Space Science Reviews

, Volume 174, Issue 1–4, pp 113–154 | Cite as

Outgassing History and Escape of the Martian Atmosphere and Water Inventory

  • Helmut LammerEmail author
  • Eric Chassefière
  • Özgür Karatekin
  • Achim Morschhauser
  • Paul B. Niles
  • Olivier Mousis
  • Petra Odert
  • Ute V. Möstl
  • Doris Breuer
  • Véronique Dehant
  • Matthias Grott
  • Hannes Gröller
  • Ernst Hauber
  • Lê Binh San Pham


The evolution and escape of the martian atmosphere and the planet’s water inventory can be separated into an early and late evolutionary epoch. The first epoch started from the planet’s origin and lasted ∼500 Myr. Because of the high EUV flux of the young Sun and Mars’ low gravity it was accompanied by hydrodynamic blow-off of hydrogen and strong thermal escape rates of dragged heavier species such as O and C atoms. After the main part of the protoatmosphere was lost, impact-related volatiles and mantle outgassing may have resulted in accumulation of a secondary CO2 atmosphere of a few tens to a few hundred mbar around ∼4–4.3 Gyr ago. The evolution of the atmospheric surface pressure and water inventory of such a secondary atmosphere during the second epoch which lasted from the end of the Noachian until today was most likely determined by a complex interplay of various nonthermal atmospheric escape processes, impacts, carbonate precipitation, and serpentinization during the Hesperian and Amazonian epochs which led to the present day surface pressure.


Early Mars Young Sun Magma ocean Volcanic outgassing Impacts Thermal escape Nonthermal escape Atmospheric evolution 



D. Breuer, E. Chassefière, M. Grott, H. Gröller, E. Hauber, H. Lammer, P. Odert and A. Morschhauser acknowledges support from the Helmholtz Alliance project “Planetary Evolution and Life”. E. Chassefière acknowledges support from CNRS EPOV interdisciplinary program. H. Lammer acknowledge the support by the FWF NFN project S116 “Pathways to Habitability: From Disks to Active Stars, Planets and Life”, and the related FWF NFN subproject, S116607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. H. Gröller and H. Lammer acknowledges also support from the Austrian FWF project P24247-N16 “Modelling of non-thermal processes in early upper atomospheres exposed to extreme young Sun conditions” and support from the joined Russian-Austrian project under the RFBR grant 09-02-91002-215-ANF-a and the Austrian Science Fund (FWF) grant I199-N16. P. Odert was supported via the FWF project grant P19446-N16 and the research by U. Möstl was funded by the FWF project grant P21051-N16. O. Karatekin thanks A. Morbidelli for the discussions related to impact studies and the LHB; O. Karatekin, V. Dehant and L.B.S. Pham acknowledges the support of Belgian PRODEX program managed by the ESA in collaboration with the BELSPO. O. Mousis acknowledges support from CNES. P. Niles acknowledges support from NASA Johnson Space Center and the Mars Fundamental Research Program. The authors also thank ISSI for hosting the conference and the Europlanet RI-FP7 project and its related Science Networking (Na2) working groups. Finally, the authors thank guest editor M. Toplis and two anonymous referees for their suggestions and recommendations which helped to improve the article.


  1. Y. Abe, Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Int. 100, 27–39 (1997) ADSGoogle Scholar
  2. T.J. Ahrens, Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525–555 (1993) ADSGoogle Scholar
  3. F. Albarède, J. Blichert-Toft, The split fate of the early Earth, Mars, Venus and Moon. C. R. Géosci. 339, 917–927 (2007) Google Scholar
  4. U.V. Amerstorfer, N.V. Erkaev, U. Taubenschuss, H.K. Biernat, Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices. Phys. Plasmas 17, 072901 (2010). doi: 10.1063/1.3453705 ADSGoogle Scholar
  5. J.C. Andrews-Hanna, M.T. Zuber, W.B. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008) ADSGoogle Scholar
  6. S.K. Atreya, R.P. Mahaffy, A.S. Wong, Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369 (2006) ADSGoogle Scholar
  7. V.R. Baker, Water and the martian landscape. Nature 412, 228–236 (2001) ADSGoogle Scholar
  8. J.L. Bandfield, T.D. Gloch, P.R. Christensen, Spectroscopic identification of carbonate minerals in the martian dust. Science 301, 1084–1086 (2003) ADSGoogle Scholar
  9. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501–503 (2007) ADSGoogle Scholar
  10. R.H. Becker, R.N. Clayton, E.M. Galimov, H. Lammer, B. Marty, R.O. Pepin, R. Weiler, Isotopic signatures in terrestrial planets. Space Sci. Rev. 106, 377–410 (2003) ADSGoogle Scholar
  11. J.-P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, The OMEGA team, Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005) ADSGoogle Scholar
  12. J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, The OMEGA team, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006) ADSGoogle Scholar
  13. L.E. Borg, D.S. Draper, A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites. Meteorit. Planet. Sci. 38, 1713–1731 (2003) ADSGoogle Scholar
  14. L.H. Brace, R.F. Theis, W.R. Hoegy, Plasma clouds above the ionopause of Venus and their implications. Planet. Space Sci. 30, 29–37 (1982) ADSGoogle Scholar
  15. R. Brasser, The formation of Mars: building blocks and accretion time scale. Space Sci. Rev. (2012, in press). doi: 10.1007/s11214-012-9904-2 Google Scholar
  16. D. Breuer, T. Spohn, Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54, 153–169 (2006) ADSGoogle Scholar
  17. J.C. Bridges, D.C. Catling, J.M. Saxton, T.D. Swindle, I.C. Lyon, M.M. Grady, Alteration assemblages in martian meteorites: implications for near-surface processes. Space Sci. Rev. 96, 365–392 (2001) ADSGoogle Scholar
  18. R.M. Canup, E. Asphaug, Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001) ADSGoogle Scholar
  19. M.H. Carr, Mars—a water-rich planet? Icarus 68, 187–216 (1986) ADSGoogle Scholar
  20. M.H. Carr, Retention of an atmosphere on early Mars. J. Geophys. Res. 1042, 21897–21910 (1999) ADSGoogle Scholar
  21. E. Chassefière, Hydrodynamic escape of oxygen from primitive atmospheres: applications to the cases of Venus and Mars. Icarus 124, 537–552 (1996) ADSGoogle Scholar
  22. E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution, interaction with the solar wind. Planet. Space Sci. 52, 1039–1058 (2004) ADSGoogle Scholar
  23. E. Chassefière, F. Leblanc, Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011a) ADSGoogle Scholar
  24. E. Chassefière, F. Leblanc, Explaining the redox imbalance between the H and O escape fluxes at Mars by the oxidation of methane. Planet. Space Sci. 59, 218–226 (2011b) ADSGoogle Scholar
  25. E. Chassefière, F. Leblanc, Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. 310, 262–271 (2011c) ADSGoogle Scholar
  26. E. Chassefière, F. Leblanc, B. Langlais, The combined effects of escape and magnetic field histories at Mars. Planet. Space Sci. 55, 343–357 (2007) ADSGoogle Scholar
  27. J.Y. Chaufray, R. Modolo, F. Leblanc, G. Chanteur, R.E. Johnson, J.G. Luhmann, Mars solar wind interaction: formation of the Martian corona and atmospheric loss to space. J. Geophys. Res. 112(E9), E09009 (2007) Google Scholar
  28. V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007) ADSGoogle Scholar
  29. P. Christensen, Water at the poles and in permafrost regions of Mars. Elements 2, 151–155 (2006) Google Scholar
  30. M.W. Claire, J. Sheets, M. Cohen, I. Ribas, V.S. Meadows, D.C. Catling, The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys. J. 757, 95 (2012), 12 pp. ADSGoogle Scholar
  31. S.M. Clifford, J. Lasue, E. Heggy, J. Boisson, P. McGovern, M.D. Max, Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, E07001 (2010). doi: 10.1029/2009JE003462 Google Scholar
  32. R.A. Craddock, R. Greeley, Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009) ADSGoogle Scholar
  33. N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003) ADSGoogle Scholar
  34. N. Dauphas, A. Pourmand, Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–493 (2011) ADSGoogle Scholar
  35. V. Dehant, H. Lammer, Y.N. Kulikov, J.-M. Grießmeier, D. Breuer, O. Verhoeven, O. Karatekin, T. van Hoolst, O. Korablev, P. Lognonne, Planetary magnetic dynamo effect on atmospheric protection of early Earth and Mars. Space Sci. Rev. 129, 279–300 (2007) ADSGoogle Scholar
  36. J.M. Dohm, R.C. Anderson, N.G. Barlow, H. Miyamoto, A.G. Davies, G.J. Taylor, V.R. Baker, W.V. Boynton, J. Keller, K. Kerry, D. Janes, A.G. Fairén, D. Schulze-Makuch, M. Glamoclija, L. Marinangeli, G.G. Ori, R.G. Strom, J.-P. Williams, J.C. Ferris, J.A.P. Rodríguez, M.A. de Pablon, S. Karunatillake, Recent geological and hydrological activity on Mars: the Tharsis/Elysium corridor. Planet. Space Sci. 56, 985–1013 (2008) ADSGoogle Scholar
  37. T.M. Donahue, Evolution of water reservoirs on mars from D/H ratios in the atmosphere and crust. Nature 374, 432–434 (1995) ADSGoogle Scholar
  38. T.M. Donahue, Pre-global surveyor evidence for Martian ground water. Proc. Natl. Acad. Sci. 98, 827–830 (2001) ADSGoogle Scholar
  39. T.M. Donahue, Accretion, loss, and fractionation of martian water. Icarus 167, 225–227 (2004) ADSGoogle Scholar
  40. J.D. Dorren, M. Güdel, E.F. Guinan, X-ray emission from the Sun in its youth and old age. Astrophys. J. 448, 431–436 (1995) ADSGoogle Scholar
  41. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. des Marais, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of Carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008) ADSGoogle Scholar
  42. B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, S.L. Murchie, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2009). doi: 10.1029/2009JE003339 Google Scholar
  43. B.L. Ehlmann et al., Geochemical consequences of widespread clay formation in Mars’ Ancient Crust. Space Sci. Rev. (2012, this issue). doi: 10.1007/s11214-012-9930-0 Google Scholar
  44. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008) ADSGoogle Scholar
  45. O. Eugster, H. Busemann, S. Lorenzetti, D. Terrebilini, Ejection ages from krypton-81-krypton-83 dating and pre-atmospheric sizes of martian meteorites. Meteorit. Planet. Sci. 37, 1345–1360 (2002) ADSGoogle Scholar
  46. A.G. Fairén, A cold and wet Mars. Icarus 208, 165–175 (2010) ADSGoogle Scholar
  47. J. Filiberto, A.H. Treiman, Martian magmas contained abundant chlorine, but little water. Geology 37, 1087–1090 (2009) Google Scholar
  48. S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010) ADSGoogle Scholar
  49. F. Forget, R.T. Pierrehumbert, Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278, 1273–1276 (1997) ADSGoogle Scholar
  50. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004) ADSGoogle Scholar
  51. J.L. Fox, \(\mathrm{CO}_{2}^{+}\) dissociative recombination: a source of thermal and nonthermal C on Mars. J. Geophys. Res. 109, A08306 (2004) Google Scholar
  52. J.L. Fox, A.B. Hać, Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009) ADSGoogle Scholar
  53. A.A. Fraeman, J. Korenaga, The influence of mantle melting on the evolution of Mars. Icarus 210, 43–57 (2010) ADSGoogle Scholar
  54. E. Gaidos, G. Marion, Geological and geochemical legacy of a cold early Mars. J. Geophys. Res. 108(E6), 5055 (2003), pp. 9-1 Google Scholar
  55. A. Geminale, V. Formisano, M. Giuranna, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008) ADSGoogle Scholar
  56. A. Geminale, V. Formisano, G. Sindoni, Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137–148 (2011) ADSGoogle Scholar
  57. T.M. Gerlach, E.J. Graeber, Volatile budget of Kilauea volcano. Nature 313, 273–277 (1985) ADSGoogle Scholar
  58. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005) ADSGoogle Scholar
  59. J.L. Gooding, S.J. Wentworth, M.E. Zolensky, Calcium-carbonate and sulfate of possible extraterrestrial origin in the Eeta-79001 meteorite. Geochim. Cosmochim. Acta 52, 909–915 (1988) ADSGoogle Scholar
  60. R. Greeley, B.B. Schneid, Magma generation on Mars—amounts, rates and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991) ADSGoogle Scholar
  61. L.P. Greenland, Composition of gases from the 1984 eruption of Mauna Loa volcano, in Volcanism in Hawaii. U.S. Geol. Surv. Prof. Pap. 1350, vol. 1 (U.S. Gov. Printing Office, Washington, 1987a), pp. 781–790 Google Scholar
  62. L.P. Greenland, Hawaiian eruptive gases, in Volcanism in Hawaii. U.S. Geol. Surv. Prof. Pap. 1350, vol. 1 (U.S. Gov. Printing Office, Washington, 1987b), pp. 781–790 Google Scholar
  63. L.L. Griffith, E.L. Shock, A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377, 406–408 (1995) ADSGoogle Scholar
  64. L.L. Griffith, E.L. Shock, Hydrothermal hydration of Martian crust: illustration via geochemical model calculations. J. Geophys. Res. 102, 9135–9143 (1997) ADSGoogle Scholar
  65. R.E. Grimm, S.L. Painter, On the secular evolution of groundwater on Mars. Geophys. Res. Lett. 36, L24803 (2009). doi: 10.1029/2009GL041018 ADSGoogle Scholar
  66. H. Gröller, V.I. Shematovich, H.I.M. Lichtenegger, H. Lammer, M. Pfleger, Yu.N. Kulikov, W. Macher, U.V. Amerstorfer, H.K. Biernat, Venus’ atomic hot oxygen environment. J. Geophys. Res. 115, E12017 (2010) ADSGoogle Scholar
  67. H. Gröller, H. Lammer, H.I.M. Lichtenegger, M. Pfleger, O. Dutuit, V.I. Shematovich, Yu.N. Kulikov, H.K. Biernat, Hot oxygen atoms in the Venus nightside exosphere. Geophys. Res. Lett. 39, L03202 (2012). doi: 10.1029/2011GL050421 Google Scholar
  68. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on mars. Earth Planet. Sci. Lett. 308, 391–400 (2011) ADSGoogle Scholar
  69. M. Grott, D.D. Baratoux, E.E. Hauber, V.V. Sautter, J.J. Mustard, O.O. Gasnault, S.S. Ruff, S.-I. Karato, V.V. Debaille, M.M. Knapmeyer, F.F. Sohl, T.T. Van Hoolst, D.D. Breuer, A.A. Morschhauser, M.J. Toplis, Long-term evolution of the crust-mantle system. Space Sci. Rev. (2012, accepted). doi: 10.1007/s11214-012-9948-3
  70. M. Güdel, E.F. Guinan, R. Mewe, J.S. Kaastra, S.L. Skinner, A determination of the coronal emission measure distribution in the young solar analog EK draconis from ASCA/EUVE spectra. Astrophys. J. 479, 416–426 (1997) ADSGoogle Scholar
  71. A.N. Halliday, The origin of the earliest history of the Earth. Treatise Geochem. 1, 509–557 (2003) ADSGoogle Scholar
  72. K. Hamano, Y. Abe, Pressure dependence of atmospheric loss by impact-induced vapor expansion, in The 37th Lunar and Planetary Science Conference (2006), abs. 1562 Google Scholar
  73. P. Hartogh, D.C. Lis, D. Bockelée-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprechtinger, E.A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Szutowicz, G.A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011) ADSGoogle Scholar
  74. E. Hauber, P. Brozẑ, F. Jagert, P. Jodlowski, T. Platz, Very recent and wide-spread basaltic volcanism on Mars. Geophys. Res. Lett. 38, L10201 (2011) ADSGoogle Scholar
  75. S.A. Hauck II, R.J. Phillips, Thermal and crustal evolution of Mars. J. Geophys. Res. 107, 5052 (2002), 19 pp. Google Scholar
  76. C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979) ADSGoogle Scholar
  77. J.W. Head, D.R. Marchant, Inventory of ice-related deposits on mars: evidence for burial and long-term sequestration of ice in non-polar regions and implications for the water budget and climate evolution, in The 40th Lunar and Planetary Science Conference (2009), abs. 1356 Google Scholar
  78. J.W. Head, S. Pratt, Extensive Hesperian-aged south polar ice sheet on mars: evidence for massive melting and retreat, and lateral flow and ponding of meltwater. J. Geophys. Res. 106, 12275–12300 (2001) ADSGoogle Scholar
  79. C.D.K. Herd, L.E. Borg, J.H. Jones, J.J. Papike, Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of mars. Geochim. Cosmochim. Acta 66, 2025–2036 (2002) ADSGoogle Scholar
  80. M.M. Hirschmann, A.C. Withers, Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse. Earth Planet. Sci. Lett. 270, 147–155 (2008) ADSGoogle Scholar
  81. J.R. Holloway, Graphite melt equilibria during mantle melting: constraints on CO2 in MORB magmas and the carbon content of the mantle. Chem. Geol. 147, 89–97 (1998) Google Scholar
  82. J.R. Holloway, V. Pan, G. Gudmundsson, High-pressure fluid-absent melting experiments in the presence of graphite: oxygen fugacity, ferric/ferrous ratio and dissolved CO2. Eur. J. Mineral. 4, 105–114 (1992) Google Scholar
  83. J.W. Holt, A. Safaeinili, J.J. Plaut, J.W. Head III, R.J. Phillips, R. Seu Roberto, S.D. Kempf, P. Choudhary, D.A. Young, N.E. Putzig, D. Biccari, Y. Gim, Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science 322, 1235–1238 (2008) ADSGoogle Scholar
  84. J. Horner, O. Mousis, J.-M. Petit, B.-W. Jones, Differences between the impact regimes of the terrestrial planets: implications for primordial D: H ratios. Planet. Space Sci. 57, 1338–1345 (2009) ADSGoogle Scholar
  85. D.M. Hunten, Atmospheric evolution of the terrestrial planets. Science 259, 915–920 (1993) ADSGoogle Scholar
  86. D.M. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987) ADSGoogle Scholar
  87. W.-H. Ip, On a hot oxygen corona of Mars. Icarus 76, 135–145 (1988) ADSGoogle Scholar
  88. N. Iro, D. Gautier, F. Hersant, D. Bockelée-Morvan, J.-I. Lunine, An interpretation of the nitrogen deficiency in comets. Icarus 161, 511–532 (2003) ADSGoogle Scholar
  89. B.A. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001) ADSGoogle Scholar
  90. B.A. Ivanov, V.V. Shuvalov, N.A. Artemieva, Meteoritic bombardment in the Noachian time: influence on geological and atmospheric evolution, in Proc. 35th Microsymposium of the Brown University and the Vernadsky Institute (2002) Google Scholar
  91. B.M. Jakosky, R.O. Pepin, R.E. Johnson, J.L. Fox, Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape. Icarus 111, 271–288 (1994) ADSGoogle Scholar
  92. M.C. Johnson, M.J. Rutherford, P.C. Hess, Chassigny petrogenesis: Melt compositions, intensive parameters and water contents of Martian magmas. Geochim. Cosmochim. Acta 55, 349–366 (1991) ADSGoogle Scholar
  93. J.F. Kasting, CO2 condensation and the climate of early Mars. Icarus 94, 1–13 (1991) ADSGoogle Scholar
  94. J.F. Kasting, The early Mars climate question heats up. Science 278, 1245 (1997) ADSGoogle Scholar
  95. J.F. Kasting, J.B. Pollack, Loss of water from Venus I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983) ADSGoogle Scholar
  96. R.F. Katz, M. Spielman, C.H. Langmuir, A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003) ADSGoogle Scholar
  97. J. Kim, A.F. Nagy, J.L. Fox, T.E. Cravens, Solar cycle variability of hot oxygen atoms at Mars. J. Geophys. Res. 103, 29339–29342 (1998) ADSGoogle Scholar
  98. T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD 209458b. I. A photochemical-dynamical model of the thermosphere. Icarus (2012, accepted). arXiv:1210.1536
  99. V. Krasnopolsky, Note: on the deuterium abundance on Mars and some related problems. Icarus 148, 597–602 (2000) ADSGoogle Scholar
  100. V.A. Krasnopolsky, Some problems related to the origin of methane on Mars. Icarus 180, 359–367 (2006) ADSGoogle Scholar
  101. V.A. Krasnopolsky, P.D. Feldman, Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001) ADSGoogle Scholar
  102. V.A. Krasnopolsky, G.L. Bjoraker, M.J. Mumma, D.F. Jennings, High resolution spectroscopy of Mars at 3.7 and 8 μm. J. Geopys. Res. 102, 6525–6534 (1997) ADSGoogle Scholar
  103. V.A. Krasnopolsky, M.J. Mumma, G.R. Gladstone, Detection of atomic Deuterium in the upper atmosphere of Mars. Science 280, 1576–1580 (1998) ADSGoogle Scholar
  104. V.A. Krasnopolsky, J.-P. Maillard, T.C. Owen, Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004) ADSGoogle Scholar
  105. M.A. Krestyanikova, V.I. Shematovich, Stochastic models of hot planetary and satellite coronas: a hot oxygen corona of Mars. Sol. Syst. Res. 40, 384–392 (2006) ADSGoogle Scholar
  106. H. Lammer, W. Stumptner, S.J. Bauer, Upper limits for the Martian exospheric number density during the planet B/Nozomi mission. Planet. Space Sci. 48, 1473–1478 (2000) ADSGoogle Scholar
  107. H. Lammer, C. Kolb, T. Penz, U.V. Amerstorfer, H.K. Biernat, B. Bodiselitsch, Estimation of the past and present martian water-ice reservoirs by isotopic constraints on exchange between the atmosphere and the surface. Int. J. Astrobiol. 2(3), 195–202 (2003) Google Scholar
  108. H. Lammer, J.F. Kasting, E. Chassefière, R.E. Johnson, Y.N. Kulikov, F. Tian, Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008) ADSGoogle Scholar
  109. H. Lammer, P. Odert, M. Leitzinger, M.L. Khodachenko, M. Panchenko, Yu.N. Kulikov, T.L. Zhang, H.I.M. Lichtenegger, N.V. Erkaev, G. Wuchterl, G. Micela, T. Penz, H.K. Biernat, J. Weingrill, M. Steller, H. Ottacher, J. Hasiba, A. Hanslmeier, Determining the mass loss limit for close-in exoplanets: what can we learn from transit observations? Astron. Astrophys. 506, 399–410 (2009) ADSGoogle Scholar
  110. H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres: extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2012) ADSGoogle Scholar
  111. J. Lasue, N. Mangold, E. Hauber, S. Clifford, W. Feldman, O. Gasnault, C. Grima, S. Maurice, O. Mousis, Quantifying the Martian hydrosphere: current evidence, time evolution and implications for the habitability of the planet. Space Sci. Rev. (2012, accepted). doi: 10.1007/s11214-012-9946-5
  112. F. Leblanc, R.E. Johnson, Role of molecular species in pick up ion sputtering of the Martian atmosphere. J. Geophys. Res. 107, 1–6 (2002) Google Scholar
  113. F. Lefèvre, F. Forget, Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2002) Google Scholar
  114. L.A. Leshin, S. Epstein, E.M. Stolper, Hydrogen isotope geochemistry of SNC meteorites. Geochim. Cosmochim. Acta 60, 2635–2650 (1996) ADSGoogle Scholar
  115. H.F. Levison, L. Dones, C.R. Chapman, A.S. Stern, M.J. Duncan, K. Zahnle, Could the lunar “late heavy bombardment” have been triggered by the formation of Uranus and Neptune. Icarus 151, 286–306 (2001). ADSGoogle Scholar
  116. B. Levrard, F. Forget, F. Montmessin, J. Laskar, Ice-rich deposits formed at high latitude on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431, 1072–1075 (2004) ADSGoogle Scholar
  117. J.G. Luhmann, J.U. Kozyra, Dayside pickup oxygen ion precipitation at Venus and Mars: spatial distributions, energy deposition and consequences. J. Geophys. Res. 96, 5457–5467 (1991) ADSGoogle Scholar
  118. J.G. Luhmann, R.E. Johnson, M.H.G. Zhang, Evolutionary impact of sputtering of the Martian atmosphere by o(+) pickup ions. Geophys. Res. Lett. 19, 2151–2154 (1992) ADSGoogle Scholar
  119. R. Lundin, Ion acceleration and outflow from Mars and Venus: an overview. Space Sci. Rev. 162, 309–334 (2011). doi: 10.1007/s11214-011-9811-y ADSGoogle Scholar
  120. R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129, 245–278 (2007) ADSGoogle Scholar
  121. J.I. Lunine, J. Chambers, A. Morbidelli, L.A. Leshin, The origin of water on Mars. Icarus 165, 1–8 (2003) ADSGoogle Scholar
  122. J.I. Lunine, D.P. O’Brien, S.N. Raymond, A. Morbidelli, T. Qinn, A.L. Graps, Dynamical models of terrestrial planet formation. Adv. Sci. Lett. 4, 325–338 (2011) Google Scholar
  123. J. Lyons, C. Manning, F. Nimmo, Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L13201.1–L13201.4 (2005) Google Scholar
  124. Y.-J. Ma, A.F. Nagy, Ion escape fluxes from Mars. Geophys. Res. Lett. 34, L08201 (2007) Google Scholar
  125. Y. Ma, A.F. Nagy, I.V. Sokolov, K.C. Hansen, Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. 109(A7), A07211 (2004) ADSGoogle Scholar
  126. C.V. Manning, C.P. McKay, K.J. Zahnle, Thick and thin models of the evolution of carbon dioxide on Mars. Icarus 180, 38–59 (2006) ADSGoogle Scholar
  127. C.V. Manning, Y. Ma, D.A. Brain, C.P. McKay, K.J. Zahnle, Parametric analysis of modeled ion escape from Mars. Icarus 212, 131–137 (2010) ADSGoogle Scholar
  128. B. Marty, A. Meibom, Noble gas signature of the late heavy bombardment in the Earth’s atmosphere. Earth Discuss. 2, 99–113 (2007) ADSGoogle Scholar
  129. T. Matsui, Y. Abe, Impact-induced atmospheres and oceans on Earth and Venus. Nature 322, 526–528 (1986) ADSGoogle Scholar
  130. T. McCollom, W. Back, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009) ADSGoogle Scholar
  131. M.B. McElroy, T.M. Donahue, Stability of the Martian atmosphere. Science 177, 986–988 (1972) ADSGoogle Scholar
  132. H.Y. McSween, P.P. Harvey, Outgassed water on Mars: constraints from melt inclusions in SNC meteorites. Science 259, 1890–1892 (1993) ADSGoogle Scholar
  133. H.Y. McSween, K. Keil, Mixing relationships in the Martian regolith and the composition of globally homogeneous dust. Geochim. Cosmochim. Acta 64, 2155–2166 (2000) ADSGoogle Scholar
  134. H.Y. McSween, T.L. Grove, R.C. Lentz, J.C. Dann, A.H. Holzheid, L.R. Riciputi, J.G. Ryan, Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409, 487–490 (2001) ADSGoogle Scholar
  135. H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989) ADSGoogle Scholar
  136. J.R. Michalski, P.B. Niles, Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010) ADSGoogle Scholar
  137. D.W. Mittlefehldt, ALH84001, a cumulate orthopyroxenite member of the Martian meteorite clan. Meteoritics 29, 214–221 (1994) ADSGoogle Scholar
  138. H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’ material. Earth Planet. Sci. Lett. 50, 202–210 (1980) ADSGoogle Scholar
  139. R. Modolo, G.M. Chanteur, E. Dubinin, A.P. Matthews, Influence of the solar EUV flux on the Martian plasma environment. Ann. Geophys. 23, 1–12 (2005) Google Scholar
  140. D. Möhlmann, Widen the belt of habitability! Orig. Life Evol. Biosph. 42, 93–100 (2012) ADSGoogle Scholar
  141. A. Morbidelli, J. Chambers, J.I. Lunine, J.M. Petit, F. Robert, G.B. Valsecchi, K. Cyr, Source regions and timescales for the delivery of water to Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000) ADSGoogle Scholar
  142. A. Morbidelli, W.F. Bottke, D. Nesvorný, H.F. Levison, Asteroids were born big. Icarus 204, 558–573 (2009) ADSGoogle Scholar
  143. R.V. Morris, S.W. Ruff, R. Gellert, D.W. Ming, R.E. Arvidson, B.C. Clark, D.C. Golden, K. Siebach, G. Klingelhöfer, C. Schröder, I. Fleischer, A.S. Yen, S.W. Squyres, Identification of carbonate-rich outcrops on Mars by the spirit rover. Science 329, 421–424 (2010) ADSGoogle Scholar
  144. A. Morschhauser, M. Grott, D. Breuer, Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212, 541–558 (2011) ADSGoogle Scholar
  145. U.V. Möstl, N.V. Erkaev, M. Zellinger, H. Lammer, H. Gröller, H.K. Biernat, D. Korovinskiy, The Kelvin-Helmholtz instability at Venus: what is the unstable boundary? Icarus 216, 476–484 (2011) ADSGoogle Scholar
  146. O. Mousis, J.I. Lunine, J.-M. Petit, S. Picaud, B. Schmitt, D. Marquer, J. Horner, C. Thomas, Impact regimes and post-formation sequestration processes: implications for the origin of heavy noble gases in terrestrial planets. Astrophys. J. 714, 1418–1423 (2010) ADSGoogle Scholar
  147. O. Mousis, J.I. Lunine, E. Chassefière, F. Montmessin, A. Lakhlifi, S. Picaud, J.M. Petit, D. Cordier, Mars cryosphere: a potential reservoir for heavy noble gases? Icarus 218, 80–87 (2012) ADSGoogle Scholar
  148. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, D.M. Smith, Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009) ADSGoogle Scholar
  149. J.F. Mustard, S.L. Murchie, S.M. Pelkey, B.L. Ehlmann, R.E. Milliken, J.A. Grant, J.-P. Bibring, F. Poulet, J. Bishop, E. Noe Dobrea, L. Roach, F. Seelos, R.E. Arvidson, S.R. Green, H. Hash, D. Humm, E. Malaret, J.A. McGovern, K. Seelos, T. Clancy, R. Clark, D.D. Marais, N. Izenberg, A. Knudson, Y. Langevin, T. Martin, P. McGuire, R. Morris, M. Robinson, T. Roush, M. Smith, G. Swayze, H. Taylor, T. Titus, M. Wolff, Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454, 305–309 (2008) ADSGoogle Scholar
  150. A.F. Nagy, J. Kim, T.E. Cravens, Hot hydrogen and oxygen atoms in the upper atmospheres of Venus and Mars. Ann. Geophys. 8, 251–256 (1990) ADSGoogle Scholar
  151. G. Neukum, D.U. Wise, Mars: a standard crater curve and possible new time scale. Science 194, 1381–1387 (1976) ADSGoogle Scholar
  152. G. Neukum, B.A. Ivanov, W.K. Hartmann, Cratering records in the inner Solar System in relation to the Lunar reference system. Space Sci. Rev. 96, 55–86 (2001) ADSGoogle Scholar
  153. G. Newkirk Jr., Solar variability on time scales of 105 years to 109.6 years. Geochim. Cosmochim. Acta, Suppl. 13, 293–301 (1980) Google Scholar
  154. P.B. Niles, W.V. Boynton, J.H. Hoffman, D.W. Ming, D. Hamara, Stable isotope measurements of martian atmospheric CO2 at the Phoenix landing site. Science 329, 1334–1337 (2010) ADSGoogle Scholar
  155. P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9940-y zbMATHGoogle Scholar
  156. M.D. Norman, The composition and thickness of the crust of Mars estimated from REE and nd isotopic compositions of Martian meteorites. Meteorit. Planet. Sci. 34, 439–449 (1999) ADSGoogle Scholar
  157. L.E. Nyquist, D.D. Bogard, C.-Y. Shih, A. Greshake, D. Stöffler, O. Eugster, Ages and geologic histories of martian meteorites. Space Sci. Rev. 96, 105–164 (2001) ADSGoogle Scholar
  158. D. Olsson-Steel, Collisions in the solar system. IV: cometary impacts upon the planets. Mon. Not. R. Astron. Soc. 227, 501–524 (1987) ADSGoogle Scholar
  159. C. O’Neill, A. Lenardic, A.M. Jellinek, W.S. Kiefer, Melt propagation and volcanism in mantle convection simulations, with applications for Martian volcanic and atmospheric evolution. J. Geophys. Res. 112, E07003 (2007) Google Scholar
  160. T. Owen, A. Bar-Nun, Comets, impacts and atmospheres. Icarus 116, 215–226 (1995) ADSGoogle Scholar
  161. J.E. Owen, A.P. Jackson, Planetary evaporation by UV & X-ray radiation: basic hydrodynamics. Mont. Not. R. Astron. Soc. 425, 2931–2947 (2012) ADSGoogle Scholar
  162. T. Owen, A. Bar-Nun, I. Kleinfeld, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth, and Mars. Nature 358, 43–46 (1992) ADSGoogle Scholar
  163. C. Oze, M. Sharma, Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005) ADSGoogle Scholar
  164. T. Penz, N.V. Erkaev, H.K. Biernat, H. Lammer, U.V. Amerstorfer, H. Gunell, E. Kallio, S. Barabash, S. Orsini, A. Milillo, W. Baumjohann, Ion loss on Mars caused by the Kelvin-Helmholtz instability. Planet. Space Sci. 52, 1157–1167 (2004) ADSGoogle Scholar
  165. R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991) ADSGoogle Scholar
  166. R.O Pepin, Origin of noble gases in the terrestrial planets. Ann. Rev. Earth Planet. Sci. 20, 389–430 (1992) ADSGoogle Scholar
  167. R.O. Pepin, Evolution of Earth’s noble gases: consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997) ADSGoogle Scholar
  168. R.O. Pepin, Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet. Sci. Lett. 252, 1–14 (2006) ADSGoogle Scholar
  169. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of meteorite impacts on the atmospheric evolution of Mars. Astrobiology 9, 45–54 (2009) ADSGoogle Scholar
  170. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of an meteorites and asteroids bombardments on the atmospheric evolution of Mars. EPSC Proc. 5, EPSC2010-127 (2010), 2 pp. Google Scholar
  171. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effects of impacts on the atmospheric evolution: comparison between Mars, Earth and Venus. Planet. Space Sci. 59, 1087–1092 (2011) ADSGoogle Scholar
  172. R.J. Phillips, M.T. Zuber, S.C. Solomon, M.P. Golombek, B.M. Jakosky, W.B. Banerdt, D.E. Smith, R.M.E. Williams, B.M. Hynek, O. Aharonson, S.A. Hauck II, Ancient geodynamics and global-scale hydrology on Mars. Science 291, 2587–2591 (2001) ADSGoogle Scholar
  173. R.J. Phillips, B.J. Davis, S. Byrne, B.A. Campbell, L.M. Carter, R.M. Haberle, J.W. Holt, M.A. Kahre, D.C. Nunes, J.J. Plaut, N.E. Putzig, I.B. Smith, S.E. Smrekar, K.L. Tanaka, T.N. Titus, SHARAD finds voluminous CO2 ice sequestered in the martian South Polar layered deposits. AGU, Fall Meeting, abs. P34A-01.2010 (2010) Google Scholar
  174. R.J. Phillips, B.J. Davis, K.L. Tanaka, S.M. Byrne, T. Michael, N.E. Putzig, R.M. Haberle, M.A. Kahre, A. Melinda, B.A. Campbell, L.M. Carter, I.B. Smith, J.W. Holt, S.E. Smrekar, D.C. Nunes, J.J. Plaut, A.F. Egan, T.N. Titus, R. Seu, Massive CO2 ice deposits sequestered in the South Polar layered deposits of Mars. Science 332, 838–841 (2011) ADSGoogle Scholar
  175. E. Pierazzo, G. Collins, A brief introduction to hydrocode modeling of impact cratering, in Submarine Craters and Ejecta-Crater Correlation, ed. by P. Claeys, D. Henning (Springer, New York, 2003), pp. 323–340 Google Scholar
  176. R. Pierrehumbert, E. Gaidos, Hydrogen greenhouse planets beyond the habitable zone. Astrophys. J. 734, L13 (2011) ADSGoogle Scholar
  177. J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987) ADSGoogle Scholar
  178. Y. Quesnel, C. Sotin, B. Langlais, S. Costin, M. Mandea, M. Gottschalk, J. Dyment, Serpentinization of the martian crust during Noachian. Earth Planet. Sci. Lett. 277, 184–193 (2009) ADSGoogle Scholar
  179. R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 648, 666–682 (2006) ADSGoogle Scholar
  180. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys. J. 622, 680–694 (2005) ADSGoogle Scholar
  181. T.L. Segura, O.B. Toon, A. Colaprete, K. Zahnle, Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002) ADSGoogle Scholar
  182. R. Shaheen, A. Abramian, J. Horn, G. Dominguez, R. Sullivan, M.H. Thiemens, Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars. Proc. Natl. Acad. Sci. 107, 20213–20218 (2010) ADSGoogle Scholar
  183. C.K. Shearer, G. McKay, J.J. Papike, J.M. Karner, Valence state partitioning of vanadium between olivine liquid: estimates of the oxygen fugacity of Y980459 and application to other olivine phyric Martian basalts. Am. Mineral. 91, 1657–1663 (2006) Google Scholar
  184. V.V. Shuvalov, N.A. Artemieva, Atmospheric erosion and radiation impulse induced by impacts, in Proc. International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond (2001), abs. 3060 Google Scholar
  185. A. Skumanich, J.A. Eddy, Aspects of long-term variability in Sun and stars, in Solar Phenomena in Stars and Stellar Systems (Reidel, Dordrecht, 1981), pp. 349–397 Google Scholar
  186. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001) ADSGoogle Scholar
  187. S.W. Squyres, A.H. Knoll, Sedimentary rocks at MeridianiPlanum: origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 240, 1–10 (2005) ADSGoogle Scholar
  188. B.D. Stanley, M.M. Hirschmann, A.C. Withers, CO2 solubility in Martian basalts and Martian atmospheric evolution. Geochim. Cosmochim. Acta 75, 5987–6003 (2011) ADSGoogle Scholar
  189. V.V. Svetsov, Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Sol. Syst. Res. 41, 28–41 (2007) ADSGoogle Scholar
  190. N. Terada, Yu.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Tanaka, H. Shinagawa, T.-L. Zhang, Atmosphere and water loss form early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9, 55–70 (2009) ADSGoogle Scholar
  191. F. Tian, O.B. Toon, A.A. Pavlov, H. De Sterck, A hydrogen-rich early Earth atmosphere. Science 308, 1014–1017 (2005) ADSGoogle Scholar
  192. F. Tian, J.F. Kasting, H. Liu, R.G. Roble, Hydrodynamic planetary thermosphere model: 1. The response of the Earth’s thermosphere to extreme solar EUV conditions and the significance of adiabatic cooling. J. Geophys. Res. 113(E5), E05008 (2008) Google Scholar
  193. F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36(2), L02205 (2009) Google Scholar
  194. O.B. Toon, T. Segura, K. Zahnle, The formation of martian river valleys by impacts. Annu. Rev. Earth Planet. Sci. 38, 303–322 (2010) ADSGoogle Scholar
  195. G. Turner, S.F. Knott, R.D. Ash, J.D. Gilmour, Ar-Ar chronology of the Martian meteorite ALH 84001: evidence for the timing of the early bombardment of mars. Geochim. Cosmochim. Acta 61, 3835–3850 (1997) ADSGoogle Scholar
  196. A. Valeille, M.R. Combi, V. Tenishev, S.W. Bougher, A.F. Nagy, A study of suprathermal oxygen atoms in Mars upper thermosphere and exosphere over the range of limiting conditions. Icarus 206, 18–27 (2010) ADSGoogle Scholar
  197. A.M. Vickery, Impacts and atmospheric erosion on the early Earth, in Proc. International Workshop on Meteorite Impact on the Early Earth (1990), pp. 51–52 Google Scholar
  198. M. Wadhwa, Redox state of Mars: upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001) ADSGoogle Scholar
  199. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSGoogle Scholar
  200. H. Wänke, G. Dreibus, Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. 349, 285–293 (1994) ADSGoogle Scholar
  201. P.H. Warren, G.W. Kallmeyen, Siderophile trace elements in ALH84001, other SNC meteorites and eucrites: evidence of heterogeneity, possibly time-linked, in the mantle of Mars. Meteorit. Planet. Sci. 31, 97–105 (1996) ADSGoogle Scholar
  202. A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981) ADSGoogle Scholar
  203. L.L. Watson, I.D. Hutcheon, S. Epstein, E.M. Stolper, Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994) ADSGoogle Scholar
  204. T.R. Watters, B. Campbell, L. Carter, C.J. Leuschen, J.J. Plaut, G. Picardi, R. Orosei, A. Safaeinili, S.M. Clifford, W.M. Farrell, M. William, A.B. Ivanov, R.J. Phillips, E.R. Stofan, Radar sounding of the Medusae Fossae formation Mars: equatorial ice or dry, low-density deposits? Science 318, 1125–1128 (2007) ADSGoogle Scholar
  205. G.W. Wetherill, Accumulation of terrestrial planets and implications concerning lunar origin, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor (Arizona Press, Tucson, 1986), pp. 519–550 Google Scholar
  206. R.S. Wolff, B.E. Goldstein, C.M. Yeates, The onset and development of Kelvin-Helmholtz instability at the Venus ionopause. J. Geophys. Res. 85, 7697–7707 (1980) ADSGoogle Scholar
  207. R. Wordsworth, Transient conditions for biogenesis on low-mass exoplanets with escaping hydrogen atmospheres. Icarus 219, 267–273 (2012) ADSGoogle Scholar
  208. Y.L. Yung, J.S. Wen, J.P. Pinto, M. Allen, K.K. Pierce, S. Paulson, HDO in the Martian atmosphere: implications for the abundance of crustal water. Icarus 76, 146–159 (1988) ADSGoogle Scholar
  209. K.J. Zahnle, Xenological constraints on the impact erosion of the early Martian atmosphere. J. Geophys. Res. 98, 10899–10913 (1993) ADSGoogle Scholar
  210. K.J. Zahnle, J.F. Kasting, Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986) ADSGoogle Scholar
  211. K.J. Zahnle, J.C.G. Walker, The evolution of solar ultraviolet luminosity. Rev. Geophys. 20, 280–292 (1982) ADSGoogle Scholar
  212. K.J. Zahnle, J.F. Kasting, J.B. Pollack, Evolution of a steam atmosphere during Earth’s accreation. Icarus 74, 62–97 (1988) ADSGoogle Scholar
  213. K.J. Zahnle, J.B. Pollack, D. Grinspoon, Impact-generated atmospheres over Titan, Ganymede and Callisto. Icarus 95, 1–23 (1992) ADSGoogle Scholar
  214. K.J. Zahnle, R.M. Haberle, D.C. Catling, J.F. Kasting, Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113(E11), E11004 (2008) ADSGoogle Scholar
  215. K.J. Zahnle, R.S. Freedman, D.C. Catling, Is there methane on Mars? Icarus 212, 493–503 (2011) ADSGoogle Scholar
  216. A.P. Zent, R.C. Quinn, Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the martian climate. J. Geophys. Res. 100, 5341–5349 (1995) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Helmut Lammer
    • 1
    Email author
  • Eric Chassefière
    • 2
  • Özgür Karatekin
    • 3
  • Achim Morschhauser
    • 4
  • Paul B. Niles
    • 5
  • Olivier Mousis
    • 6
    • 7
  • Petra Odert
    • 1
    • 8
  • Ute V. Möstl
    • 8
  • Doris Breuer
    • 4
  • Véronique Dehant
    • 3
  • Matthias Grott
    • 4
  • Hannes Gröller
    • 1
  • Ernst Hauber
    • 4
  • Lê Binh San Pham
    • 3
  1. 1.Space Research InstituteAustrian Academy of SciencesGrazAustria
  2. 2.Laboratoire IDES, CNRS, UMR8148Univ. Paris-SudOrsayFrance
  3. 3.Royal Observatory of BelgiumBrusselsBelgium
  4. 4.German Aerospace CenterInstitute of Planetary ResearchBerlinGermany
  5. 5.Astromaterials Research and Exploration Science Johnson Space CenterNASAHoustonUSA
  6. 6.Observatoire de BesançonBesançonFrance
  7. 7.UPS-OMP; CNRS-INSU; IRAPUniversité de ToulouseToulouseFrance
  8. 8.Institute for Physics/IGAMUniversity of GrazGrazAustria

Personalised recommendations