van Hoolst, Martian gravity field model and its time variations from MGS and Odyssey data. Planet. Space Sci. 57, 350–363 (2009) ADSCrossRefGoogle Scholar
  106. M. Masse, S. Le Mouelic, O. Bourgeois, J.-P. Combe, L. Le Deit, C. Sotin, J.-P. Bibring, B. Gondet, Y. Langevin, Mineralogical composition, structure, morphology, and geological history of Aram Chaos crater fill on Mars derived from OMEGA Mars Express data. J. Ge ophys. Res. Planets 113(E12), E12006 (2008) ADSCrossRefGoogle Scholar
  107. M. Masse, O. Bourgeois, S. Le Mouelic, C. Verpoorter, L. Le Deit, J.P. Bibring, Martian polar and circum-polar sulfate-bearing deposits: sublimation tills derived from the North Polar Cap. Icarus 209(2), 434–451 (2010) ADSCrossRefGoogle Scholar
  108. M. Masse, O. Bourgeois, S. Le Mouelic, C. Verpoorter, A. Spiga, L. Le Deit, Wide distribution and glacial origin of Polar Gypsum on Mars. Earth Planet. Sci. Lett. 317, 44–55 (2012) ADSCrossRefGoogle Scholar
  109. J. Mavrogenes, H.S.C. O’Neill, The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in magmas. Geochim. Cosmochim. Acta 63, 1173–1180 (1999) ADSCrossRefGoogle Scholar
  110. T. McCollom, B.M. Hynek, A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438 (2005) Google Scholar
  111. F.M. McCubbin, A. Smirnov, H. Nekvasil, J. Wang, E. Hauri, D.H. Lindsley, Hydrous magmatism on Mars: a source of water for the surface and subsurface during the Amazonian. Earth Planet. Sci. Lett. 292, 132–138 (2010) ADSCrossRefGoogle Scholar
  112. F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Vander Kaaden, J.H. Wang, C.K. Shearer, Hydrous melting of the martian mantle produced both depleted and enriched Shergottites. Geology 40, 683–686 (2012). doi: 10.1130/G33242.1 CrossRefGoogle Scholar
  113. W.F. McDonough, S.S. Sun, The composition of the Earth. Chem. Geol. 120, 1125–1130 (1995) Google Scholar
  114. A.S. McEwen, M.C. Malin, M.H. Carr, W.K. Hartmann, Voluminous volcanism on early Mars revealed in Valles Marineris. Nature 397, 584–586 (1999) ADSCrossRefGoogle Scholar
  115. S.M. McLennan, J.P. Grotzinger, The sedimentary rock cycle of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 541–577 CrossRefGoogle Scholar
  116. S.M. McLennan, J.P. Grotzinger, J.A. Hurowitz, N.J. Tosca, Sulfate geochemistry and the sedimentary rock record of Mars, in Workshop on Martian Sulfates as Records of Atmospheric-Fluid-Rock Interactions. LPI Contribution, vol. 1331 (The Lunar & Planetary Institute, Houston, 2006), p. 54 Google Scholar
  117. S.M. McLennan, Geochemistry of sedimentary processes on Mars, in Mars Sedimentology, ed. by J.P. Grotzinger, R.E. Milliken. SEPM Special Publication (2012) Google Scholar
  118. S.M. McLennan, J.F. Bell, W.M. Calvin, P.R. Christensen, B.C. Clark, P.A. de Souza, J. Farmer, W.H. Farrand, D.A. Fike, R. Gellert, A. Ghosh, T.D. Glotch, J.P. Grotzinger, B. Hahn, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, S.S. Johnson, B. Jolliff, G. Klingelhöfer, A.H. Knoll, Z. Learner, M.C. Malin, H.Y. McSween, J. Pocock, S.W. Ruff, L.A. Soderblom, S.W. Squyres, N.J. Tosca, W.A. Watters, M.B. Wyatt, A. Yen, Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 240, 95–121 (2005) ADSCrossRefGoogle Scholar
  119. H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian crust. Science 324, 736–739 (2009) ADSCrossRefGoogle Scholar
  120. H.Y. McSween, I.O. McGlynn, A.D. Rogers, Determining the modal mineralogy of Martian soils. J. Geophys. Res. Planets 115, E00F12 (2010) ADSCrossRefGoogle Scholar
  121. H.Y. McSween, T.L. Grove, R.C. Lentz, J.C. Dann, A.H. Holzheid, L.R. Riciputi, J.G. Ryan, Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001) ADSCrossRefGoogle Scholar
  122. H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989) ADSCrossRefGoogle Scholar
  123. J.M. Metz, J.P. Grotzinger, D.M. Rubin, K.W. Lewis, S.W. Squyres, J.F. Bell, Sulfate-rich eolian and wet interdune deposits, Erebus crater, Meridiani Planum, Mars. J. Sediment. Res. 79, 247–264 (2009) ADSCrossRefGoogle Scholar
  124. C. Meyer Jr., Website: (2008)
  125. J.R. Michalski, P.B. Niles, Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010) ADSCrossRefGoogle Scholar
  126. J. Michalski, P.B. Niles, Atmospheric origin of Martian interior layered deposits: links to climate change and the global sulfur cycle. Geology 40, 419–422 (2012) CrossRefGoogle Scholar
  127. J.R. Michalski, J.P. Bibring, F. Poulet, D. Loizeau, N. Mangold, E.N. Dobrea et al., The Mawrth Vallis region of Mars: a potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10, 687–703 (2010) ADSCrossRefGoogle Scholar
  128. C. Milbury, G. Schubert, Search for the global signature of the Martian Dynamo. J. Geophys. Res. 115, E10010 (2010) ADSCrossRefGoogle Scholar
  129. R.E. Milliken et al., Opaline silica in young deposits on Mars. Geology 36(11), 847–850 (2008) ADSCrossRefGoogle Scholar
  130. R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010) CrossRefGoogle Scholar
  131. A.G. Monders, E. Médard, T.L. Grove, Phase equilibrium investigations of the Adirondack class basalts from the Gusev plains, Gusev crater, Mars. Meteorit. Planet. Sci. 42, 131–148 (2007) ADSCrossRefGoogle Scholar
  132. G. Morard, D. Andrault, N. Guignot, C. Sanloup, M. Mezouar, S. Petitgirard, G. Fiquet, In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet. Sci. Lett. 272, 620–626 (2008) ADSCrossRefGoogle Scholar
  133. Y. Morizet, M. Paris, F. Gaillard, B. Scaillet, C-O-H fluid solubility in haplobasalt under reducing conditions: an experimental study. Chem. Geol. 279, 1–16 (2010) CrossRefGoogle Scholar
  134. R.V. Morris, G. Klingelhofer, C. Schroder, D.S. Rodionov, A. Yen, D.W. Ming et al., Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. Planets 111, 27 (2006) Google Scholar
  135. S.L. Murchie, J.F. Mustard, B.L. Ehlmann, R.E. Milliken, J.L. Bishop, N.K. McKeown, E.Z.N. Dobrea, F.P. Seelos, D.L. Buczkowski, S.M. Wiseman, R.E. Arvidson, J.J. Wray, G. Swayze, R.N. Clark, D.J.D. Marais, A.S. McEwen, J.P. Bibring, A synthesis of martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. (Planets) 114, E00D06 (2009a). doi: 10.1029/2009JE003342 ADSCrossRefGoogle Scholar
  136. S.L. Murchie, L. Roach, F. Seelos, R. Milliken, J. Mustard, R. Arvidson, S. Wisema, K. Lichtenberg, J. Andrews-Hanna, J. Bishop, J.P. Bibring, M. Parente Morris R, Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. (Planets) 114, E00D05 (2009b). doi: 10.1029/2009JE003343 ADSCrossRefGoogle Scholar
  137. D.S. Musselwhite, H.A. Dalton, W.S. Kiefer, A.H. Treiman, Experimental petrology of the basaltic shergottite Yamato-980459: implications for the thermal structure of the martian mantle. Meteorit. Planet. Sci. 41, 1271–1290 (2006) ADSCrossRefGoogle Scholar
  138. P.B. Niles et al., Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9940-y
  139. P.B. Niles, J. Michalski, Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2(3), 215–220 (2009) ADSCrossRefGoogle Scholar
  140. K. Nishida, H. Terasaki, E. Ohtani, A. Suzuki, The effect of sulfur content on density of the liquid Fe-S at high pressure. Phys. Chem. Miner. 35, 417–423 (2008) ADSCrossRefGoogle Scholar
  141. D.K. Nordstrom, Mine waters: acidic to circumneutral. Elements 7, 393–398 (2011) CrossRefGoogle Scholar
  142. H.S.C. O’Neill, J. Mavrogenes, The sulfide saturation capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J. Petrol. 43, 1049–1087 (2002) CrossRefGoogle Scholar
  143. E. Ohtani, H. Yurimoto, S. Seto, Element partitioning between metallic liquid, silicate liquid, and lower-mantle minerals: implications for core formation of the Earth. Phys. Earth Planet. Inter. 100, 97–114 (1997) ADSCrossRefGoogle Scholar
  144. C.H. Okubo, K.W. Lewis, A.S. McEwen, R.L. Kirk, Relative age of interior layered deposits in southwest Candor Chasma based on high-resolution structural mapping. J. Geophys. Res. Planets 113(E12), E12002 (2008) ADSCrossRefGoogle Scholar
  145. R.J. Phillips, M.T. Zuber, S.C. Solomon, M.P. Golombek, B.M. Jakosky, W.B. Banerdt, D.E. Smith, R.M.E. Williams, B.M. Hynek, O. Aharonson, S.A. Hauck, Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001) ADSCrossRefGoogle Scholar
  146. A. Pommier, F. Gaillard, M. Pichavant, Time-dependent changes of the electrical conductivity of basaltic melts with redox state. Geochim. Cosmochim. Acta 74, 1 (2010) CrossRefGoogle Scholar
  147. F. Poulet, S. Erard, Nonlinear spectral mixing: quantitative analysis of laboratory mineral mixtures. J. Geophys. Res. Planets 109(E2), E02009 (2004) ADSCrossRefGoogle Scholar
  148. F. Poulet, C. Gomez, J.P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, J. Mustard, Martian surface mineralogy from Observatoire pour la Mineralogie, l’Eau, les Glaces et l’Activite on board the Mars Express spacecraft (OMEGA/MEx): global mineral maps. J. Geophys. Res. Planets 112(E8), E08S02 (2007) ADSCrossRefGoogle Scholar
  149. F. Poulet, J.P. Bibring, Y. Langevin, J.F. Mustard, N. Mangold, M. Vincendon, B. Gondet, P. Pinet, J.M. Bardintzeff, B. Platevoet, Quantitative compositional analysis of martian mafic regions using the MEx/OMEGA reflectance data. Icarus 201(1), 69–83 (2009) ADSCrossRefGoogle Scholar
  150. F. Poulet, R.E. Arvidson, C. Gomez, R.V. Morris, J.P. Bibring, Y. Langevin, B. Gondet, J. Griffes, Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation. Icarus 195(1), 106–130 (2008) ADSCrossRefGoogle Scholar
  151. C. Quantin, P. Allemand, N. Mangold, C. Delacourt, Ages of Valles Marineris (Mars) landslides and implications for canyon history. Icarus 172(2), 555–572 (2004) ADSCrossRefGoogle Scholar
  152. R. Rieder, T. Economou, H. Wanke, A. Turkevich, J. Crisp, J. Bruckner et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: preliminary results from the x-ray mode. Science 278, 1771–1774 (1997) ADSCrossRefGoogle Scholar
  153. K. Righter, K. Pando, L.R. Danielson, Experimental evidence for sulfur-rich martian magmas: implications for volcanism and surficial sulfur sources. Earth Planet. Sci. Lett. 288, 235–243 (2009) ADSCrossRefGoogle Scholar
  154. K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996) ADSCrossRefGoogle Scholar
  155. K. Righter, M.J. Drake, E. Scott, Compositional relationships between meteorites and terrestrial planets, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 803–828 Google Scholar
  156. K. Righter, N.L. Chabot, Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011). doi: 10.1111/j.1945-5100.2010.01140.x ADSCrossRefGoogle Scholar
  157. K. Righter, M. Humayun, Volatile Siderophile Elements in Shergottites: Constraints on Core Formation and Magmatic Degassing. 43rd LPSC Program, abstract number 2465 (2012) Google Scholar
  158. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011) ADSCrossRefGoogle Scholar
  159. L.H. Roach, J.F. Mustard, M.D. Lane, J.L. Bishop, S.L. Murchie, Diagenetic haematite and sulfate assemblages in Valles Marineris. Icarus 207(2), 659–674 (2010a) ADSCrossRefGoogle Scholar
  160. L.H. Roach, J.F. Mustard, G. Swayze, R.E. Milliken, J.L. Bishop, S.L. Murchie, K. Lichtenberg, Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris. Icarus 206(1), 253–268 (2010b) ADSCrossRefGoogle Scholar
  161. L. Rose-Weston, J.M. Brenan, Y. Fei, R.A. Secco, D.J. Frost, Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: implications for earth differentiation source. Geochim. Cosmochim. Acta 73, 4598–4615 (2009) ADSCrossRefGoogle Scholar
  162. A.E. Saal, E.H. Hauri, C.H. Langmuir, M.R. Perfit, Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002) ADSCrossRefGoogle Scholar
  163. P. Schiffman, R. Zierenberg, N. Marks, J.L. Bishop, M.D. Dyar, Acid-fog deposition at Kilauea volcano: a possible mechanism for the formation of siliceous-sulfate rock coatings on Mars. Geology 34, 921–924 (2006) ADSCrossRefGoogle Scholar
  164. E. Sefton-Nash, D.C. Catling, Hematitic concretions at Meridiani Planum, Mars: their growth timescale and possible relationship with iron sulfates. Earth Planet. Sci. Lett. 269, 365–375 (2008) ADSGoogle Scholar
  165. M. Settle, Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979) ADSCrossRefGoogle Scholar
  166. P.F. Shi, S.K. Saxena, Thermodynamic modelling of the C-H-O-S fluid system. Am. Mineral. 77, 1038–1049 (1992) Google Scholar
  167. S.W. Squyres, A.H. Knoll, Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240(1), 1–10 (2005) ADSCrossRefGoogle Scholar
  168. S.W. Squyres et al., The Spirit Rover’s Athena science investigation at Gusev crater, Mars. Science 305, 794–799 (2004) ADSCrossRefGoogle Scholar
  169. S.W. Squyres, R.E. Arvidson, J.F. Bell, F. Calef, B.C. Clark, B.A. Cohen, L.A. Crumpler, P.A. de Souza, W.H. Farrand, R. Gellert, J. Grant, K.E. Herkenhoff, J.A. Hurowitz, J.R. Johnson, B.L. Jolliff, A.H. Knoll, R. Li, S.M. McLennan, D.W. Ming, D.W. Mittlefehldt, T.J. Parker, G. Paulsen, M.S. Rice, S.W. Ruff, C. Schröder, A.S. Yen, K. Zacny, Ancient impact and aqueous processes at Endeavour crater, Mars. Science 336, 570–576 (2012) ADSCrossRefGoogle Scholar
  170. B.D. Stanley, M.M. Hirschmann, A.C. Withers, CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011) ADSCrossRefGoogle Scholar
  171. A.J. Stewart, M.W. Schmidt, W. Van-Westrenen, C. Liebske, Mars: a new core-crystallization regime. Science 316, 1323–1325 (2007) ADSCrossRefGoogle Scholar
  172. R.B. Symonds, W.I. Rose, G.J.S. Bluth, T.M. Gerlach, Volcanic-gas studies: methods, results, and applications, in Volatiles in Magmas, Reviews in Mineralogy, vol. 30, ed. by M.R. Carroll, J.R. Holloway, (1994), pp. 1–66 Google Scholar
  173. K.L. Tanaka, J.A. Skinner, T.M. Hare, T. Joyal, A. Wenker, Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J. Geophys. Res. Planets 108(E4), 8043 (2003) ADSCrossRefGoogle Scholar
  174. S.R. Taylor, S.M. McLennan, Planetary Crusts: Their Composition, Origin and Evolution (Cambridge University Press, Cambridge, 2009), 378 pp. Google Scholar
  175. E. Tertre, S. Castet, G. Berger, M. Loubet, E. Giffaut, Surface chemistry of kaolinite and na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta 70, 4579–4599 (2006) ADSCrossRefGoogle Scholar
  176. B.J. Thomson, N.T. Bridges, R. Milliken, A. Baldridge, S.J. Hook, J.K. Crowley, G.M. Marion, C.R. de Souza, A.J. Brown, C.M. Weitz, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011) ADSCrossRefGoogle Scholar
  177. F. Tian, M.W. Claire, J.D. Haqq-Misra, M. Smith, D.C. Crisp, D. Catling, K. Zahnle, J.F. Kasting, Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2009). doi: 10.1016/j.epsl.2010.04.016 ADSCrossRefGoogle Scholar
  178. J.N. Tosca, S.M. McLennan, B.C. Clark, J.P. Grotzinger, J.A. Hurowitz, A.H. Knoll, C. Schröder, S.W. Squyres, Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum. Earth Planet. Sci. Lett. 240, 122–148 (2005) ADSCrossRefGoogle Scholar
  179. N.J. Tosca, S.M. McLennan, M.D. Dyar, E.C. Sklute, F.M. Michel, Fe oxidation processes at Meridiani Planum and implications for secondary Fe mineralogy on Mars. J. Geophys. Res. 113, E05005 (2008). doi: 10.1029/2007JE003019 ADSCrossRefGoogle Scholar
  180. E. Tréguier et al., Overview of mars surface geochemical diversity through APXS data multidimensional analysis: first attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008). doi: 10.1029/2007JE003010 ADSCrossRefGoogle Scholar
  181. M. Wadhwa, Redox states of Mars’ upper mantle and crust from Eu anomalies in Shergottite pyroxenes. Science 291, 1527–1530 (2001). doi: 10.1126/science.1057594 ADSCrossRefGoogle Scholar
  182. P.J. Wallace, Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005) ADSCrossRefGoogle Scholar
  183. A. Wang et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars. J. Geophys. Res. Planets 111(E2), E02S17 (2006) ADSCrossRefGoogle Scholar
  184. C. Wang, J. Hirama, T. Nagasaka, S. Ban-Ya, Phase equilibria of liquid Fe-S-C ternary. ISIJ Int. 11, 1292–1299 (1991) CrossRefGoogle Scholar
  185. H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. A 359, 285–293 (1994) CrossRefGoogle Scholar
  186. C.M. Weitz, M.D. Lane, M. Staid, E.N. Dobrea, Gray hematite distribution and formation in Ophir and Candor chasmata. J. Geophys. Res. Planets 113, 30 (2008) CrossRefGoogle Scholar
  187. C.M. Weitz, R.E. Milliken, J.A. Grant, A.S. McEwen, R.M.E. Williams, J.L. Bishop, B.J. Thomson, Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus 205(1), 73–102 (2010) ADSCrossRefGoogle Scholar
  188. C.M. Weitz, J.L. Bishop, P. Thollot, N. Mangold, L.H. Roach, Diverse mineralogies in two troughs of Noctis Labyrinthus, Mars. Geology 39, 899–902 (2011) CrossRefGoogle Scholar
  189. L. Wendt, C. Gross, T. Kneissl, M. Sowe, J.P. Combe, L. LeDeit, P.C. McGuire, G. Neukum, Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213(1), 86–103 (2011) ADSCrossRefGoogle Scholar
  190. L. Wilson, J.W. Head, Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev. Geophys. 32, 221–264 (1994) ADSCrossRefGoogle Scholar
  191. S.M. Wiseman, R.E. Arvidson, R.V. Morris, F. Poulet, J.C. Andrews-Hanna, J.L. Bishop, S.L. Murchie, F.P. Seelos, D. Des Marais, J.L. Griffes, Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. J. Geophys. Res. Planets 115, E00D18 (2010) ADSCrossRefGoogle Scholar
  192. S.M. Wiseman et al., Phyllosilicate and sulfate-hematite deposits within Miyamoto crater in southern Sinus Meridiani, Mars. Geophys. Res. Lett. 35(19), L19204 (2008) ADSCrossRefGoogle Scholar
  193. J.J. Wray, E.Z.N. Dobrea, R.E. Arvidson, S.M. Wiseman, S.W. Squyres, A.S. McEwen, J.F. Mustard, S.L. Murchie, Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars. Geophys. Res. Lett. 36, L21201 (2009) ADSCrossRefGoogle Scholar
  194. J.J. Wray, R.E. Milliken, C.M. Dundas, G.A. Swayze, J.C. Andrews-Hanna, A.M. Baldridge, M. Chojnacki, J.L. Bishop, B.L. Ehlmann, S.L. Murchie, R.N. Clark, F.P. Seelos, L.L. Tornabene, S.W. Squyres, Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. Planets 116, E01001 (2011) ADSCrossRefGoogle Scholar
  195. J.J. Wray, S.W. Squyres, L.H. Roach, J.L. Bishop, J.F. Mustard, E.Z.N. Dobrea, Identification of the Ca-sulfate bassanite in Mawrth Vallis, Mars. Icarus 209(2), 416–421 (2010) ADSCrossRefGoogle Scholar
  196. J. Zipfel, P. Scherer, B. Spettel, G. Dreibus, L. Schultz, Petrology and chemistry of the new shergottite Dar al Gani 476. Meteorit. Planet. Sci. 35, 95–106 (2000) ADSCrossRefGoogle Scholar
  197. M.Y. Zolotov, M.V. Mironenko, Timing of acid weathering on Mars: a kinetic-thermodynamic assessment. J. Geophys. Res. 112(E7), E07006 (2007). doi: 10.1029/2006JE002882 CrossRefGoogle Scholar
  198. M.Y. Zolotov, Martian Volcanic Gases: are they Terrestrial-like? Lunar and Planetary Science XXXIV, abstract number 1795 (2003) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Fabrice Gaillard
    • 1
    • 2
    • 3
    Email author
  • Joseph Michalski
    • 4
  • Gilles Berger
    • 5
  • Scott M. McLennan
    • 6
  • Bruno Scaillet
    • 1
    • 2
    • 3
  1. 1.ISTO, UMR 7327Univ dOrléansOrléansFrance
  2. 2.ISTO, UMR 7327CNRS/INSUOrléansFrance
  3. 3.ISTO, UMR 7327BRGMOrléansFrance
  4. 4.Planetary Science InstituteTucsonUSA
  5. 5.IRAPCNRS/Université de ToulouseToulouseFrance
  6. 6.State University of New York at Stony BrookDepartment of GeosciencesStony BrookUSA

Personalised recommendations