Outgassing History and Escape of the Martian Atmosphere and Water Inventory
- 1.6k Downloads
- 71 Citations
Abstract
The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ∼4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.
Keywords
Early Mars Young Sun Magma ocean Volcanic outgassing Impacts Thermal escape Nonthermal escape Atmospheric evolutionNotes
Acknowledgements
D. Breuer, E. Chassefière, M. Grott, H. Gröller, E. Hauber, H. Lammer, P. Odert and A. Morschhauser acknowledges support from the Helmholtz Alliance project “Planetary Evolution and Life”. E. Chassefière acknowledges support from CNRS EPOV interdisciplinary program. H. Lammer acknowledge the support by the FWF NFN project S116 “Pathways to Habitability: From Disks to Active Stars, Planets and Life”, and the related FWF NFN subproject, S116607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. H. Gröller and H. Lammer acknowledges also support from the Austrian FWF project P24247-N16 “Modelling of non-thermal processes in early upper atomospheres exposed to extreme young Sun conditions” and support from the joined Russian-Austrian project under the RFBR grant 09-02-91002-215-ANF-a and the Austrian Science Fund (FWF) grant I199-N16. P. Odert was supported via the FWF project grant P19446-N16 and the research by U. Möstl was funded by the FWF project grant P21051-N16. O. Karatekin thanks A. Morbidelli for the discussions related to impact studies and the LHB; O. Karatekin, V. Dehant and L.B.S. Pham acknowledges the support of Belgian PRODEX program managed by the ESA in collaboration with the BELSPO. O. Mousis acknowledges support from CNES. P. Niles acknowledges support from NASA Johnson Space Center and the Mars Fundamental Research Program. The authors also thank ISSI for hosting the conference and the Europlanet RI-FP7 project and its related Science Networking (Na2) working groups. Finally, the authors thank guest editor M. Toplis and two anonymous referees for their suggestions and recommendations which helped to improve the article.
References
- Y. Abe, Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Int. 100, 27–39 (1997) ADSGoogle Scholar
- T.J. Ahrens, Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525–555 (1993) ADSGoogle Scholar
- F. Albarède, J. Blichert-Toft, The split fate of the early Earth, Mars, Venus and Moon. C. R. Géosci. 339, 917–927 (2007) Google Scholar
- U.V. Amerstorfer, N.V. Erkaev, U. Taubenschuss, H.K. Biernat, Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices. Phys. Plasmas 17, 072901 (2010). doi: 10.1063/1.3453705 ADSGoogle Scholar
- J.C. Andrews-Hanna, M.T. Zuber, W.B. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008) ADSGoogle Scholar
- S.K. Atreya, R.P. Mahaffy, A.S. Wong, Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369 (2006) ADSGoogle Scholar
- V.R. Baker, Water and the martian landscape. Nature 412, 228–236 (2001) ADSGoogle Scholar
- J.L. Bandfield, T.D. Gloch, P.R. Christensen, Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084–1086 (2003) ADSGoogle Scholar
- S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007) ADSGoogle Scholar
- R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R. Weiler, Isotopic signatures in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003) ADSGoogle Scholar
- J.-P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, The OMEGA team, Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005) ADSGoogle Scholar
- J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, The OMEGA team, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006) ADSGoogle Scholar
- L.E. Borg, D.S. Draper, A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteorit. Planet. Sci. 38, 1713–1731 (2003) ADSGoogle Scholar
- L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982) ADSGoogle Scholar
- R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. (2012, in press). doi: 10.1007/s11214-012-9904-2 Google Scholar
- D. Breuer, T. Spohn, Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54, 153–169 (2006) ADSGoogle Scholar
- J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon, M.M. Grady, Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001) ADSGoogle Scholar
- R.M. Canup, E. Asphaug, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001) ADSGoogle Scholar
- M.H. Carr, Mars—a water-rich planet? Icarus 68, 187–216 (1986) ADSGoogle Scholar
- M.H. Carr, Retention of an atmosphere on early Mars. J. Geophys. Res. 1042, 21897–21910 (1999) ADSGoogle Scholar
- E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996) ADSGoogle Scholar
- E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution, interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004) ADSGoogle Scholar
- E. Chassefière, F. Leblanc, Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011a) ADSGoogle Scholar
- E. Chassefière, F. Leblanc, Explaining the redox imbalance between the H and O escape fluxes at Mars by the oxidation of methane. Planet. Space Sci. 59, 218–226 (2011b) ADSGoogle Scholar
- E. Chassefière, F. Leblanc, Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011c) ADSGoogle Scholar
- E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55, 343–357 (2007) ADSGoogle Scholar
- J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112(E9), E09009 (2007) Google Scholar
- V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007) ADSGoogle Scholar
- P. Christensen, Water at the poles and in permafrost regions of Mars. Elements 2, 151–155 (2006) Google Scholar
- M.W. Claire, J. Sheets, M. Cohen, I. Ribas, V.S. Meadows, D.C. Catling, The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys. J. 757, 95 (2012), 12 pp. ADSGoogle Scholar
- S.M. Clifford, J. Lasue, E. Heggy, J. Boisson, P. McGovern, M.D. Max, Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010). doi: 10.1029/2009JE003462 Google Scholar
- R.A. Craddock, R. Greeley, Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009) ADSGoogle Scholar
- N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003) ADSGoogle Scholar
- N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–493 (2011) ADSGoogle Scholar
- V. Dehant, H. Lammer, Y.N. Kulikov, J.-M. Grießmeier, D. Breuer, O. Verhoeven, O. Karatekin, T. van Hoolst, O. Korablev, P. Lognonne, Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci. Rev. 129, 279–300 (2007) ADSGoogle Scholar
- J.M. Dohm, R.C. Anderson, N.G. Barlow, H. Miyamoto, A.G. Davies, G.J. Taylor, V.R. Baker, W.V. Boynton, J. Keller, K. Kerry, D. Janes, A.G. Fairén, D. Schulze-Makuch, M. Glamoclija, L. Marinangeli, G.G. Ori, R.G. Strom, J.-P. Williams, J.C. Ferris, J.A.P. Rodríguez, M.A. de Pablon, S. Karunatillake, Recent geological and hydrological activity on Mars: the Tharsis/Elysium corridor. Planet. Space Sci. 56, 985–1013 (2008) ADSGoogle Scholar
- T.M. Donahue, Evolution of water reservoirs on mars from D/H ratios in the atmosphere and crust. Nature 374, 432–434 (1995) ADSGoogle Scholar
- T.M. Donahue, Pre-global surveyor evidence for Martian ground water. Proc. Natl. Acad. Sci. 98, 827–830 (2001) ADSGoogle Scholar
- T.M. Donahue, Accretion, loss, and fractionation of martian water. Icarus 167, 225–227 (2004) ADSGoogle Scholar
- J.D. Dorren, M. Güdel, E.F. Guinan, X-ray emission from the Sun in its youth and old age. Astrophys. J. 448, 431–436 (1995) ADSGoogle Scholar
- B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. des Marais, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of Carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008) ADSGoogle Scholar
- B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, S.L. Murchie, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2009). doi: 10.1029/2009JE003339 Google Scholar
- B.L. Ehlmann et al., Geochemical consequences of widespread clay formation in Mars’ Ancient Crust. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9930-0 Google Scholar
- L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008) ADSGoogle Scholar
- O. Eugster, H. Busemann, S. Lorenzetti, D. Terrebilini, Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002) ADSGoogle Scholar
- A.G. Fairén, A cold and wet Mars. Icarus 208, 165–175 (2010) ADSGoogle Scholar
- J. Filiberto, A.H. Treiman, Martian magmas contained abundant chlorine, but little water. Geology 37, 1087–1090 (2009) Google Scholar
- S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010) ADSGoogle Scholar
- F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997) ADSGoogle Scholar
- V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004) ADSGoogle Scholar
- J.L. Fox, \(\mathrm{CO}_{2}^{+}\) dissociative recombination: a source of thermal and nonthermal C on Mars. J. Geophys. Res. 109, A08306 (2004) Google Scholar
- J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009) ADSGoogle Scholar
- A.A. Fraeman, J. Korenaga, The influence of mantle melting on the evolution of Mars. Icarus 210, 43–57 (2010) ADSGoogle Scholar
- E. Gaidos, G. Marion, Geological and geochemical legacy of a cold early Mars. J. Geophys. Res. 108(E6), 5055 (2003), pp. 9-1 Google Scholar
- A. Geminale, V. Formisano, M. Giuranna, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008) ADSGoogle Scholar
- A. Geminale, V. Formisano, G. Sindoni, Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137–148 (2011) ADSGoogle Scholar
- T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano. Nature 313, 273–277 (1985) ADSGoogle Scholar
- R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) ADSGoogle Scholar
- J.L. Gooding, S.J. Wentworth, M.E. Zolensky, Calcium-carbonate and sulfate of possible extraterrestrial origin in the Eeta-79001 meteorite. Geochim. Cosmochim. Acta 52, 909–915 (1988) ADSGoogle Scholar
- R. Greeley, B.B. Schneid, Magma generation on Mars—amounts, rates and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991) ADSGoogle Scholar
- L.P. Greenland, Composition of gases from the 1984 eruption of Mauna Loa volcano, in Volcanism in Hawaii. U.S. Geol. Surv. Prof. Pap. 1350, vol. 1 (U.S. Gov. Printing Office, Washington, 1987a), pp. 781–790 Google Scholar
- L.P. Greenland, Hawaiian eruptive gases, in Volcanism in Hawaii. U.S. Geol. Surv. Prof. Pap. 1350, vol. 1 (U.S. Gov. Printing Office, Washington, 1987b), pp. 781–790 Google Scholar
- L.L. Griffith, E.L. Shock, A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377, 406–408 (1995) ADSGoogle Scholar
- L.L. Griffith, E.L. Shock, Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. J. Geophys. Res. 102, 9135–9143 (1997) ADSGoogle Scholar
- R.E. Grimm, S.L. Painter, On the secular evolution of groundwater on Mars. Geophys. Res. Lett. 36, L24803 (2009). doi: 10.1029/2009GL041018 ADSGoogle Scholar
- H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Yu.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017 (2010) ADSGoogle Scholar
- H. Gröller, H. Lammer, H.I.M. Lichtenegger, M. Pfleger, O. Dutuit, V.I. Shematovich, Yu.N. Kulikov, H.K. Biernat, Hot oxygen atoms in the Venus nightside exosphere. Geophys. Res. Lett. 39, L03202 (2012). doi: 10.1029/2011GL050421 Google Scholar
- M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on mars. Earth Planet. Sci. Lett. 308, 391–400 (2011) ADSGoogle Scholar
- M. Grott, D.D. Baratoux, E.E. Hauber, V.V. Sautter, J.J. Mustard, O.O. Gasnault, S.S. Ruff, S.-I. Karato, V.V. Debaille, M.M. Knapmeyer, F.F. Sohl, T.T. Van Hoolst, D.D. Breuer, A.A. Morschhauser, M.J. Toplis, Long-term evolution of the crust-mantle system. Space Sci. Rev. (2012, accepted). doi: 10.1007/s11214-012-9948-3
- M. Güdel, E.F. Guinan, R. Mewe, J.S. Kaastra, S.L. Skinner, A determination of the coronal emission measure distribution in the young solar analog EK draconis from ASCA/EUVE spectra. Astrophys. J. 479, 416–426 (1997) ADSGoogle Scholar
- A.N. Halliday, The origin of the earliest history of the Earth. Treatise Geochem. 1, 509–557 (2003) ADSGoogle Scholar
- K. Hamano, Y. Abe, Pressure dependence of atmospheric loss by impact-induced vapor expansion, in The 37th Lunar and Planetary Science Conference (2006), abs. 1562 Google Scholar
- P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011) ADSGoogle Scholar
- E. Hauber, P. Brozẑ, F. Jagert, P. Jodlowski, T. Platz, Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, L10201 (2011) ADSGoogle Scholar
- S.A. Hauck II, R.J. Phillips, Thermal and crustal evolution of Mars. J. Geophys. Res. 107, 5052 (2002), 19 pp. Google Scholar
- C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979) ADSGoogle Scholar
- J.W. Head, D.R. Marchant, Inventory of ice-related deposits on mars: evidence for burial and long-term sequestration of ice in non-polar regions and implications for the water budget and climate evolution, in The 40th Lunar and Planetary Science Conference (2009), abs. 1356 Google Scholar
- J.W. Head, S. Pratt, Extensive Hesperian-aged south polar ice sheet on mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. 106, 12275–12300 (2001) ADSGoogle Scholar
- C.D.K. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of mars. Geochim. Cosmochim. Acta 66, 2025–2036 (2002) ADSGoogle Scholar
- M.M. Hirschmann, A.C. Withers, Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147–155 (2008) ADSGoogle Scholar
- J.R. Holloway, Graphite melt equilibria during mantle melting: constraints on CO2 in MORB magmas and the carbon content of the mantle. Chem. Geol. 147, 89–97 (1998) Google Scholar
- J.R. Holloway, V. Pan, G. Gudmundsson, High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur. J. Mineral. 4, 105–114 (1992) Google Scholar
- J.W. Holt, A. Safaeinili, J.J. Plaut, J.W. Head III, R.J. Phillips, R. Seu Roberto, S.D. Kempf, P. Choudhary, D.A. Young, N.E. Putzig, D. Biccari, Y. Gim, Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008) ADSGoogle Scholar
- J. Horner, O. Mousis, J.-M. Petit, B.-W. Jones, Differences between the impact regimes of the terrestrial planets: implications for primordial D: H ratios. Planet. Space Sci. 57, 1338–1345 (2009) ADSGoogle Scholar
- D.M. Hunten, Atmospheric evolution of the terrestrial planets. Science 259, 915–920 (1993) ADSGoogle Scholar
- D.M. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987) ADSGoogle Scholar
- W.-H. Ip, On a hot oxygen corona of Mars. Icarus 76, 135–145 (1988) ADSGoogle Scholar
- N. Iro, D. Gautier, F. Hersant, D. Bockelée-Morvan, J.-I. Lunine, An interpretation of the nitrogen deficiency in comets. Icarus 161, 511–532 (2003) ADSGoogle Scholar
- B.A. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001) ADSGoogle Scholar
- B.A. Ivanov, V.V. Shuvalov, N.A. Artemieva, Meteoritic bombardment in the Noachian time: influence on geological and atmospheric evolution, in Proc. 35th Microsymposium of the Brown University and the Vernadsky Institute (2002) Google Scholar
- B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994) ADSGoogle Scholar
- M.C. Johnson, M.J. Rutherford, P.C. Hess, Chassigny petrogenesis: Melt compositions, intensive parameters and water contents of Martian magmas. Geochim. Cosmochim. Acta 55, 349–366 (1991) ADSGoogle Scholar
- J.F. Kasting, CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991) ADSGoogle Scholar
- J.F. Kasting, The early Mars climate question heats up. Science 278, 1245 (1997) ADSGoogle Scholar
- J.F. Kasting, J.B. Pollack, Loss of water from Venus I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983) ADSGoogle Scholar
- R.F. Katz, M. Spielman, C.H. Langmuir, A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003) ADSGoogle Scholar
- J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 29339–29342 (1998) ADSGoogle Scholar
- T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. I. A photochemical-dynamical model of the thermosphere. Icarus (2012, accepted). arXiv:1210.1536
- V. Krasnopolsky, Note: on the deuterium abundance on Mars and some related problems. Icarus 148, 597–602 (2000) ADSGoogle Scholar
- V.A. Krasnopolsky, Some problems related to the origin of methane on Mars. Icarus 180, 359–367 (2006) ADSGoogle Scholar
- V.A. Krasnopolsky, P.D. Feldman, Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001) ADSGoogle Scholar
- V.A. Krasnopolsky, G.L. Bjoraker, M.J. Mumma, D.F. Jennings, High resolution spectroscopy of Mars at 3.7 and 8 μm. J. Geopys. Res. 102, 6525–6534 (1997) ADSGoogle Scholar
- V.A. Krasnopolsky, M.J. Mumma, G.R. Gladstone, Detection of atomic Deuterium in the upper atmosphere of Mars. Science 280, 1576–1580 (1998) ADSGoogle Scholar
- V.A. Krasnopolsky, J.-P. Maillard, T.C. Owen, Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004) ADSGoogle Scholar
- M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40, 384–392 (2006) ADSGoogle Scholar
- H. Lammer, W. Stumptner, S.J. Bauer, Upper limits for the Martian exospheric number density during the planet B/Nozomi mission. Planet. Space Sci. 48, 1473–1478 (2000) ADSGoogle Scholar
- H. Lammer, C. Kolb, T. Penz, U.V. Amerstorfer, H.K. Biernat, B. Bodiselitsch, Estimation of the past and present martian water-ice reservoirs by isotopic constraints on exchange between the atmosphere and the surface. Int. J. Astrobiol. 2(3), 195–202 (2003) Google Scholar
- H. Lammer, J.F. Kasting, E. Chassefière, R.E. Johnson, Y.N. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008) ADSGoogle Scholar
- H. Lammer, P. Odert, M. Leitzinger, M.L. Khodachenko, M. Panchenko, Yu.N. Kulikov, T.L. Zhang, H.I.M. Lichtenegger, N.V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H.K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, A. Hanslmeier, Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506, 399–410 (2009) ADSGoogle Scholar
- H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012) ADSGoogle Scholar
- J. Lasue, N. Mangold, E. Hauber, S. Clifford, W. Feldman, O. Gasnault, C. Grima, S. Maurice, O. Mousis, Quantifying the Martian hydrosphere: current evidence, time evolution and implications for the habitability of the planet. Space Sci. Rev. (2012, accepted). doi: 10.1007/s11214-012-9946-5
- F. Leblanc, R.E. Johnson, Role of molecular species in pick up ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, 1–6 (2002) Google Scholar
- F. Lefèvre, F. Forget, Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2002) Google Scholar
- L.A. Leshin, S. Epstein, E.M. Stolper, Hydrogen isotope geochemistry of SNC meteorites. Geochim. Cosmochim. Acta 60, 2635–2650 (1996) ADSGoogle Scholar
- H.F. Levison, L. Dones, C.R. Chapman, A.S. Stern, M.J. Duncan, K. Zahnle, Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune. Icarus 151, 286–306 (2001). ADSGoogle Scholar
- B. Levrard, F. Forget, F. Montmessin, J. Laskar, Ice-rich deposits formed at high latitude on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431, 1072–1075 (2004) ADSGoogle Scholar
- J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991) ADSGoogle Scholar
- J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by o(+) pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992) ADSGoogle Scholar
- R. Lundin, Ion acceleration and outflow from Mars and Venus: an overview. Space Sci. Rev. 162, 309–334 (2011). doi: 10.1007/s11214-011-9811-y ADSGoogle Scholar
- R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007) ADSGoogle Scholar
- J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, The origin of water on Mars. Icarus 165, 1–8 (2003) ADSGoogle Scholar
- J.I. Lunine, D.P. O’Brien, S.N. Raymond, A. Morbidelli, T. Qinn, A.L. Graps, Dynamical models of terrestrial planet formation. Adv. Sci. Lett. 4, 325–338 (2011) Google Scholar
- J. Lyons, C. Manning, F. Nimmo, Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L13201.1–L13201.4 (2005) Google Scholar
- Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007) Google Scholar
- Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109(A7), A07211 (2004) ADSGoogle Scholar
- C.V. Manning, C.P. McKay, K.J. Zahnle, Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006) ADSGoogle Scholar
- C.V. Manning, Y. Ma, D.A. Brain, C.P. McKay, K.J. Zahnle, Parametric analysis of modeled ion escape from Mars. Icarus 212, 131–137 (2010) ADSGoogle Scholar
- B. Marty, A. Meibom, Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. Earth Discuss. 2, 99–113 (2007) ADSGoogle Scholar
- T. Matsui, Y. Abe, Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528 (1986) ADSGoogle Scholar
- T. McCollom, W. Back, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009) ADSGoogle Scholar
- M.B. McElroy, T.M. Donahue, Stability of the Martian atmosphere. Science 177, 986–988 (1972) ADSGoogle Scholar
- H.Y. McSween, P.P. Harvey, Outgassed water on Mars: constraints from melt inclusions in SNC meteorites. Science 259, 1890–1892 (1993) ADSGoogle Scholar
- H.Y. McSween, K. Keil, Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64, 2155–2166 (2000) ADSGoogle Scholar
- H.Y. McSween, T.L. Grove, R.C. Lentz, J.C. Dann, A.H. Holzheid, L.R. Riciputi, J.G. Ryan, Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001) ADSGoogle Scholar
- H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989) ADSGoogle Scholar
- J.R. Michalski, P.B. Niles, Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010) ADSGoogle Scholar
- D.W. Mittlefehldt, ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 29, 214–221 (1994) ADSGoogle Scholar
- H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’ material. Earth Planet. Sci. Lett. 50, 202–210 (1980) ADSGoogle Scholar
- R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 1–12 (2005) Google Scholar
- D. Möhlmann, Widen the belt of habitability! Orig. Life Evol. Biosph. 42, 93–100 (2012) ADSGoogle Scholar
- A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K. Cyr, Source regions and timescales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000) ADSGoogle Scholar
- A. Morbidelli, W.F. Bottke, D. Nesvorný, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009) ADSGoogle Scholar
- R.V. Morris, S.W. Ruff, R. Gellert, D.W. Ming, R.E. Arvidson, B.C. Clark, D.C. Golden, K. Siebach, G. Klingelhöfer, C. Schröder, I. Fleischer, A.S. Yen, S.W. Squyres, Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329, 421–424 (2010) ADSGoogle Scholar
- A. Morschhauser, M. Grott, D. Breuer, Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212, 541–558 (2011) ADSGoogle Scholar
- U.V. Möstl, N.V. Erkaev, M. Zellinger, H. Lammer, H. Gröller, H.K. Biernat, D. Korovinskiy, The Kelvin-Helmholtz instability at Venus: what is the unstable boundary? Icarus 216, 476–484 (2011) ADSGoogle Scholar
- O. Mousis, J.I. Lunine, J.-M. Petit, S. Picaud, B. Schmitt, D. Marquer, J. Horner, C. Thomas, Impact regimes and post-formation sequestration processes: implications for the origin of heavy noble gases in terrestrial planets. Astrophys. J. 714, 1418–1423 (2010) ADSGoogle Scholar
- O. Mousis, J.I. Lunine, E. Chassefière, F. Montmessin, A. Lakhlifi, S. Picaud, J.M. Petit, D. Cordier, Mars cryosphere: a potential reservoir for heavy noble gases? Icarus 218, 80–87 (2012) ADSGoogle Scholar
- M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, D.M. Smith, Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009) ADSGoogle Scholar
- J.F. Mustard, S.L. Murchie, S.M. Pelkey, B.L. Ehlmann, R.E. Milliken, J.A. Grant, J.-P. Bibring, F. Poulet, J. Bishop, E. Noe Dobrea, L. Roach, F. Seelos, R.E. Arvidson, S.R. Green, H. Hash, D. Humm, E. Malaret, J.A. McGovern, K. Seelos, T. Clancy, R. Clark, D.D. Marais, N. Izenberg, A. Knudson, Y. Langevin, T. Martin, P. McGuire, R. Morris, M. Robinson, T. Roush, M. Smith, G. Swayze, H. Taylor, T. Titus, M. Wolff, Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454, 305–309 (2008) ADSGoogle Scholar
- A.F. Nagy, J. Kim, T.E. Cravens, Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars. Ann. Geophys. 8, 251–256 (1990) ADSGoogle Scholar
- G. Neukum, D.U. Wise, Mars: a standard crater curve and possible new time scale. Science 194, 1381–1387 (1976) ADSGoogle Scholar
- G. Neukum, B.A. Ivanov, W.K. Hartmann, Cratering records in the inner Solar System in relation to the Lunar reference system. Space Sci. Rev. 96, 55–86 (2001) ADSGoogle Scholar
- G. Newkirk Jr., Solar variability on time scales of 105 years to 109.6 years. Geochim. Cosmochim. Acta, Suppl. 13, 293–301 (1980) Google Scholar
- P.B. Niles, W.V. Boynton, J.H. Hoffman, D.W. Ming, D. Hamara, Stable isotope measurements of martian atmospheric CO2 at the Phoenix landing site. Science 329, 1334–1337 (2010) ADSGoogle Scholar
- P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9940-y MATHGoogle Scholar
- M.D. Norman, The composition and thickness of the crust of Mars estimated from REE and nd isotopic compositions of Martian meteorites. Meteorit. Planet. Sci. 34, 439–449 (1999) ADSGoogle Scholar
- L.E. Nyquist, D.D. Bogard, C.-Y. Shih, A. Greshake, D. Stöffler, O. Eugster, Ages and geologic histories of martian meteorites. Space Sci. Rev. 96, 105–164 (2001) ADSGoogle Scholar
- D. Olsson-Steel, Collisions in the solar system. IV: cometary impacts upon the planets. Mon. Not. R. Astron. Soc. 227, 501–524 (1987) ADSGoogle Scholar
- C. O’Neill, A. Lenardic, A.M. Jellinek, W.S. Kiefer, Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. J. Geophys. Res. 112, E07003 (2007) Google Scholar
- T. Owen, A. Bar-Nun, Comets, impacts and atmospheres. Icarus 116, 215–226 (1995) ADSGoogle Scholar
- J.E. Owen, A.P. Jackson, Planetary evaporation by UV & X-ray radiation: basic hydrodynamics. Mont. Not. R. Astron. Soc. 425, 2931–2947 (2012) ADSGoogle Scholar
- T. Owen, A. Bar-Nun, I. Kleinfeld, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth, and Mars. Nature 358, 43–46 (1992) ADSGoogle Scholar
- C. Oze, M. Sharma, Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005) ADSGoogle Scholar
- T. Penz, N.V. Erkaev, H.K. Biernat, H. Lammer, U.V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, W. Baumjohann, Ion loss on Mars caused by the Kelvin-Helmholtz instability. Planet. Space Sci. 52, 1157–1167 (2004) ADSGoogle Scholar
- R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991) ADSGoogle Scholar
- R.O Pepin, Origin of noble gases in the terrestrial planets. Ann. Rev. Earth Planet. Sci. 20, 389–430 (1992) ADSGoogle Scholar
- R.O. Pepin, Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997) ADSGoogle Scholar
- R.O. Pepin, Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet. Sci. Lett. 252, 1–14 (2006) ADSGoogle Scholar
- L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of meteorite impacts on the atmospheric evolution of Mars. Astrobiology 9, 45–54 (2009) ADSGoogle Scholar
- L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of an meteorites and asteroids bombardments on the atmospheric evolution of Mars. EPSC Proc. 5, EPSC2010-127 (2010), 2 pp. Google Scholar
- L.B.S. Pham, Ö. Karatekin, V. Dehant, Effects of impacts on the atmospheric evolution: comparison between Mars, Earth and Venus. Planet. Space Sci. 59, 1087–1092 (2011) ADSGoogle Scholar
- R.J. Phillips, M.T. Zuber, S.C. Solomon, M.P. Golombek, B.M. Jakosky, W.B. Banerdt, D.E. Smith, R.M.E. Williams, B.M. Hynek, O. Aharonson, S.A. Hauck II, Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001) ADSGoogle Scholar
- R.J. Phillips, B.J. Davis, S. Byrne, B.A. Campbell, L.M. Carter, R.M. Haberle, J.W. Holt, M.A. Kahre, D.C. Nunes, J.J. Plaut, N.E. Putzig, I.B. Smith, S.E. Smrekar, K.L. Tanaka, T.N. Titus, SHARAD finds voluminous CO2 ice sequestered in the martian South Polar layered deposits. AGU, Fall Meeting, abs. P34A-01.2010 (2010) Google Scholar
- R.J. Phillips, B.J. Davis, K.L. Tanaka, S.M. Byrne, T. Michael, N.E. Putzig, R.M. Haberle, M.A. Kahre, A. Melinda, B.A. Campbell, L.M. Carter, I.B. Smith, J.W. Holt, S.E. Smrekar, D.C. Nunes, J.J. Plaut, A.F. Egan, T.N. Titus, R. Seu, Massive CO2 ice deposits sequestered in the South Polar layered deposits of Mars. Science 332, 838–841 (2011) ADSGoogle Scholar
- E. Pierazzo, G. Collins, A brief introduction to hydrocode modeling of impact cratering, in Submarine Craters and Ejecta-Crater Correlation, ed. by P. Claeys, D. Henning (Springer, New York, 2003), pp. 323–340 Google Scholar
- R. Pierrehumbert, E. Gaidos, Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. 734, L13 (2011) ADSGoogle Scholar
- J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987) ADSGoogle Scholar
- Y. Quesnel, C. Sotin, B. Langlais, S. Costin, M. Mandea, M. Gottschalk, J. Dyment, Serpentinization of the martian crust during Noachian. Earth Planet. Sci. Lett. 277, 184–193 (2009) ADSGoogle Scholar
- R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006) ADSGoogle Scholar
- I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680–694 (2005) ADSGoogle Scholar
- T.L. Segura, O.B. Toon, A. Colaprete, K. Zahnle, Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002) ADSGoogle Scholar
- R. Shaheen, A. Abramian, J. Horn, G. Dominguez, R. Sullivan, M.H. Thiemens, Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. Proc. Natl. Acad. Sci. 107, 20213–20218 (2010) ADSGoogle Scholar
- C.K. Shearer, G. McKay, J.J. Papike, J.M. Karner, Valence state partitioning of vanadium between olivine liquid: estimates of the oxygen fugacity of Y980459 and application to other olivine phyric Martian basalts. Am. Mineral. 91, 1657–1663 (2006) Google Scholar
- V.V. Shuvalov, N.A. Artemieva, Atmospheric erosion and radiation impulse induced by impacts, in Proc. International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond (2001), abs. 3060 Google Scholar
- A. Skumanich, J.A. Eddy, Aspects of long-term variability in Sun and stars, in Solar Phenomena in Stars and Stellar Systems (Reidel, Dordrecht, 1981), pp. 349–397 Google Scholar
- D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001) ADSGoogle Scholar
- S.W. Squyres, A.H. Knoll, Sedimentary rocks at MeridianiPlanum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1–10 (2005) ADSGoogle Scholar
- B.D. Stanley, M.M. Hirschmann, A.C. Withers, CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011) ADSGoogle Scholar
- V.V. Svetsov, Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Sol. Syst. Res. 41, 28–41 (2007) ADSGoogle Scholar
- N. Terada, Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Tanaka, H. Shinagawa, T.-L. Zhang, Atmosphere and water loss form early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009) ADSGoogle Scholar
- F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005) ADSGoogle Scholar
- F. Tian, J.F. Kasting, H. Liu, R.G. Roble, Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113(E5), E05008 (2008) Google Scholar
- F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36(2), L02205 (2009) Google Scholar
- O.B. Toon, T. Segura, K. Zahnle, The formation of martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010) ADSGoogle Scholar
- G. Turner, S.F. Knott, R.D. Ash, J.D. Gilmour, Ar-Ar chronology of the Martian meteorite ALH 84001: evidence for the timing of the early bombardment of mars. Geochim. Cosmochim. Acta 61, 3835–3850 (1997) ADSGoogle Scholar
- A. Valeille, M.R. Combi, V. Tenishev, S.W. Bougher, A.F. Nagy, A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010) ADSGoogle Scholar
- A.M. Vickery, Impacts and atmospheric erosion on the early Earth, in Proc. International Workshop on Meteorite Impact on the Early Earth (1990), pp. 51–52 Google Scholar
- M. Wadhwa, Redox state of Mars: upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001) ADSGoogle Scholar
- K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSGoogle Scholar
- H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. 349, 285–293 (1994) ADSGoogle Scholar
- P.H. Warren, G.W. Kallmeyen, Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: evidence of heterogeneity, possibly time-linked, in the mantle of Mars. Meteorit. Planet. Sci. 31, 97–105 (1996) ADSGoogle Scholar
- A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981) ADSGoogle Scholar
- L.L. Watson, I.D. Hutcheon, S. Epstein, E.M. Stolper, Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994) ADSGoogle Scholar
- T.R. Watters, B. Campbell, L. Carter, C.J. Leuschen, J.J. Plaut, G. Picardi, R. Orosei, A. Safaeinili, S.M. Clifford, W.M. Farrell, M. William, A.B. Ivanov, R.J. Phillips, E.R. Stofan, Radar sounding of the Medusae Fossae formation Mars: equatorial ice or dry, low-density deposits? Science 318, 1125–1128 (2007) ADSGoogle Scholar
- G.W. Wetherill, Accumulation of terrestrial planets and implications concerning lunar origin, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor (Arizona Press, Tucson, 1986), pp. 519–550 Google Scholar
- R.S. Wolff, B.E. Goldstein, C.M. Yeates, The onset and development of Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. 85, 7697–7707 (1980) ADSGoogle Scholar
- R. Wordsworth, Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres. Icarus 219, 267–273 (2012) ADSGoogle Scholar
- Y.L. Yung, J.S. Wen, J.P. Pinto, M. Allen, K.K. Pierce, S. Paulson, HDO in the Martian atmosphere: implications for the abundance of crustal water. Icarus 76, 146–159 (1988) ADSGoogle Scholar
- K.J. Zahnle, Xenological constraints on the impact erosion of the early Martian atmosphere. J. Geophys. Res. 98, 10899–10913 (1993) ADSGoogle Scholar
- K.J. Zahnle, J.F. Kasting, Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986) ADSGoogle Scholar
- K.J. Zahnle, J.C.G. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982) ADSGoogle Scholar
- K.J. Zahnle, J.F. Kasting, J.B. Pollack, Evolution of a steam atmosphere during Earth’s accreation. Icarus 74, 62–97 (1988) ADSGoogle Scholar
- K.J. Zahnle, J.B. Pollack, D. Grinspoon, Impact-generated atmospheres over Titan, Ganymede and Callisto. Icarus 95, 1–23 (1992) ADSGoogle Scholar
- K.J. Zahnle, R.M. Haberle, D.C. Catling, J.F. Kasting, Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113(E11), E11004 (2008) ADSGoogle Scholar
- K.J. Zahnle, R.S. Freedman, D.C. Catling, Is there methane on Mars? Icarus 212, 493–503 (2011) ADSGoogle Scholar
- A.P. Zent, R.C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the martian climate. J. Geophys. Res. 100, 5341–5349 (1995) ADSGoogle Scholar