Skip to main content

Volatile Trapping in Martian Clathrates

Abstract

Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. Changes in obliquity over long timescales are probably too strong (Mischna et al. 2003; Forget et al. 2006; Montmessin 2006) to allow the preservation of any information concerning the clathrate formation/dissociation cycles that took place at these epochs.

References

  • S. Alavi, J.A. Ripmeester, D.D. Klug, Molecular dynamics simulations of binary structure H hydrogen and methyl-tert-butylether clathrate hydrates. J. Chem. Phys. 124, 204707 (2006a)

    ADS  Google Scholar 

  • S. Alavi, J.A. Ripmeester, D.D. Klug, Molecular dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates. J. Chem. Phys. 124, 014704 (2006b)

    ADS  Google Scholar 

  • B.J. Anderson, J.W. Tester, B.L. Trout, Accurate potentials for argon-water and methane-water interactions via ab initio methods and their application to clathrate hydrates. J. Phys. Chem. B 108, 18705–18715 (2004)

    Google Scholar 

  • R.E. Arvidson et al., Opportunity Mars rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J. Geophys. Res. 116, E00F15 (2011)

    Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, A.-S. Wong, Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369 (2007)

    ADS  Google Scholar 

  • V.R. Baker, The channeled scabland: a retrospective. Annu. Rev. Earth Planet. Sci. 37, 393–411 (2009)

    ADS  Google Scholar 

  • V.R. Baker, D.J. Milton, Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974)

    ADS  Google Scholar 

  • A.L. Ballard, E.D. Sloan, The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy. Fluid Phase Equilib. 194, 371–383 (2002)

    Google Scholar 

  • J.L. Bandfield, High-resolution subsurface water-ice distributions on Mars. Nature 447, 64–67 (2007)

    ADS  Google Scholar 

  • S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501 (2007)

    ADS  Google Scholar 

  • M.Z. Bazant, B.L. Trout, A method to extract potentials from the temperature dependence of Langmui constants for clathrate-hydrates. Physica A 300, 139–173 (2001)

    ADS  Google Scholar 

  • R. Belosludov, O.S. Subbotin, H. Mizuseki, Y. Kawazoe, V.R. Belosludov, Accurate description of phase diagram of clathrate hydrates at the molecular level. J. Chem. Phys. 131, 244510 (2009)

    ADS  Google Scholar 

  • D.G. Blackburn, R. Ulrich, M.E. Elwood Madden, J.R. Leeman, V.F. Chevrier, Experimental study of the kinetics of CO2 hydrate dissociation under simulated martian conditions, in Lunar and Planetary Institute Science Conference Abstracts, vol. 40 (2009), p. 1341

    Google Scholar 

  • G.W. Brass, Stability of brines on Mars. Icarus 42, 20–28 (1980)

    ADS  Google Scholar 

  • D. Breuer, S. Labrosse, T. Spohn, Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152, 449–500 (2010)

    ADS  Google Scholar 

  • E.N. Brodskaya, V.V. Sizov, Molecular simulation of gas hydrate nanoclusters in water shell: structure and phase transitions. Colloid J. 71(5), 589–595 (2009)

    Google Scholar 

  • D.M. Burt, L.P. Knauth, Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026 (2003)

    Google Scholar 

  • S. Byrne et al., Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674 (2009)

    ADS  Google Scholar 

  • M.H. Carr, Formation of Martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979)

    ADS  Google Scholar 

  • M.H. Carr, Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44, 1411–1423 (1996)

    ADS  Google Scholar 

  • F. Castillo-Borja, R. Vásquez-Román, U. Bravo-Sánchez, The effect of flexibility on thermodynamic and structural properties in methane hydrates. Mol. Simul. 34, 661–670 (2008)

    Google Scholar 

  • E. Chassefière, Metastable methane clathrate particles as a source of methane to the Martian atmosphere. Icarus 204, 137–144 (2009)

    ADS  Google Scholar 

  • E. Chassefière, F. Leblanc, Methane release and the carbon cycle on Mars. Planet. Space Sci. 59, 207–217 (2011)

    ADS  Google Scholar 

  • B.K. Chastain, V. Chevrier, Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55, 1246–1256 (2007)

    ADS  Google Scholar 

  • Y.-H. Chen, R.G. Prinn, Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J. Geophys. Res. 111, D10307 (2006)

    ADS  Google Scholar 

  • V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007)

    ADS  Google Scholar 

  • M.-K. Chun, H. Lee, Kinetics of formation of carbon dioxide clathrate hydrates. Korean J. Chem. Eng. 13(6), 620–626 (1996)

    MathSciNet  Google Scholar 

  • B.C. Clark, D.C. van Hart, The salts of Mars. Icarus 45, 370–378 (1981)

    ADS  Google Scholar 

  • S.M. Clifford, Polar basal melting on Mars. J. Geophys. Res. 92, 9135–9152 (1987)

    ADS  Google Scholar 

  • S.M. Clifford, A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 981, 10973–11016 (1993)

    ADS  Google Scholar 

  • S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001)

    ADS  Google Scholar 

  • S.M. Clifford, J. Lasue, E. Heggy, J. Boisson, P. McGovern, M.D. Max, Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, 7001 (2010)

    Google Scholar 

  • M.M. Conde, C. Vega, C. McBride, E.G. Noya, R. Ramirez, L.M. Sesé, Can gas hydrate structures be described using classical simulations? J. Chem. Phys. 132, 114503 (2010)

    ADS  Google Scholar 

  • E. Dartois, D. Deboffle, M. Bouzit, Methane clathrate hydrate infrared spectrum. II. Near-infrared overtones, combination modes and cages assignments. Astron. Astrophys. 514, A49 (2010)

    ADS  Google Scholar 

  • N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003)

    ADS  Google Scholar 

  • A. Demurov, R. Radhakrishnan, B.L. Trout, Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 116, 702–709 (2002)

    ADS  Google Scholar 

  • W.P. Dillon, W.W. Danforth, D.R. Hutchinson, R.M. Drury, M.H. Taylor, J.S. Booth, Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern united states. J. Geol. Soc. 137, 293–302 (1998)

    Google Scholar 

  • L.I. Dimitrov, Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59, 49–76 (2002)

    ADS  Google Scholar 

  • T.E. Economou, Mars atmosphere argon density measurement on MER mission. LPI Contrib. 1447, 9102 (2008)

    ADS  Google Scholar 

  • M.E. Elwood Madden, S.M. Ulrich, T.C. Onstott, T.J. Phelps, Salinity-induced hydrate dissociation: a mechanism for recent CH4 release on Mars. Geophys. Res. Lett. 341, 11202 (2007)

    ADS  Google Scholar 

  • M.E. Elwood Madden, P. Szymcek, S.M. Ulrich, S. McCallum, T.J. Phelps, Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments. Mar. Pet. Geol. 26, 369–378 (2009)

    Google Scholar 

  • M.E. Elwood Madden, J.R. Leeman, M.J. Root, S. Gainey, Reduced sulfur-carbon-water systems on Mars may yield shallow methane hydrate reservoirs. Planet. Space Sci. 59, 203–206 (2011)

    ADS  Google Scholar 

  • S. Emmanuel, J.J. Ague, Implications of present-day abiogenic methane fluxes for the early Archean atmosphere. Geophys. Res. Lett. 341, 15810 (2007)

    ADS  Google Scholar 

  • A.G. Fairén, A.F. Davila, L. Gago-Duport, R. Amils, C.P. McKay, Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009)

    ADS  Google Scholar 

  • A. Falenty, W.F. Kuhs, Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 113(49), 15975–15988 (2009)

    Google Scholar 

  • F. Falenty, G. Genov, T.C. Hansen, W.F. Kuhs, A.N. Salamentin, Kinetics of CO2 hydrate formation from water frost at low temperatures: experimental results and theoretical model. J. Phys. Chem. C 115, 4022–4032 (2011)

    Google Scholar 

  • F.P. Fanale, W.A. Cannon, Mars—CO2 adsorption and capillary condensation on clays: significance for volatile storage and atmospheric history. J. Geophys. Res. 84, 8404–8414 (1979)

    ADS  Google Scholar 

  • W.H. Farrand, L.R. Gaddis, L. Keszthelyi, Pitted cones and domes on Mars: observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data. J. Geophys. Res. 110, 5005 (2005)

    Google Scholar 

  • W.M. Farrell, J.J. Plaut, S.A. Cummer, D.A. Gurnett, G. Picardi, T.R. Watters, A. Safaeinili, Is the Martian water table hidden from radar view? Geophys. Res. Lett. 36, 15206 (2009)

    ADS  Google Scholar 

  • S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010)

    ADS  Google Scholar 

  • F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006)

    ADS  Google Scholar 

  • F. Forget, E. Millour, L. Montabone, F. Lefevre, Non condensable gas enrichment and depletion in the Martian polar regions. LPI Contrib. 1447, 9106 (2008)

    ADS  Google Scholar 

  • V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004)

    ADS  Google Scholar 

  • S.R. Gainey, M.E. Elwood Madden, Kinetics of methane clathrate formation and dissociation under Mars relevant conditions. Icarus 218, 513–524 (2012)

    ADS  Google Scholar 

  • A. Geminale, V. Formisano, M. Giuranna, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008)

    ADS  Google Scholar 

  • A. Geminale, V. Formisano, G. Sindoni, Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137–148 (2011)

    ADS  Google Scholar 

  • C. Giavarini, F. Maccioni, M. Politi, M. Santarelli, CO2 hydrate: formation and dissociation compared to methane hydrate. Energy Fuels 21(6), 3284–3291 (2007)

    Google Scholar 

  • R.V. Gough, J.J. Turley, G.R. Ferrell, K.E. Cordova, S.E. Wood, D.O. Dehaan, C.P. McKay, O.B. Toon, M.A. Tolbert, Can rapid loss and high variability of Martian methane be explained by surface H2O2? Planet. Space Sci. 59, 238–246 (2011)

    ADS  Google Scholar 

  • L.L. Griffith, E.L. Shock, A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377, 406–408 (1995)

    ADS  Google Scholar 

  • R.E. Grimm, S.L. Painter, On the secular evolution of groundwater on Mars. Geophys. Res. Lett. 362, 24803 (2009)

    ADS  Google Scholar 

  • M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011)

    ADS  Google Scholar 

  • V.C. Gulick, Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 1031, 19365–19388 (1998)

    ADS  Google Scholar 

  • M. Haeckel, E. Suess, K. Wallmann, D. Rickert, Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim. Cosmochim. Acta 68, 4335–4345 (2004)

    ADS  Google Scholar 

  • B.C. Hahn, S.M. McLennan, E.C. Klein, Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophys. Res. Lett. 381, 14203 (2011)

    Google Scholar 

  • I. Halevy, D.P. Schrag, Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophys. Res. Lett. 36, 23201 (2009)

    ADS  Google Scholar 

  • M.H. Hecht, S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, D.W. Ming, D.C. Catling, B.C. Clark, W.V. Boynton, J. Hoffman, L.P. DeFlores, K. Gospodinova, J. Kapit, P.H. Smith, Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 64–67 (2009)

    ADS  Google Scholar 

  • E. Heggy, S.M. Clifford, R.E. Grimm, C.L. Dinwiddie, D.Y. Wyrick, B.E. Hill, Ground-penetrating radar sounding in mafic lava flows: assessing attenuation and scattering losses in Mars-analog volcanic terrains. J. Geophys. Res. 111, 6 (2006)

    Google Scholar 

  • R.W. Henning, A.J. Schultz, V. Thieu, Y. Halpern, Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice. J. Phys. Chem. A 104(21), 5066–5071 (2000)

    Google Scholar 

  • J.-M. Herri, E. Chassefière, Carbon dioxide, argon, nitrogen and methane clathrate hydrates: thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping. Planet. Space Sci. (2012, in press)

  • J.-M. Herri, M. Cournil, E. Chassefière, Thermodynamic modelling of clathrate hydrates in the atmosphere of Mars, in Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, UK (2011), pp. 17–21

    Google Scholar 

  • N. Hoffman, White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus 146, 326–342 (2000)

    ADS  Google Scholar 

  • A. Hori, T. Hondoh, Theoretical study on the diffusion of gases in hexagonal ice by the molecular orbital method. Can. J. Phys. 81, 251–259 (2003)

    ADS  Google Scholar 

  • T.L. Hudson, O. Aharonson, N. Schorghofer, C.B. Farmer, M.H. Hecht, N.T. Bridges, Water vapor diffusion in Mars subsurface environments. J. Geophys. Res. 112, 5016 (2007)

    Google Scholar 

  • T. Ikeda, H. Fukazawa, S. Mae, L. Pepin, P. Duval, B. Champagnon, V.Y. Lipenkov, T. Hondoh, Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys. Res. Lett. 26, 91–94 (1999)

    ADS  Google Scholar 

  • T. Ikeda-Fukazawa, Diffusion of nitrogen gas in ice Ih. Chem. Phys. Lett. 385, 467–471 (2004)

    ADS  Google Scholar 

  • T. Ikeda-Fukazawa, K. Kawamura, T. Hondoh, Mechanism of molecular diffusion in ice crystals. Mol. Simul. 30, 973–979 (2004)

    Google Scholar 

  • T. Ikeda-Fukazawa, K. Fukumizu, K. Kawamura, S. Aoki, T. Nakazawa, T. Hondoh, Effects of molecular diffusion on trapped gas composition in polar ice cores. Earth Planet. Sci. Lett. 229, 183–192 (2005)

    ADS  Google Scholar 

  • L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursor in the nucleation of clathrate hydrates. J. Am. Chem. Soc. 132(33), 11806–11811 (2010)

    Google Scholar 

  • J.S. Kargel, R. Furfaro, O. Prieto-Ballesteros, J.A.P. Rodriguez, D.R. Montgomery, A.R. Gillespie, G.M. Marion, S.E. Wood, Martian hydrogeology sustained by thermally insulating gas and salt hydrates. Geology 35, 97 (2007)

    Google Scholar 

  • J.F. Kasting, Planetary science: update: the early Mars climate question heats up. Science 278, 1245 (1997)

    ADS  Google Scholar 

  • M.A.K. Khalil, R.A. Rasmussen, Atmospheric methane: recent global trends. Environ. Sci. Technol. 24, 549–553 (1990)

    Google Scholar 

  • H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews, Mars. Mars (1992)

  • H.H. Kieffer, T.N. Titus, K.F. Mullins, P.R. Christensen, Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size. J. Geophys. Res. 105, 9653–9700 (2000)

    ADS  Google Scholar 

  • H.C. Kim, P.R. Bishnoi, R.A. Heidemann, S.S.H. Rizvi, Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42(7), 1645–1653 (1987)

    Google Scholar 

  • J.B. Klauda, S.I. Sandler, Ab initio intermolecular potentials for gas hydrates and their predictions. J. Phys. Chem. B 106, 5722–5732 (2002)

    Google Scholar 

  • J.B. Klauda, S.I. Sandler, Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chem. Eng. Sci. 58, 27–41 (2003)

    Google Scholar 

  • M.G. Kleinhans, Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. J. Geophys. Res. 110, 12003 (2005)

    Google Scholar 

  • T. Komai, S.-P. Kang, J.-H. Yoon, Y. Yamamoto, T. Kawamura, M. Ohtake, In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. J. Phys. Chem. B 108(23), 8062–8068 (2004)

    Google Scholar 

  • G. Komatsu, J.S. Kargel, V.R. Baker, R.G. Strom, G.G. Ori, C. Mosangini, K.L. Tanaka, A chaotic terrain formation hypothesis: explosive outgas and outlow by dissociation of clathrate on mars, in Lunar and Planetary Institute Science Conference Abstracts, vol. 31 (2000), p. 1434

    Google Scholar 

  • G. Komatsu, G.G. Ori, M. Cardinale, J.M. Dohm, V.R. Baker, D.A. Vaz, R. Ishimaru, N. Namiki, T. Matsui, Roles of methane and carbon dioxide in geological processes on Mars. Planet. Space Sci. 59, 169–181 (2011)

    ADS  Google Scholar 

  • V.A. Krasnopolsky, J.P. Maillard, T.C. Owen, Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004)

    ADS  Google Scholar 

  • W.F. Kuhs, D.K. Staykova, A.N. Salamatin, Formation of methane hydrate from polydisperse ice powders. J. Phys. Chem. B 110(26), 13283–13295 (2006)

    Google Scholar 

  • H. Lammer, E. Chassefière, K. Özgur, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L. Binh San Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Science Rev. (2012, in press)

  • J. Laskar, A comment on “Accurate spin axes and solar system dynamics: climatic variations for the Earth and Mars”. Astron. Astrophys. 416, 799–800 (2004)

    ADS  Google Scholar 

  • J. Lasue, N. Mangold, E. Hauber, S. Clifford, W. Feldman, O. Gasnault, S. Maurice, O. Mousis, Quantifying the Martian hydrosphere: current evidence, time evolution and implications for the habitability. Space Science Rev. (2012, in press)

  • J.R. Leeman, M.E. Elwood Madden, CO2 clathrate formation and dissociation rates below 273 K. Geochim. Cosmochim. Acta 74, A576 (2010)

    Google Scholar 

  • J.R. Leeman, D.G. Blackburn, M.E. Elwood Madden, R. Ulrich, V. Chevrier, CO2 clathrate dissociation rates below the freezing point of water, in Lunar and Planetary Institute Science Conference Abstracts, vol. 41 (2010), p. 1418

    Google Scholar 

  • F. Lefèvre, F. Forget, Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009)

    ADS  Google Scholar 

  • Q. Li, W.S. Kiefer, Mantle convection and magma production on present-day Mars: effects of temperature-dependent rheology. Geophys. Res. Lett. 34, 16203 (2007)

    ADS  Google Scholar 

  • V.Ya. Lipenkov, V.A. Istomin, On the stability of air clathrate-hydrate crystals in subglacial Lake Vostok, Antarctica. Materialy Glyatsiol. Issled. 91, 129–133 (2001)

    Google Scholar 

  • J. Longhi, Phase equilibrium in the system CO2–H2O: application to Mars. J. Geophys. Res. 111, 6011 (2006)

    Google Scholar 

  • J.I. Lunine, D.J. Stevenson, Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 58, 493–531 (1985)

    ADS  Google Scholar 

  • J.R. Lyons, C. Manning, F. Nimmo, Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 321, 13201 (2005)

    Google Scholar 

  • M. Mastepanov, C. Sigsgaard, E.J. Dlugokencky, S. Houweling, L. Ström, M.P. Tamstorf, T.R. Christensen, Large tundra methane burst during onset of freezing. Nature 456, 628–631 (2008)

    ADS  Google Scholar 

  • M.D. Max, S.M. Clifford, The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105, 4165–4172 (2000)

    ADS  Google Scholar 

  • M.D. Max, S.M. Clifford, Initiation of Martian outflow channels: related to the dissociation of gas hydrate? Geophys. Res. Lett. 28, 1787–1790 (2001)

    ADS  Google Scholar 

  • A. Mazzini, Mud volcanism: processes and implications. Mar. Petroleum Geol. 26, 1677–1680 (2009)

    Google Scholar 

  • P.J. McGovern, S.C. Solomon, D.E. Smith, M.T. Zuber, M. Simons, M.A. Wieczorek, R.J. Phillips, G.A. Neumann, O. Aharonson, J.W. Head, Correction to “Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution”. J. Geophys. Res. 109, 7007 (2004)

    Google Scholar 

  • D. McKenzie, F. Nimmo, The generation of Martian floods by the melting of ground ice above dykes. Nature 397, 231–233 (1999)

    ADS  Google Scholar 

  • V. McKoy, O. Sinanoğlu, Theory of dissociation pressures of some gas hydrates. J. Chem. Phys. 38(12), 2946–2956 (1963)

    ADS  Google Scholar 

  • M.T. Mellon, R.J. Phillips, Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106, 23165–23180 (2001)

    ADS  Google Scholar 

  • M.T. Mellon, B.M. Jakosky, S.E. Postawko, The persistence of equatorial ground ice on Mars. J. Geophys. Res. 1021, 19357–19370 (1997)

    ADS  Google Scholar 

  • S. Meresse, F. Costard, N. Mangold, P. Masson, G. Neukum (The HRSC Co-I Team), Formation and evolution of the chaotic terrains by subsidence and magmatism: hydraotes chaos, Mars. Icarus 194, 487–500 (2008)

    ADS  Google Scholar 

  • P.-Y. Meslin, R. Gough, F. Lefèvre, F. Forget, Little variability of methane on Mars induced by adsorption in the regolith. Planet. Space Sci. 59, 247–258 (2011)

    ADS  Google Scholar 

  • A.V. Milkov, Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167, 29–42 (2000)

    Google Scholar 

  • S.L. Miller, The occurrence of gas hydrates in the solar system. Proc. Natl. Acad. Sci. USA 47, 1798–1808 (1961)

    ADS  Google Scholar 

  • D.J. Milton, Carbon dioxide hydrate and floods on Mars. Science 183, 654–656 (1974)

    ADS  Google Scholar 

  • M.A. Mischna, M.I. Richardson, R.J. Wilson, D.J. McCleese, On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. 108, 5062 (2003)

    Google Scholar 

  • A.H. Mohammadi, R. Anderson, B. Tohidi, Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE J. 51, 2825–2833 (2005)

    Google Scholar 

  • F. Montmessin, The orbital forcing of climate changes on Mars. Space Sci. Rev. 125, 457–472 (2006)

    ADS  Google Scholar 

  • F. Montmessin, P. Rannou, M. Cabane, New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res. 107, 5037 (2002)

    Google Scholar 

  • O. Mousis, J.I. Lunine, C. Thomas, M. Pasek, U. Marboeuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, S. Picaud, Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere. Astrophys. J. 691, 1780–1786 (2009)

    ADS  Google Scholar 

  • O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, Volatile inventories in clathrate hydrates formed in the primordial nebula. Faraday Discuss. 147, 509–525 (2010)

    ADS  Google Scholar 

  • O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, J.H. Waite, K.E. Mandt, Removal of Titan’s atmospheric noble gases by their sequestration in surface clathrates. Astrophys. J. Lett. 740, L9 (2011)

    ADS  Google Scholar 

  • O. Mousis, J.I. Lunine, E. Chassefière, F. Montmessin, A. Lakhlifi, S. Picaud, J.-M. Petit, D. Cordier, Mars cryosphere: a potential reservoir for heavy noble gases? Icarus 218, 80–87 (2012)

    ADS  Google Scholar 

  • M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern Summer 2003. Science 323, 1041 (2009)

    ADS  Google Scholar 

  • D. Musselwhite, J.I. Lunine, Alteration of volatile inventories by polar clathrate formation on Mars. J. Geophys. Res. 1002, 23301–23306 (1995)

    ADS  Google Scholar 

  • D.S. Musselwhite, T.D. Swindle, Is release of Martian atmosphere from polar clathrate the cause of the nakhlite and ALH84001 Ar/Kr/Xe ratios? Icarus 154, 207–215 (2001)

    ADS  Google Scholar 

  • P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9940-y

    MATH  Google Scholar 

  • D. Nummedal, D.B. Prior, Generation of Martian chaos and channels by debris flows. Icarus 45, 77–86 (1981)

    ADS  Google Scholar 

  • D.Z. Oehler, C.C. Allen, Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208, 636–657 (2010)

    ADS  Google Scholar 

  • A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Ancharov, M.A. Sheromov, A.N. Nesterov, Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation. J. Phys. Chem. B 110(6), 2840–2846 (2006)

    Google Scholar 

  • T. Okuchi, I.L. Moudrakovski, J.A. Ripmeester, Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate. Appl. Phys. Lett. 91, 171903 (2007)

    ADS  Google Scholar 

  • M. Ota, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Methane recovery from methane hydrate using pressurized CO2. Fluid Phase Equilib. 228, 553–559 (2005)

    Google Scholar 

  • C. Oze, M. Sharma, Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 321, 10203 (2005)

    Google Scholar 

  • N.I. Papadimitriou, I.N. Tsimpanogiannis, A.G. Yiotis, T.A. Steriotis, A.K. Stubos, On the use of the Kihara potential for hydrate equilibrium calculations, in Physics and Chemistry of Ice, ed. by W. Kuhs (RSC, London, 2007), p. 476

    Google Scholar 

  • W.R. Parrish, J.M. Prausnitz, Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Dev. 11(1), 26–35 (1972) [Erratum: Ind. Eng. Chem. Process Des. Dev. 11(3), 462 (1972)]

    Google Scholar 

  • G.B.M. Pedersen, J.W. Head, Chaos formation by sublimation of volatile-rich substrate: evidence from Galaxias Chaos, Mars. Icarus 211, 316–329 (2011)

    ADS  Google Scholar 

  • R.O. Pepin, D. Porcelli, Origin of noble gases in terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002)

    Google Scholar 

  • B. Peters, N.E.R. Zimmermann, G.T. Beckham, J.W. Tester, B.L. Trout, Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130, 17342–17350 (2008)

    Google Scholar 

  • R.J. Phillips et al., Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838 (2011)

    ADS  Google Scholar 

  • G. Picardi, D. Biccari, A. Cicchetti, R. Seu, J. Plaut, W.T.K. Johnson, R.L. Jordan, D.A. Gurnett, R. Orosei, E. Zampolini, Mars advanced radar for subsurface and ionosphere sounding (MARSIS). EGS—AGU—EUG Joint Assembly, 9597 (2003)

  • H. Pimpalgaonkar, S.K. Veesam, N. Punnathanam, Theory of gas hydrates: effect of the approximation of rigid water lattice. J. Phys. Chem. A 115, 10018–10026 (2011)

    Google Scholar 

  • J.J. Plaut, A. Safaeinili, J.W. Holt, R.J. Phillips, J.W. Head, R. Seu, N.E. Putzig, A. Frigeri, Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Lett. 360, 2203 (2009)

    Google Scholar 

  • J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987)

    ADS  Google Scholar 

  • O. Prieto-Ballesteros, J.S. Kargel, M. Fernández-Sampedro, F. Selsis, E.S. Martínez, D.L. Hogenboom, Evaluation of the possible presence of clathrate hydrates in Europa’s icy shell or seafloor. Icarus 177, 491–505 (2005)

    ADS  Google Scholar 

  • J.A.P. Rodriguez, S. Sasaki, R.O. Kuzmin, J.M. Dohm, K.L. Tanaka, H. Miyamoto, K. Kurita, G. Komatsu, A.G. Fairén, J.C. Ferris, Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars. Icarus 175, 36–57 (2005)

    ADS  Google Scholar 

  • J.A.P. Rodriguez, J. Kargel, D.A. Crown, L.F. Bleamaster, K.L. Tanaka, V. Baker, H. Miyamoto, J.M. Dohm, S. Sasaki, G. Komatsu, Headward growth of chasmata by volatile outbursts, collapse, and drainage: evidence from Ganges chaos, Mars. Geophys. Res. Lett. 331, 18203 (2006)

    Google Scholar 

  • J.A.P. Rodríguez, K.L. Tanaka, J.S. Kargel, J.M. Dohm, R. Kuzmin, A.G. Fairén, S. Sasaki, G. Komatsu, D. Schulze-Makuch, Y. Jianguo, Formation and disruption of aquifers in southwestern Chryse Planitia, Mars. Icarus 191, 545–567 (2007)

    ADS  Google Scholar 

  • R.A. Rohde, P.B. Price, Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. USA 104(24), 16592–16597 (2007)

    ADS  Google Scholar 

  • M.J. Root, M.E. Elwood Madden, Potential effects of obliquity change on gas hydrate stability zones on Mars. Icarus 218, 534–544 (2012)

    ADS  Google Scholar 

  • S. Sarupria, P.G. Debenedetti, Molecular dynamics study of carbon dioxide hydrate dissociation. J. Phys. Chem. A 115, 6102–6111 (2011)

    Google Scholar 

  • K. Satoh, T. Uchida, T. Hondon, S. Mae, Diffusion coefficient and solubility measurements of noble gases in ice crystals, in National Institute of Polar Reasearch-Proc. NIPR Symp. Polar Meteoral. Glaciol, vol. 10 (1996), pp. 73–81

    Google Scholar 

  • E.J. Sauter, S.I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, M. Klages, Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett. 243, 354–365 (2006)

    ADS  Google Scholar 

  • R.P. Sharp, Mars: fretted and chaotic terrains. J. Geophys. Res. 78, 4073–4083 (1973)

    ADS  Google Scholar 

  • J.A. Skinner Jr., A. Mazzini, Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar. Petroleum Geol. 26, 1866–1878 (2009)

    Google Scholar 

  • E.D. Sloan, Clathrate Hydrates of Natural Gases (Marcel Dekker, New York, 1998)

    Google Scholar 

  • E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, 3rd edn. (CRC/Taylor & Francis, Boca Raton, 2008)

    Google Scholar 

  • A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, D.M. Hunten, K.J. Kim, R.C. Reedy, A.E. Metzger, ‘Mars’ south polar ar enhancement: a tracer for south polar seasonal meridional mixing. Science 306, 1364–1367 (2004)

    ADS  Google Scholar 

  • A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, N.J. Kelly, M.K. Crombie, S.M. Melli, J.R. Murphy, R.C. Reedy, A.E. Metzger, ‘Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, 3 (2007)

    Google Scholar 

  • L.A. Stern, S. Circone, S.H. Kirby, W.B. Durham, Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B 105, 1756–1762 (2001)

    Google Scholar 

  • C.-Y. Sun, G.-J. Chen, Methane hydrate dissociation above 0 °C and below 0 °C. Fluid Phase Equilib. 242, 123–128 (2006)

    Google Scholar 

  • R. Sun, Z. Duan, Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochim. Cosmochim. Acta 69, 4411–4424 (2005)

    ADS  Google Scholar 

  • T.D. Swindle, Some puzzles about what noble gas components were mixed into the nakhlites, and how, in Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites (2002), pp. 57–58

    Google Scholar 

  • T.D. Swindle, C. Thomas, O. Mousis, J.I. Lunine, S. Picaud, Incorporation of argon, krypton and xenon into clathrates on Mars. Icarus 203, 66–70 (2009)

    ADS  Google Scholar 

  • S.Y. Takeya, J.A. Ripmeester, Anomalous preservation of CH4 hydrate and its dependence on the morphology of hexagonal ice. ChemPhysChem 11, 70–73 (2010)

    Google Scholar 

  • S. Takeya, T. Hondoh, T. Uchida, In situ observation of CO2 hydrate by X-ray diffraction. Ann. N.Y. Acad. Sci. 912, 973–982 (2000)

    ADS  Google Scholar 

  • S. Takeya, T. Uchida, J. Nagao, R. Ohmura, W. Shimada, Y. Kamata, T. Ebinuma, H. Narita, Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 60(5), 1383–1387 (2005)

    Google Scholar 

  • K.L. Tanaka, Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 102, 4131–4150 (1997)

    ADS  Google Scholar 

  • H. Tanaka, A novel approach to the stability of clathrate hydrates: grand canonical Monte Carlo simulation. Fluid Phase Equilib. 144, 361–368 (1998)

    Google Scholar 

  • K.L. Tanaka, Debris-flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res. 104, 8637–8652 (1999)

    ADS  Google Scholar 

  • H. Tanaka, T. Nakatsuka, K. Koga, On the thermodynamic stability of clathrate hydrates IV: double occupancy of cages. J. Chem. Phys. 121, 5488–5493 (2004)

    ADS  Google Scholar 

  • J.W. Tester, R.L. Bivins, C. Herrick, Use of Monte-Carlo in calculating thermodynamic properties of water clathrates. AIChE J. 18, 1220 (1972)

    Google Scholar 

  • C. Thomas, O. Mousis, V. Ballenegger, S. Picaud, Clathrate hydrates as a sink of noble gases in Titan’s atmosphere. Astron. Astrophys. 474, L17–L20 (2007)

    ADS  Google Scholar 

  • C. Thomas, S. Picaud, O. Mousis, V. Ballenegger, A theoretical investigation into the trapping of noble gases by clathrates on Titan. Planet. Space Sci. 56, 1607–1617 (2008)

    ADS  Google Scholar 

  • C. Thomas, O. Mousis, S. Picaud, V. Ballenegger, Variability of the methane trapping in Martian subsurface clathrate hydrates. Planet. Space Sci. 57, 42–47 (2009)

    ADS  Google Scholar 

  • C. Thomas, S. Picaud, V. Ballenegger, O. Mousis, Sensitivitiy of predicted gas hydrate occupancies on treatment of intermolecular interactions. J. Chem. Phys. 132, 104510 (2010)

    ADS  Google Scholar 

  • F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, 2205 (2009)

    Google Scholar 

  • J.E. Tillman, Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433–9451 (1988)

    ADS  Google Scholar 

  • B.J. Travis, N.D. Rosenberg, J.N. Cuzzi, On the role of widespread subsurface convection in bringing liquid water close to Mars surface. J. Geophys. Res. 108, 8040 (2003)

    Google Scholar 

  • J.S. Tse, M.L. Klein, I.R. McDonald, Dynamical properties of the structure-I clathrate hydrate of xenon. J. Chem. Phys. 87, 2096–2097 (1983)

    ADS  Google Scholar 

  • T. Uchida, S. Takeya, L.D. Wilson, C.A. Tulk, J.A. Ripmeester, J. Nagao, T. Ebinuma, H. Narita, Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction. Can. J. Phys. 81, 351–357 (2003)

    ADS  Google Scholar 

  • R. Ulrich, T. Kral, V. Chevrier, R. Pilgrim, L. Roe, Dynamic temperature fields under Mars landing sites and implications for supporting microbial life. Astrobiology 10, 643–650 (2010)

    ADS  Google Scholar 

  • J.H. van der Waals, J.C. Platteeuw, Clathrate solutions, in Advances in Chemical Physics, vol. 2 (Interscience, New York, 1959), pp. 1–57

    Google Scholar 

  • M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326, 1096–1098 (2009)

    ADS  Google Scholar 

  • X.P. Wang, A.J. Schultz, Y. Halpern, Kinetics of methane hydrate formation from polycrystalline deuterated ice. J. Phys. Chem. A 106(32), 7304–7309 (2002)

    Google Scholar 

  • K. Zahnle, R.S. Freedman, D.C. Catling, Is there methane on Mars? Icarus 212, 493–503 (2011)

    ADS  Google Scholar 

  • G. Zhang, R.E. Rogers, Ultra-stability of gas hydrates at 1 atm and 268.2 K. Chem. Eng. Sci. 63, 2066–2074 (2008)

    Google Scholar 

Download references

Acknowledgements

O.M. acknowledges support from CNES. E.C. and A.L. acknowledge support from CNRS EPOV interdisciplinary program. T.S. acknowledges support from NASA Fundamental Research, and J.I.L. from JPL’s Distinguished Visiting Scientist Program. We wish to thank the organizers of the ISSI workshop for having been able to gather scientists from various fields around the Martian geochemistry. The authors are indebted to P.-Y. Meslin, C. Sotin, M. Toplis and M. Trainer whose comments and suggestions greatly improved this manuscript. M.E.E.M. acknowledges support from the NASA Planetary Geology and Geophysics Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Mousis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mousis, O., Chassefière, E., Lasue, J. et al. Volatile Trapping in Martian Clathrates. Space Sci Rev 174, 213–250 (2013). https://doi.org/10.1007/s11214-012-9942-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9942-9

Keywords

  • Mars
  • Clathrates
  • Polar caps
  • Cryosphere
  • Atmosphere