Space Science Reviews

, Volume 174, Issue 1–4, pp 213–250 | Cite as

Volatile Trapping in Martian Clathrates

  • Olivier MousisEmail author
  • Eric Chassefière
  • Jérémie Lasue
  • Vincent Chevrier
  • Megan E. Elwood Madden
  • Azzedine Lakhlifi
  • Jonathan I. Lunine
  • Franck Montmessin
  • Sylvain Picaud
  • Frédéric Schmidt
  • Timothy D. Swindle


Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.


Mars Clathrates Polar caps Cryosphere Atmosphere 



O.M. acknowledges support from CNES. E.C. and A.L. acknowledge support from CNRS EPOV interdisciplinary program. T.S. acknowledges support from NASA Fundamental Research, and J.I.L. from JPL’s Distinguished Visiting Scientist Program. We wish to thank the organizers of the ISSI workshop for having been able to gather scientists from various fields around the Martian geochemistry. The authors are indebted to P.-Y. Meslin, C. Sotin, M. Toplis and M. Trainer whose comments and suggestions greatly improved this manuscript. M.E.E.M. acknowledges support from the NASA Planetary Geology and Geophysics Program.


  1. S. Alavi, J.A. Ripmeester, D.D. Klug, Molecular dynamics simulations of binary structure H hydrogen and methyl-tert-butylether clathrate hydrates. J. Chem. Phys. 124, 204707 (2006a) ADSGoogle Scholar
  2. S. Alavi, J.A. Ripmeester, D.D. Klug, Molecular dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates. J. Chem. Phys. 124, 014704 (2006b) ADSGoogle Scholar
  3. B.J. Anderson, J.W. Tester, B.L. Trout, Accurate potentials for argon-water and methane-water interactions via ab initio methods and their application to clathrate hydrates. J. Phys. Chem. B 108, 18705–18715 (2004) Google Scholar
  4. R.E. Arvidson et al., Opportunity Mars rover mission: overview and selected results from Purgatory ripple to traverses to Endeavour crater. J. Geophys. Res. 116, E00F15 (2011) Google Scholar
  5. S.K. Atreya, P.R. Mahaffy, A.-S. Wong, Methane and related trace species on Mars: origin, loss, implications for life, and habitability. Planet. Space Sci. 55, 358–369 (2007) ADSGoogle Scholar
  6. V.R. Baker, The channeled scabland: a retrospective. Annu. Rev. Earth Planet. Sci. 37, 393–411 (2009) ADSGoogle Scholar
  7. V.R. Baker, D.J. Milton, Erosion by catastrophic floods on Mars and Earth. Icarus 23, 27–41 (1974) ADSGoogle Scholar
  8. A.L. Ballard, E.D. Sloan, The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy. Fluid Phase Equilib. 194, 371–383 (2002) Google Scholar
  9. J.L. Bandfield, High-resolution subsurface water-ice distributions on Mars. Nature 447, 64–67 (2007) ADSGoogle Scholar
  10. S. Barabash, A. Fedorov, R. Lundin, J.-A. Sauvaud, Martian atmospheric erosion rates. Science 315, 501 (2007) ADSGoogle Scholar
  11. M.Z. Bazant, B.L. Trout, A method to extract potentials from the temperature dependence of Langmui constants for clathrate-hydrates. Physica A 300, 139–173 (2001) ADSGoogle Scholar
  12. R. Belosludov, O.S. Subbotin, H. Mizuseki, Y. Kawazoe, V.R. Belosludov, Accurate description of phase diagram of clathrate hydrates at the molecular level. J. Chem. Phys. 131, 244510 (2009) ADSGoogle Scholar
  13. D.G. Blackburn, R. Ulrich, M.E. Elwood Madden, J.R. Leeman, V.F. Chevrier, Experimental study of the kinetics of CO2 hydrate dissociation under simulated martian conditions, in Lunar and Planetary Institute Science Conference Abstracts, vol. 40 (2009), p. 1341 Google Scholar
  14. G.W. Brass, Stability of brines on Mars. Icarus 42, 20–28 (1980) ADSGoogle Scholar
  15. D. Breuer, S. Labrosse, T. Spohn, Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152, 449–500 (2010) ADSGoogle Scholar
  16. E.N. Brodskaya, V.V. Sizov, Molecular simulation of gas hydrate nanoclusters in water shell: structure and phase transitions. Colloid J. 71(5), 589–595 (2009) Google Scholar
  17. D.M. Burt, L.P. Knauth, Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface. J. Geophys. Res. 108, 8026 (2003) Google Scholar
  18. S. Byrne et al., Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674 (2009) ADSGoogle Scholar
  19. M.H. Carr, Formation of Martian flood features by release of water from confined aquifers. J. Geophys. Res. 84, 2995–3007 (1979) ADSGoogle Scholar
  20. M.H. Carr, Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44, 1411–1423 (1996) ADSGoogle Scholar
  21. F. Castillo-Borja, R. Vásquez-Román, U. Bravo-Sánchez, The effect of flexibility on thermodynamic and structural properties in methane hydrates. Mol. Simul. 34, 661–670 (2008) Google Scholar
  22. E. Chassefière, Metastable methane clathrate particles as a source of methane to the Martian atmosphere. Icarus 204, 137–144 (2009) ADSGoogle Scholar
  23. E. Chassefière, F. Leblanc, Methane release and the carbon cycle on Mars. Planet. Space Sci. 59, 207–217 (2011) ADSGoogle Scholar
  24. B.K. Chastain, V. Chevrier, Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55, 1246–1256 (2007) ADSGoogle Scholar
  25. Y.-H. Chen, R.G. Prinn, Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model. J. Geophys. Res. 111, D10307 (2006) ADSGoogle Scholar
  26. V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007) ADSGoogle Scholar
  27. M.-K. Chun, H. Lee, Kinetics of formation of carbon dioxide clathrate hydrates. Korean J. Chem. Eng. 13(6), 620–626 (1996) MathSciNetGoogle Scholar
  28. B.C. Clark, D.C. van Hart, The salts of Mars. Icarus 45, 370–378 (1981) ADSGoogle Scholar
  29. S.M. Clifford, Polar basal melting on Mars. J. Geophys. Res. 92, 9135–9152 (1987) ADSGoogle Scholar
  30. S.M. Clifford, A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 981, 10973–11016 (1993) ADSGoogle Scholar
  31. S.M. Clifford, T.J. Parker, The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154, 40–79 (2001) ADSGoogle Scholar
  32. S.M. Clifford, J. Lasue, E. Heggy, J. Boisson, P. McGovern, M.D. Max, Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J. Geophys. Res. 115, 7001 (2010) Google Scholar
  33. M.M. Conde, C. Vega, C. McBride, E.G. Noya, R. Ramirez, L.M. Sesé, Can gas hydrate structures be described using classical simulations? J. Chem. Phys. 132, 114503 (2010) ADSGoogle Scholar
  34. E. Dartois, D. Deboffle, M. Bouzit, Methane clathrate hydrate infrared spectrum. II. Near-infrared overtones, combination modes and cages assignments. Astron. Astrophys. 514, A49 (2010) ADSGoogle Scholar
  35. N. Dauphas, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003) ADSGoogle Scholar
  36. A. Demurov, R. Radhakrishnan, B.L. Trout, Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 116, 702–709 (2002) ADSGoogle Scholar
  37. W.P. Dillon, W.W. Danforth, D.R. Hutchinson, R.M. Drury, M.H. Taylor, J.S. Booth, Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern united states. J. Geol. Soc. 137, 293–302 (1998) Google Scholar
  38. L.I. Dimitrov, Mud volcanoes-the most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 59, 49–76 (2002) ADSGoogle Scholar
  39. T.E. Economou, Mars atmosphere argon density measurement on MER mission. LPI Contrib. 1447, 9102 (2008) ADSGoogle Scholar
  40. M.E. Elwood Madden, S.M. Ulrich, T.C. Onstott, T.J. Phelps, Salinity-induced hydrate dissociation: a mechanism for recent CH4 release on Mars. Geophys. Res. Lett. 341, 11202 (2007) ADSGoogle Scholar
  41. M.E. Elwood Madden, P. Szymcek, S.M. Ulrich, S. McCallum, T.J. Phelps, Experimental formation of massive hydrate deposits from accumulation of CH4 gas bubbles within synthetic and natural sediments. Mar. Pet. Geol. 26, 369–378 (2009) Google Scholar
  42. M.E. Elwood Madden, J.R. Leeman, M.J. Root, S. Gainey, Reduced sulfur-carbon-water systems on Mars may yield shallow methane hydrate reservoirs. Planet. Space Sci. 59, 203–206 (2011) ADSGoogle Scholar
  43. S. Emmanuel, J.J. Ague, Implications of present-day abiogenic methane fluxes for the early Archean atmosphere. Geophys. Res. Lett. 341, 15810 (2007) ADSGoogle Scholar
  44. A.G. Fairén, A.F. Davila, L. Gago-Duport, R. Amils, C.P. McKay, Stability against freezing of aqueous solutions on early Mars. Nature 459, 401–404 (2009) ADSGoogle Scholar
  45. A. Falenty, W.F. Kuhs, Self-preservation of CO2 gas hydrates-surface microstructure and ice perfection. J. Phys. Chem. B 113(49), 15975–15988 (2009) Google Scholar
  46. F. Falenty, G. Genov, T.C. Hansen, W.F. Kuhs, A.N. Salamentin, Kinetics of CO2 hydrate formation from water frost at low temperatures: experimental results and theoretical model. J. Phys. Chem. C 115, 4022–4032 (2011) Google Scholar
  47. F.P. Fanale, W.A. Cannon, Mars—CO2 adsorption and capillary condensation on clays: significance for volatile storage and atmospheric history. J. Geophys. Res. 84, 8404–8414 (1979) ADSGoogle Scholar
  48. W.H. Farrand, L.R. Gaddis, L. Keszthelyi, Pitted cones and domes on Mars: observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data. J. Geophys. Res. 110, 5005 (2005) Google Scholar
  49. W.M. Farrell, J.J. Plaut, S.A. Cummer, D.A. Gurnett, G. Picardi, T.R. Watters, A. Safaeinili, Is the Martian water table hidden from radar view? Geophys. Res. Lett. 36, 15206 (2009) ADSGoogle Scholar
  50. S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010) ADSGoogle Scholar
  51. F. Forget, R.M. Haberle, F. Montmessin, B. Levrard, J.W. Head, Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006) ADSGoogle Scholar
  52. F. Forget, E. Millour, L. Montabone, F. Lefevre, Non condensable gas enrichment and depletion in the Martian polar regions. LPI Contrib. 1447, 9106 (2008) ADSGoogle Scholar
  53. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004) ADSGoogle Scholar
  54. S.R. Gainey, M.E. Elwood Madden, Kinetics of methane clathrate formation and dissociation under Mars relevant conditions. Icarus 218, 513–524 (2012) ADSGoogle Scholar
  55. A. Geminale, V. Formisano, M. Giuranna, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behaviour. Planet. Space Sci. 56, 1194–1203 (2008) ADSGoogle Scholar
  56. A. Geminale, V. Formisano, G. Sindoni, Mapping methane in Martian atmosphere with PFS-MEX data. Planet. Space Sci. 59, 137–148 (2011) ADSGoogle Scholar
  57. C. Giavarini, F. Maccioni, M. Politi, M. Santarelli, CO2 hydrate: formation and dissociation compared to methane hydrate. Energy Fuels 21(6), 3284–3291 (2007) Google Scholar
  58. R.V. Gough, J.J. Turley, G.R. Ferrell, K.E. Cordova, S.E. Wood, D.O. Dehaan, C.P. McKay, O.B. Toon, M.A. Tolbert, Can rapid loss and high variability of Martian methane be explained by surface H2O2? Planet. Space Sci. 59, 238–246 (2011) ADSGoogle Scholar
  59. L.L. Griffith, E.L. Shock, A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377, 406–408 (1995) ADSGoogle Scholar
  60. R.E. Grimm, S.L. Painter, On the secular evolution of groundwater on Mars. Geophys. Res. Lett. 362, 24803 (2009) ADSGoogle Scholar
  61. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011) ADSGoogle Scholar
  62. V.C. Gulick, Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars. J. Geophys. Res. 1031, 19365–19388 (1998) ADSGoogle Scholar
  63. M. Haeckel, E. Suess, K. Wallmann, D. Rickert, Rising methane gas bubbles form massive hydrate layers at the seafloor. Geochim. Cosmochim. Acta 68, 4335–4345 (2004) ADSGoogle Scholar
  64. B.C. Hahn, S.M. McLennan, E.C. Klein, Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophys. Res. Lett. 381, 14203 (2011) Google Scholar
  65. I. Halevy, D.P. Schrag, Sulfur dioxide inhibits calcium carbonate precipitation: implications for early Mars and Earth. Geophys. Res. Lett. 36, 23201 (2009) ADSGoogle Scholar
  66. M.H. Hecht, S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, D.W. Ming, D.C. Catling, B.C. Clark, W.V. Boynton, J. Hoffman, L.P. DeFlores, K. Gospodinova, J. Kapit, P.H. Smith, Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 64–67 (2009) ADSGoogle Scholar
  67. E. Heggy, S.M. Clifford, R.E. Grimm, C.L. Dinwiddie, D.Y. Wyrick, B.E. Hill, Ground-penetrating radar sounding in mafic lava flows: assessing attenuation and scattering losses in Mars-analog volcanic terrains. J. Geophys. Res. 111, 6 (2006) Google Scholar
  68. R.W. Henning, A.J. Schultz, V. Thieu, Y. Halpern, Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice. J. Phys. Chem. A 104(21), 5066–5071 (2000) Google Scholar
  69. J.-M. Herri, E. Chassefière, Carbon dioxide, argon, nitrogen and methane clathrate hydrates: thermodynamic modelling, investigation of their stability in Martian atmospheric conditions and variability of methane trapping. Planet. Space Sci. (2012, in press) Google Scholar
  70. J.-M. Herri, M. Cournil, E. Chassefière, Thermodynamic modelling of clathrate hydrates in the atmosphere of Mars, in Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, UK (2011), pp. 17–21 Google Scholar
  71. N. Hoffman, White Mars: a new model for Mars’ surface and atmosphere based on CO2. Icarus 146, 326–342 (2000) ADSGoogle Scholar
  72. A. Hori, T. Hondoh, Theoretical study on the diffusion of gases in hexagonal ice by the molecular orbital method. Can. J. Phys. 81, 251–259 (2003) ADSGoogle Scholar
  73. T.L. Hudson, O. Aharonson, N. Schorghofer, C.B. Farmer, M.H. Hecht, N.T. Bridges, Water vapor diffusion in Mars subsurface environments. J. Geophys. Res. 112, 5016 (2007) Google Scholar
  74. T. Ikeda, H. Fukazawa, S. Mae, L. Pepin, P. Duval, B. Champagnon, V.Y. Lipenkov, T. Hondoh, Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys. Res. Lett. 26, 91–94 (1999) ADSGoogle Scholar
  75. T. Ikeda-Fukazawa, Diffusion of nitrogen gas in ice Ih. Chem. Phys. Lett. 385, 467–471 (2004) ADSGoogle Scholar
  76. T. Ikeda-Fukazawa, K. Kawamura, T. Hondoh, Mechanism of molecular diffusion in ice crystals. Mol. Simul. 30, 973–979 (2004) Google Scholar
  77. T. Ikeda-Fukazawa, K. Fukumizu, K. Kawamura, S. Aoki, T. Nakazawa, T. Hondoh, Effects of molecular diffusion on trapped gas composition in polar ice cores. Earth Planet. Sci. Lett. 229, 183–192 (2005) ADSGoogle Scholar
  78. L.C. Jacobson, W. Hujo, V. Molinero, Amorphous precursor in the nucleation of clathrate hydrates. J. Am. Chem. Soc. 132(33), 11806–11811 (2010) Google Scholar
  79. J.S. Kargel, R. Furfaro, O. Prieto-Ballesteros, J.A.P. Rodriguez, D.R. Montgomery, A.R. Gillespie, G.M. Marion, S.E. Wood, Martian hydrogeology sustained by thermally insulating gas and salt hydrates. Geology 35, 97 (2007) Google Scholar
  80. J.F. Kasting, Planetary science: update: the early Mars climate question heats up. Science 278, 1245 (1997) ADSGoogle Scholar
  81. M.A.K. Khalil, R.A. Rasmussen, Atmospheric methane: recent global trends. Environ. Sci. Technol. 24, 549–553 (1990) Google Scholar
  82. H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews, Mars. Mars (1992) Google Scholar
  83. H.H. Kieffer, T.N. Titus, K.F. Mullins, P.R. Christensen, Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size. J. Geophys. Res. 105, 9653–9700 (2000) ADSGoogle Scholar
  84. H.C. Kim, P.R. Bishnoi, R.A. Heidemann, S.S.H. Rizvi, Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42(7), 1645–1653 (1987) Google Scholar
  85. J.B. Klauda, S.I. Sandler, Ab initio intermolecular potentials for gas hydrates and their predictions. J. Phys. Chem. B 106, 5722–5732 (2002) Google Scholar
  86. J.B. Klauda, S.I. Sandler, Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chem. Eng. Sci. 58, 27–41 (2003) Google Scholar
  87. M.G. Kleinhans, Flow discharge and sediment transport models for estimating a minimum timescale of hydrological activity and channel and delta formation on Mars. J. Geophys. Res. 110, 12003 (2005) Google Scholar
  88. T. Komai, S.-P. Kang, J.-H. Yoon, Y. Yamamoto, T. Kawamura, M. Ohtake, In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. J. Phys. Chem. B 108(23), 8062–8068 (2004) Google Scholar
  89. G. Komatsu, J.S. Kargel, V.R. Baker, R.G. Strom, G.G. Ori, C. Mosangini, K.L. Tanaka, A chaotic terrain formation hypothesis: explosive outgas and outlow by dissociation of clathrate on mars, in Lunar and Planetary Institute Science Conference Abstracts, vol. 31 (2000), p. 1434 Google Scholar
  90. G. Komatsu, G.G. Ori, M. Cardinale, J.M. Dohm, V.R. Baker, D.A. Vaz, R. Ishimaru, N. Namiki, T. Matsui, Roles of methane and carbon dioxide in geological processes on Mars. Planet. Space Sci. 59, 169–181 (2011) ADSGoogle Scholar
  91. V.A. Krasnopolsky, J.P. Maillard, T.C. Owen, Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004) ADSGoogle Scholar
  92. W.F. Kuhs, D.K. Staykova, A.N. Salamatin, Formation of methane hydrate from polydisperse ice powders. J. Phys. Chem. B 110(26), 13283–13295 (2006) Google Scholar
  93. H. Lammer, E. Chassefière, K. Özgur, A. Morschhauser, P.B. Niles, O. Mousis, P. Odert, U.V. Möstl, D. Breuer, V. Dehant, M. Grott, H. Gröller, E. Hauber, L. Binh San Pham, Outgassing history and escape of the Martian atmosphere and water inventory. Space Science Rev. (2012, in press) Google Scholar
  94. J. Laskar, A comment on “Accurate spin axes and solar system dynamics: climatic variations for the Earth and Mars”. Astron. Astrophys. 416, 799–800 (2004) ADSGoogle Scholar
  95. J. Lasue, N. Mangold, E. Hauber, S. Clifford, W. Feldman, O. Gasnault, S. Maurice, O. Mousis, Quantifying the Martian hydrosphere: current evidence, time evolution and implications for the habitability. Space Science Rev. (2012, in press) Google Scholar
  96. J.R. Leeman, M.E. Elwood Madden, CO2 clathrate formation and dissociation rates below 273 K. Geochim. Cosmochim. Acta 74, A576 (2010) Google Scholar
  97. J.R. Leeman, D.G. Blackburn, M.E. Elwood Madden, R. Ulrich, V. Chevrier, CO2 clathrate dissociation rates below the freezing point of water, in Lunar and Planetary Institute Science Conference Abstracts, vol. 41 (2010), p. 1418 Google Scholar
  98. F. Lefèvre, F. Forget, Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009) ADSGoogle Scholar
  99. Q. Li, W.S. Kiefer, Mantle convection and magma production on present-day Mars: effects of temperature-dependent rheology. Geophys. Res. Lett. 34, 16203 (2007) ADSGoogle Scholar
  100. V.Ya. Lipenkov, V.A. Istomin, On the stability of air clathrate-hydrate crystals in subglacial Lake Vostok, Antarctica. Materialy Glyatsiol. Issled. 91, 129–133 (2001) Google Scholar
  101. J. Longhi, Phase equilibrium in the system CO2–H2O: application to Mars. J. Geophys. Res. 111, 6011 (2006) Google Scholar
  102. J.I. Lunine, D.J. Stevenson, Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys. J. Suppl. Ser. 58, 493–531 (1985) ADSGoogle Scholar
  103. J.R. Lyons, C. Manning, F. Nimmo, Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 321, 13201 (2005) Google Scholar
  104. M. Mastepanov, C. Sigsgaard, E.J. Dlugokencky, S. Houweling, L. Ström, M.P. Tamstorf, T.R. Christensen, Large tundra methane burst during onset of freezing. Nature 456, 628–631 (2008) ADSGoogle Scholar
  105. M.D. Max, S.M. Clifford, The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105, 4165–4172 (2000) ADSGoogle Scholar
  106. M.D. Max, S.M. Clifford, Initiation of Martian outflow channels: related to the dissociation of gas hydrate? Geophys. Res. Lett. 28, 1787–1790 (2001) ADSGoogle Scholar
  107. A. Mazzini, Mud volcanism: processes and implications. Mar. Petroleum Geol. 26, 1677–1680 (2009) Google Scholar
  108. P.J. McGovern, S.C. Solomon, D.E. Smith, M.T. Zuber, M. Simons, M.A. Wieczorek, R.J. Phillips, G.A. Neumann, O. Aharonson, J.W. Head, Correction to “Localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution”. J. Geophys. Res. 109, 7007 (2004) Google Scholar
  109. D. McKenzie, F. Nimmo, The generation of Martian floods by the melting of ground ice above dykes. Nature 397, 231–233 (1999) ADSGoogle Scholar
  110. V. McKoy, O. Sinanoğlu, Theory of dissociation pressures of some gas hydrates. J. Chem. Phys. 38(12), 2946–2956 (1963) ADSGoogle Scholar
  111. M.T. Mellon, R.J. Phillips, Recent gullies on Mars and the source of liquid water. J. Geophys. Res. 106, 23165–23180 (2001) ADSGoogle Scholar
  112. M.T. Mellon, B.M. Jakosky, S.E. Postawko, The persistence of equatorial ground ice on Mars. J. Geophys. Res. 1021, 19357–19370 (1997) ADSGoogle Scholar
  113. S. Meresse, F. Costard, N. Mangold, P. Masson, G. Neukum (The HRSC Co-I Team), Formation and evolution of the chaotic terrains by subsidence and magmatism: hydraotes chaos, Mars. Icarus 194, 487–500 (2008) ADSGoogle Scholar
  114. P.-Y. Meslin, R. Gough, F. Lefèvre, F. Forget, Little variability of methane on Mars induced by adsorption in the regolith. Planet. Space Sci. 59, 247–258 (2011) ADSGoogle Scholar
  115. A.V. Milkov, Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 167, 29–42 (2000) Google Scholar
  116. S.L. Miller, The occurrence of gas hydrates in the solar system. Proc. Natl. Acad. Sci. USA 47, 1798–1808 (1961) ADSGoogle Scholar
  117. D.J. Milton, Carbon dioxide hydrate and floods on Mars. Science 183, 654–656 (1974) ADSGoogle Scholar
  118. M.A. Mischna, M.I. Richardson, R.J. Wilson, D.J. McCleese, On the orbital forcing of Martian water and CO2 cycles: a general circulation model study with simplified volatile schemes. J. Geophys. Res. 108, 5062 (2003) Google Scholar
  119. A.H. Mohammadi, R. Anderson, B. Tohidi, Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE J. 51, 2825–2833 (2005) Google Scholar
  120. F. Montmessin, The orbital forcing of climate changes on Mars. Space Sci. Rev. 125, 457–472 (2006) ADSGoogle Scholar
  121. F. Montmessin, P. Rannou, M. Cabane, New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res. 107, 5037 (2002) Google Scholar
  122. O. Mousis, J.I. Lunine, C. Thomas, M. Pasek, U. Marboeuf, Y. Alibert, V. Ballenegger, D. Cordier, Y. Ellinger, F. Pauzat, S. Picaud, Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere. Astrophys. J. 691, 1780–1786 (2009) ADSGoogle Scholar
  123. O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, Volatile inventories in clathrate hydrates formed in the primordial nebula. Faraday Discuss. 147, 509–525 (2010) ADSGoogle Scholar
  124. O. Mousis, J.I. Lunine, S. Picaud, D. Cordier, J.H. Waite, K.E. Mandt, Removal of Titan’s atmospheric noble gases by their sequestration in surface clathrates. Astrophys. J. Lett. 740, L9 (2011) ADSGoogle Scholar
  125. O. Mousis, J.I. Lunine, E. Chassefière, F. Montmessin, A. Lakhlifi, S. Picaud, J.-M. Petit, D. Cordier, Mars cryosphere: a potential reservoir for heavy noble gases? Icarus 218, 80–87 (2012) ADSGoogle Scholar
  126. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern Summer 2003. Science 323, 1041 (2009) ADSGoogle Scholar
  127. D. Musselwhite, J.I. Lunine, Alteration of volatile inventories by polar clathrate formation on Mars. J. Geophys. Res. 1002, 23301–23306 (1995) ADSGoogle Scholar
  128. D.S. Musselwhite, T.D. Swindle, Is release of Martian atmosphere from polar clathrate the cause of the nakhlite and ALH84001 Ar/Kr/Xe ratios? Icarus 154, 207–215 (2001) ADSGoogle Scholar
  129. P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9940-y zbMATHGoogle Scholar
  130. D. Nummedal, D.B. Prior, Generation of Martian chaos and channels by debris flows. Icarus 45, 77–86 (1981) ADSGoogle Scholar
  131. D.Z. Oehler, C.C. Allen, Evidence for pervasive mud volcanism in Acidalia Planitia, Mars. Icarus 208, 636–657 (2010) ADSGoogle Scholar
  132. A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Ancharov, M.A. Sheromov, A.N. Nesterov, Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation. J. Phys. Chem. B 110(6), 2840–2846 (2006) Google Scholar
  133. T. Okuchi, I.L. Moudrakovski, J.A. Ripmeester, Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate. Appl. Phys. Lett. 91, 171903 (2007) ADSGoogle Scholar
  134. M. Ota, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Methane recovery from methane hydrate using pressurized CO2. Fluid Phase Equilib. 228, 553–559 (2005) Google Scholar
  135. C. Oze, M. Sharma, Have olivine, will gas: serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 321, 10203 (2005) Google Scholar
  136. N.I. Papadimitriou, I.N. Tsimpanogiannis, A.G. Yiotis, T.A. Steriotis, A.K. Stubos, On the use of the Kihara potential for hydrate equilibrium calculations, in Physics and Chemistry of Ice, ed. by W. Kuhs (RSC, London, 2007), p. 476 Google Scholar
  137. W.R. Parrish, J.M. Prausnitz, Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Dev. 11(1), 26–35 (1972) [Erratum: Ind. Eng. Chem. Process Des. Dev. 11(3), 462 (1972)] Google Scholar
  138. G.B.M. Pedersen, J.W. Head, Chaos formation by sublimation of volatile-rich substrate: evidence from Galaxias Chaos, Mars. Icarus 211, 316–329 (2011) ADSGoogle Scholar
  139. R.O. Pepin, D. Porcelli, Origin of noble gases in terrestrial planets. Rev. Mineral. Geochem. 47, 191–246 (2002) Google Scholar
  140. B. Peters, N.E.R. Zimmermann, G.T. Beckham, J.W. Tester, B.L. Trout, Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130, 17342–17350 (2008) Google Scholar
  141. R.J. Phillips et al., Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 332, 838 (2011) ADSGoogle Scholar
  142. G. Picardi, D. Biccari, A. Cicchetti, R. Seu, J. Plaut, W.T.K. Johnson, R.L. Jordan, D.A. Gurnett, R. Orosei, E. Zampolini, Mars advanced radar for subsurface and ionosphere sounding (MARSIS). EGS—AGU—EUG Joint Assembly, 9597 (2003) Google Scholar
  143. H. Pimpalgaonkar, S.K. Veesam, N. Punnathanam, Theory of gas hydrates: effect of the approximation of rigid water lattice. J. Phys. Chem. A 115, 10018–10026 (2011) Google Scholar
  144. J.J. Plaut, A. Safaeinili, J.W. Holt, R.J. Phillips, J.W. Head, R. Seu, N.E. Putzig, A. Frigeri, Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Lett. 360, 2203 (2009) Google Scholar
  145. J.B. Pollack, J.F. Kasting, S.M. Richardson, K. Poliakoff, The case for a wet, warm climate on early Mars. Icarus 71, 203–224 (1987) ADSGoogle Scholar
  146. O. Prieto-Ballesteros, J.S. Kargel, M. Fernández-Sampedro, F. Selsis, E.S. Martínez, D.L. Hogenboom, Evaluation of the possible presence of clathrate hydrates in Europa’s icy shell or seafloor. Icarus 177, 491–505 (2005) ADSGoogle Scholar
  147. J.A.P. Rodriguez, S. Sasaki, R.O. Kuzmin, J.M. Dohm, K.L. Tanaka, H. Miyamoto, K. Kurita, G. Komatsu, A.G. Fairén, J.C. Ferris, Outflow channel sources, reactivation, and chaos formation, Xanthe Terra, Mars. Icarus 175, 36–57 (2005) ADSGoogle Scholar
  148. J.A.P. Rodriguez, J. Kargel, D.A. Crown, L.F. Bleamaster, K.L. Tanaka, V. Baker, H. Miyamoto, J.M. Dohm, S. Sasaki, G. Komatsu, Headward growth of chasmata by volatile outbursts, collapse, and drainage: evidence from Ganges chaos, Mars. Geophys. Res. Lett. 331, 18203 (2006) Google Scholar
  149. J.A.P. Rodríguez, K.L. Tanaka, J.S. Kargel, J.M. Dohm, R. Kuzmin, A.G. Fairén, S. Sasaki, G. Komatsu, D. Schulze-Makuch, Y. Jianguo, Formation and disruption of aquifers in southwestern Chryse Planitia, Mars. Icarus 191, 545–567 (2007) ADSGoogle Scholar
  150. R.A. Rohde, P.B. Price, Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. Proc. Natl. Acad. Sci. USA 104(24), 16592–16597 (2007) ADSGoogle Scholar
  151. M.J. Root, M.E. Elwood Madden, Potential effects of obliquity change on gas hydrate stability zones on Mars. Icarus 218, 534–544 (2012) ADSGoogle Scholar
  152. S. Sarupria, P.G. Debenedetti, Molecular dynamics study of carbon dioxide hydrate dissociation. J. Phys. Chem. A 115, 6102–6111 (2011) Google Scholar
  153. K. Satoh, T. Uchida, T. Hondon, S. Mae, Diffusion coefficient and solubility measurements of noble gases in ice crystals, in National Institute of Polar Reasearch-Proc. NIPR Symp. Polar Meteoral. Glaciol, vol. 10 (1996), pp. 73–81 Google Scholar
  154. E.J. Sauter, S.I. Muyakshin, J.-L. Charlou, M. Schlüter, A. Boetius, K. Jerosch, E. Damm, J.-P. Foucher, M. Klages, Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett. 243, 354–365 (2006) ADSGoogle Scholar
  155. R.P. Sharp, Mars: fretted and chaotic terrains. J. Geophys. Res. 78, 4073–4083 (1973) ADSGoogle Scholar
  156. J.A. Skinner Jr., A. Mazzini, Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar. Petroleum Geol. 26, 1866–1878 (2009) Google Scholar
  157. E.D. Sloan, Clathrate Hydrates of Natural Gases (Marcel Dekker, New York, 1998) Google Scholar
  158. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, 3rd edn. (CRC/Taylor & Francis, Boca Raton, 2008) Google Scholar
  159. A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, D.M. Hunten, K.J. Kim, R.C. Reedy, A.E. Metzger, ‘Mars’ south polar ar enhancement: a tracer for south polar seasonal meridional mixing. Science 306, 1364–1367 (2004) ADSGoogle Scholar
  160. A.L. Sprague, W.V. Boynton, K.E. Kerry, D.M. Janes, N.J. Kelly, M.K. Crombie, S.M. Melli, J.R. Murphy, R.C. Reedy, A.E. Metzger, ‘Mars’ atmospheric argon: tracer for understanding Martian atmospheric circulation and dynamics. J. Geophys. Res. 112, 3 (2007) Google Scholar
  161. L.A. Stern, S. Circone, S.H. Kirby, W.B. Durham, Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B 105, 1756–1762 (2001) Google Scholar
  162. C.-Y. Sun, G.-J. Chen, Methane hydrate dissociation above 0 °C and below 0 °C. Fluid Phase Equilib. 242, 123–128 (2006) Google Scholar
  163. R. Sun, Z. Duan, Prediction of CH4 and CO2 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials. Geochim. Cosmochim. Acta 69, 4411–4424 (2005) ADSGoogle Scholar
  164. T.D. Swindle, Some puzzles about what noble gas components were mixed into the nakhlites, and how, in Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites (2002), pp. 57–58 Google Scholar
  165. T.D. Swindle, C. Thomas, O. Mousis, J.I. Lunine, S. Picaud, Incorporation of argon, krypton and xenon into clathrates on Mars. Icarus 203, 66–70 (2009) ADSGoogle Scholar
  166. S.Y. Takeya, J.A. Ripmeester, Anomalous preservation of CH4 hydrate and its dependence on the morphology of hexagonal ice. ChemPhysChem 11, 70–73 (2010) Google Scholar
  167. S. Takeya, T. Hondoh, T. Uchida, In situ observation of CO2 hydrate by X-ray diffraction. Ann. N.Y. Acad. Sci. 912, 973–982 (2000) ADSGoogle Scholar
  168. S. Takeya, T. Uchida, J. Nagao, R. Ohmura, W. Shimada, Y. Kamata, T. Ebinuma, H. Narita, Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. 60(5), 1383–1387 (2005) Google Scholar
  169. K.L. Tanaka, Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J. Geophys. Res. 102, 4131–4150 (1997) ADSGoogle Scholar
  170. H. Tanaka, A novel approach to the stability of clathrate hydrates: grand canonical Monte Carlo simulation. Fluid Phase Equilib. 144, 361–368 (1998) Google Scholar
  171. K.L. Tanaka, Debris-flow origin for the Simud/Tiu deposit on Mars. J. Geophys. Res. 104, 8637–8652 (1999) ADSGoogle Scholar
  172. H. Tanaka, T. Nakatsuka, K. Koga, On the thermodynamic stability of clathrate hydrates IV: double occupancy of cages. J. Chem. Phys. 121, 5488–5493 (2004) ADSGoogle Scholar
  173. J.W. Tester, R.L. Bivins, C. Herrick, Use of Monte-Carlo in calculating thermodynamic properties of water clathrates. AIChE J. 18, 1220 (1972) Google Scholar
  174. C. Thomas, O. Mousis, V. Ballenegger, S. Picaud, Clathrate hydrates as a sink of noble gases in Titan’s atmosphere. Astron. Astrophys. 474, L17–L20 (2007) ADSGoogle Scholar
  175. C. Thomas, S. Picaud, O. Mousis, V. Ballenegger, A theoretical investigation into the trapping of noble gases by clathrates on Titan. Planet. Space Sci. 56, 1607–1617 (2008) ADSGoogle Scholar
  176. C. Thomas, O. Mousis, S. Picaud, V. Ballenegger, Variability of the methane trapping in Martian subsurface clathrate hydrates. Planet. Space Sci. 57, 42–47 (2009) ADSGoogle Scholar
  177. C. Thomas, S. Picaud, V. Ballenegger, O. Mousis, Sensitivitiy of predicted gas hydrate occupancies on treatment of intermolecular interactions. J. Chem. Phys. 132, 104510 (2010) ADSGoogle Scholar
  178. F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, 2205 (2009) Google Scholar
  179. J.E. Tillman, Mars global atmospheric oscillations: annually synchronized, transient normal-mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433–9451 (1988) ADSGoogle Scholar
  180. B.J. Travis, N.D. Rosenberg, J.N. Cuzzi, On the role of widespread subsurface convection in bringing liquid water close to Mars surface. J. Geophys. Res. 108, 8040 (2003) Google Scholar
  181. J.S. Tse, M.L. Klein, I.R. McDonald, Dynamical properties of the structure-I clathrate hydrate of xenon. J. Chem. Phys. 87, 2096–2097 (1983) ADSGoogle Scholar
  182. T. Uchida, S. Takeya, L.D. Wilson, C.A. Tulk, J.A. Ripmeester, J. Nagao, T. Ebinuma, H. Narita, Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction. Can. J. Phys. 81, 351–357 (2003) ADSGoogle Scholar
  183. R. Ulrich, T. Kral, V. Chevrier, R. Pilgrim, L. Roe, Dynamic temperature fields under Mars landing sites and implications for supporting microbial life. Astrobiology 10, 643–650 (2010) ADSGoogle Scholar
  184. J.H. van der Waals, J.C. Platteeuw, Clathrate solutions, in Advances in Chemical Physics, vol. 2 (Interscience, New York, 1959), pp. 1–57 Google Scholar
  185. M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326, 1096–1098 (2009) ADSGoogle Scholar
  186. X.P. Wang, A.J. Schultz, Y. Halpern, Kinetics of methane hydrate formation from polycrystalline deuterated ice. J. Phys. Chem. A 106(32), 7304–7309 (2002) Google Scholar
  187. K. Zahnle, R.S. Freedman, D.C. Catling, Is there methane on Mars? Icarus 212, 493–503 (2011) ADSGoogle Scholar
  188. G. Zhang, R.E. Rogers, Ultra-stability of gas hydrates at 1 atm and 268.2 K. Chem. Eng. Sci. 63, 2066–2074 (2008) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Olivier Mousis
    • 1
    • 2
    Email author
  • Eric Chassefière
    • 3
    • 4
  • Jérémie Lasue
    • 5
    • 6
  • Vincent Chevrier
    • 7
  • Megan E. Elwood Madden
    • 8
  • Azzedine Lakhlifi
    • 1
  • Jonathan I. Lunine
    • 9
  • Franck Montmessin
    • 10
  • Sylvain Picaud
    • 1
  • Frédéric Schmidt
    • 3
    • 4
  • Timothy D. Swindle
    • 11
  1. 1.Institut UTINAM, CNRS/INSU, UMR 6213Université de Franche-ComtéBesançon CedexFrance
  2. 2.UPS-OMP, CNRS-INSU, IRAPUniversité de ToulouseToulouseFrance
  3. 3.Laboratoire IDES, UMR 8148Univ. Paris-SudOrsayFrance
  4. 4.CNRSOrsayFrance
  5. 5.UPS-OMP, IRAPUniversité de ToulouseToulouseFrance
  6. 6.CNRSIRAPToulouse cedex 4France
  7. 7.W.M. Keck Laboratory for Space Simulation, Arkansas Center for Space and Planetary SciencesUniversity of ArkansasFayettevilleUSA
  8. 8.School of Geology and GeophysicsUniversity of OklahomaNormanUSA
  9. 9.Center for Radiophysics and Space ResearchCornell UniversityIthacaUSA
  10. 10.LATMOSCNRS/IPSL/UVSQGuyancourtFrance
  11. 11.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations