Skip to main content

Shock Acceleration of Ions in the Heliosphere

Abstract

Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. O. Adriani et al., Observations of the 2006 December 13 and 14 solar particle events in the 80 MeVn-1-3 GeVn-1 range from space with the PAMELA detector. Astrophys. J. 742, 102 (2011)

    ADS  Article  Google Scholar 

  2. W.I. Axford, Acceleration of cosmic rays by shock waves, in Proc. Int. Conf. Cosmic Rays 17th, vol. 12 (1981), p. 155

    Google Scholar 

  3. W.I. Axford, E. Leer, G. Skadron, The acceleration of cosmic rays by shock waves, in Proc. Int. Conf. Cosmic Rays 15th, vol. 11, (1977), p. 132

    Google Scholar 

  4. D. Band et al., Batse observations of gamma ray burst spectra. 1—Spectral diversity. Astrophys. J. 413, 281 (1993)

    ADS  Article  Google Scholar 

  5. A.R. Bell, The acceleration of cosmic rays in shock fronts. Mon. Not. R. Astron. Soc. 182, 147 (1978)

    ADS  Google Scholar 

  6. A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550 (2004)

    ADS  Article  Google Scholar 

  7. A.R. Bell, S.G. Lucek, Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field. Mon. Not. R. Astron. Soc. 321, 433 (2001)

    ADS  Article  Google Scholar 

  8. R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29 (1978)

    ADS  Article  Google Scholar 

  9. P. Bochsler, E. Möbius, Energetic neutral atoms: an additional source for heliospheric pickup ions. Astrophys. J. 721, L6 (2010)

    ADS  Article  Google Scholar 

  10. T.J. Bogdan, M.A. Lee, P. Schneider, Coupled quasi-linear wave damping and stochastic acceleration of pickup ions in the solar wind. J. Geophys. Res. 96, 161 (1991)

    ADS  Article  Google Scholar 

  11. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the Earth’s bow shock, 2. Origin. J. Geophys. Res. 86, 4405 (1981)

    ADS  Article  Google Scholar 

  12. H.H. Breneman, E.C. Stone, Solar coronal and photospheric abundances from solar energetic particle measurements. Astrophys. J. 299, L57 (1985)

    ADS  Article  Google Scholar 

  13. D. Burgess, E. Möbius, M. Scholer, Ion acceleration at the Earth’s bow shock. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9901-5

  14. M. Bzowski, M. Krolikowska, Are the sungrazing comets the inner source of pickup ions and energetic neutral atoms? Astron. Astrophys. 435, 723 (2005)

    ADS  Article  Google Scholar 

  15. H.V. Cane, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Mewaldt, Two components in major solar particle events. Geophys. Res. Lett. 30, 8017 (2003). doi:10.1029/2002GL016580

    ADS  Article  Google Scholar 

  16. H.V. Cane, R.A. Mewaldt, C.M.S. Cohen, T.T. von Rosenvinge, Role of flares and shocks in determining solar energetic particle abundances. J. Geophys. Res. 111, A06S90 (2006). doi:10.1029/2005JA011071

    ADS  Article  Google Scholar 

  17. P.J. Cargill, L. Vlahos, G. Baumann, J.F. Drake, A. Nordlund, Current fragmentation and particle acceleration in solar flares. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9888-y

  18. S.V. Chalov, H.J. Fahr, Energetic particles from the outer heliosphere appearing as a secondary pick-up ion component. Astron. Astrophys. 401, L1 (2003)

    ADS  Article  Google Scholar 

  19. C.M.S. Cohen et al., New observations of heavy-ion-rich solar particle events from ACE. Geophys. Res. Lett. 26, 2697 (1999a)

    ADS  Article  Google Scholar 

  20. C.M.S. Cohen et al., Inferred charge states of high energy solar particles from the solar isotope spectrometer on ACE. Geophys. Res. Lett. 26, 149 (1999b)

    ADS  Article  Google Scholar 

  21. C.M.S. Cohen et al., Heavy ion abundances and spectra from the large solar energetic particle events of October-November 2003. J. Geophys. Res. 110, A09S16 (2005). doi:10.1029/2005JA011004

    ADS  Article  Google Scholar 

  22. R.B. Decker, The modulation of low-energy proton distributions by propagating interplanetary shock waves: a numerical simulation. J. Geophys. Res. 86, 4537 (1981)

    ADS  Article  Google Scholar 

  23. M.I. Desai et al., Spectral properties of heavy ions associated with the passage of interplanetary shocks at 1 AU. Astrophys. J. 611, 1156 (2004)

    ADS  Article  Google Scholar 

  24. M.I. Desai et al., Heavy-ion elemental abundances in large solar energetic particle events and their implications for the seed population. Astrophys. J. 649, 470 (2006a)

    ADS  Article  Google Scholar 

  25. M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. 645, L81 (2006b)

    ADS  Article  Google Scholar 

  26. L.O’C. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys. 46, 973 (1983)

    ADS  Article  Google Scholar 

  27. L.O’C. Drury, W.I. Axford, D. Summers, Particle acceleration in modified shocks. Mon. Not. R. Astron. Soc. 198, 833 (1982)

    ADS  MATH  Google Scholar 

  28. J.A. Earl, The effect of adiabatic focusing upon charged particle propagation in random magnetic fields. Astrophys. J. 205, 900 (1976)

    ADS  Article  Google Scholar 

  29. D. Eichler, A cosmic ray mediated shock in the solar system. Astrophys. J. 247, 1089 (1981)

    ADS  Article  Google Scholar 

  30. D.C. Ellison, R. Ramaty, Shock acceleration of electrons and ions in solar flares. Astrophys. J. 298, 400 (1985)

    ADS  Article  Google Scholar 

  31. A.G. Emslie et al., Energy partition in two solar flare/CME events. J. Geophys. Res. 109, A10104 (2004). doi:10.1029/2004JA010571

    ADS  Article  Google Scholar 

  32. A.G. Emslie, B.R. Dennis, G.D. Holman, H.S. Hudson, Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events” by A.G. Emslie et al. J. Geophys. Res. 110, A11103 (2005). doi:10.1029/2005JA011305

    ADS  Article  Google Scholar 

  33. A. Falcone et al., Observation of GeV solar energetic particles from the 1997 November 6 event using Milagrito. Astrophys. J. 588, 557 (2003)

    ADS  Article  Google Scholar 

  34. E. Fermi, On the origin of the cosmic radiation. Phys. Rev. 75, 1169 (1949)

    ADS  MATH  Article  Google Scholar 

  35. E. Fermi, Galactic magnetic fields and the origin of cosmic radiation. Astrophys. J. 119, 1 (1954)

    ADS  Article  Google Scholar 

  36. L.A. Fisk, G. Gloeckler, Acceleration of suprathermal tails in the solar wind. Astrophys. J. 686, 1466 (2008)

    ADS  Article  Google Scholar 

  37. L.A. Fisk, G. Gloeckler, Particle acceleration in the heliosphere: implications for astrophysics. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9899-8

  38. L.A. Fisk, M.A. Lee, Shock acceleration of energetic particles in corotating interaction regions in the solar wind. Astrophys. J. 237, 620 (1980)

    ADS  Article  Google Scholar 

  39. V. Florinski, R.B. Decker, J.A. le Roux, G.P. Zank, An energetic-particle-mediated termination shock observed by Voyager 2. Geophys. Res. Lett. 36, L12101 (2009). doi:10.1029/2009GL038423

    ADS  Article  Google Scholar 

  40. S.E. Forbush, Three unusual cosmic-ray increases possibly due to charged particles from the Sun. Phys. Rev. 70, 771 (1946)

    ADS  Article  Google Scholar 

  41. M.A. Forman, L.O’C. Drury, Time dependent shock acceleration: approximations and exact solutions, in Proc. Int. Conf. Cosmic Rays 18th, vol. 2 (1983), p. 267

    Google Scholar 

  42. J. Geiss, G. Gloeckler, L.A. Fisk, R. von Steiger, C+ pickup ions in the heliosphere and their origin. J. Geophys. Res. 100, 23373 (1995)

    ADS  Article  Google Scholar 

  43. J. Giacalone, The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. 628, L37 (2005)

    ADS  Article  Google Scholar 

  44. J. Giacalone, J.R. Jokipii, The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204 (1999)

    ADS  Article  Google Scholar 

  45. J. Giacalone, J.R. Jokipii, Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. 663, L41 (2007)

    ADS  Article  Google Scholar 

  46. J. Giacalone, J.R. Jokipii, Suprathermal ions associated with strong interplanetary shocks, in Particle Acceleration and Transport. AIP Conf. Proc., vol. 1436 (AIP, New York, 2012), p. 130

    Google Scholar 

  47. J. Giacalone, M. Neugebauer, The energy spectrum of energetic particles downstream of turbulent collisionless shocks. Astrophys. J. 673, 629 (2008)

    ADS  Article  Google Scholar 

  48. J. Giacalone, J.F. Drake, J.R. Jokipii, The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9915-z

  49. G. Gloeckler et al., Acceleration of interstellar pickup ions in the disturbed solar wind observed on Ulysses. J. Geophys. Res. 99, 17637 (1994)

    ADS  Article  Google Scholar 

  50. G. Gloeckler et al., Interception of comet Hyakutake’s ion tail at a distance of 500 million kilometres. Nature 404, 576 (2000a)

    ADS  Article  Google Scholar 

  51. G. Gloeckler, L.A. Fisk, J. Geiss, N.A. Schwadron, T.H. Zurbuchen, Elemental composition of the inner source pickup ions. J. Geophys. Res. 105, 7459 (2000b)

    ADS  Article  Google Scholar 

  52. G. Gloeckler et al., Sources, injection and acceleration of heliospheric ion populations, in Acceleration and Transport of Energetic Particles Observed the Heliosphere: ACE 2000 Symposium, ed. by R.A. Mewaldt et al., AIP Conference Proceedings, vol. 528 (AIP, New York, 2000c), p. 221

    Google Scholar 

  53. N. Gopalswamy, Coronal mass ejections of Solar Cycle 23. J. Astrophys. Astron. 27, 243 (2006)

    ADS  Article  Google Scholar 

  54. N. Gopalswamy et al., Interacting coronal mass ejections and solar energetic particles. Astrophys. J. 572, L103 (2002)

    ADS  Article  Google Scholar 

  55. N. Gopalswamy, S. Yashiro, S. Krucker, G. Stenborg, R.A. Howard, Intensity variation of large solar energetic particle events associated with coronal mass ejections. J. Geophys. Res. 109, A12105 (2004). doi:10.1029/2004JA010602

    ADS  Article  Google Scholar 

  56. N. Gopalswamy, H. Xie, S. Yashiro, S. Akiyama, P. Mäkelä, I.G. Usoskin, Properties of ground level enhancement events and the associated solar eruptions during Solar Cycle 23. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9890-4

    Google Scholar 

  57. B.E. Gordon, M.A. Lee, E. Möbius, K.J. Trattner, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. 104, 28263 (1999)

    ADS  Article  Google Scholar 

  58. T. Hada, C.F. Kennel, T. Terasawa, Excitation of compressional waves and the formation of shocklets in the Earth’s foreshock. J. Geophys. Res. 92, 4423 (1987)

    ADS  Article  Google Scholar 

  59. E.A. Helder, J. Vink, A.M. Bykov, Y. Ohira, J.C. Raymond, R. Terrier, Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9919-8

  60. M.M. Hoppe, C.T. Russell, L.A. Frank, T.E. Eastman, E.W. Greenstadt, Upstream hydromagnetic waves and their association with backstreaming ion populations—ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471 (1981)

    ADS  Article  Google Scholar 

  61. P.D. Hudson, Reflection of charged particles by plasma shocks. Mon. Not. R. Astron. Soc. 131, 23 (1965)

    ADS  Google Scholar 

  62. P.A. Isenberg, A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res. 102, 4719 (1997)

    ADS  Article  Google Scholar 

  63. J.R. Jokipii, Propagation of cosmic rays in the solar wind. Rev. Geophys. Space Phys. 9, 27 (1971)

    ADS  Article  Google Scholar 

  64. J.R. Jokipii, Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J. 313, 842 (1987)

    ADS  Article  Google Scholar 

  65. J.R. Jokipii, M.A. Lee, Compression acceleration in astrophysical plasmas and the production of f(v)∝v −5 spectra in the heliosphere. Astrophys. J. 713, 475 (2010)

    ADS  Article  Google Scholar 

  66. S.W. Kahler, The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: effects of ambient particle intensities and energy spectra. J. Geophys. Res. 106, 20947 (2001)

    ADS  Article  Google Scholar 

  67. S.W. Kahler et al., Associations between coronal mass ejections and solar energetic proton events. J. Geophys. Res. 89, 9683 (1984)

    ADS  Article  Google Scholar 

  68. C.F. Kennel, F.V. Coroniti, F.L. Scarf, W.A. Livesey, C.T. Russell, E.J. Smith, A test of Lee’s quasi-linear theory of ion acceleration by interplanetary traveling shocks. J. Geophys. Res. 91, 11917 (1986)

    ADS  Article  Google Scholar 

  69. B. Klecker, E. Möbius, M.A. Popecki, Ionic charge states of solar energetic particles: a clue to the source. Space Sci. Rev. 130, 273 (2007)

    ADS  Article  Google Scholar 

  70. J. Kota, Anomalous cosmic rays at a blunt termination shock, in Proc. Int. Conf. Cosmic Rays 30th, vol. 1 (2008), p. 853

    Google Scholar 

  71. G.F. Krymsky, A regular mechanism for the acceleration of charged particles on the front of a shock wave. Dokl. Akad. Nauk SSSR 234, 1306 (1977)

    ADS  Google Scholar 

  72. H. Kucharek et al., On the source and acceleration of energetic He+: a long-term observation with ACE/SEPICA. J. Geophys. Res. 108(A10), 8040 (2003). doi:10.1029/2003JA009938

    Article  Google Scholar 

  73. J. Kunches (2005). http://umbra.nascom.nasa.gov/SEP/

  74. D. Lario, G.C. Ho, R.B. Decker, E.C. Roelof, M.I. Desai, C.W. Smith, ACE observations of energetic particles associated with transient interplanetary shocks, in Solar Wind Ten. AIP Conference Proceedings, vol. 679 (AIP, New York, 2003) 640

    Google Scholar 

  75. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J. Geophys. Res. 87, 5063 (1982)

    ADS  Article  Google Scholar 

  76. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109 (1983)

    ADS  Article  Google Scholar 

  77. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at an evolving coronal/interplanetary shock. Astrophys. J. Suppl. 158, 38 (2005)

    ADS  Article  Google Scholar 

  78. M.A. Lee, H.J. Völk, Hydromagnetic waves and cosmic ray diffusion theory. Astrophys. J. 198, 485 (1975)

    ADS  Article  Google Scholar 

  79. R.A. Leske et al., Solar isotopic composition as determined using solar energetic particles. Space Sci. Rev. 130, 195 (2007). doi:10.1007/s11214-007-9185-3

    ADS  Article  Google Scholar 

  80. G. Li, G.P. Zank, Mixed particle acceleration at CME-driven shocks and flares. Geophys. Res. Lett. 32, L02101 (2005a). doi:10.1029/2004GL021250

    Article  Google Scholar 

  81. G. Li, G.P. Zank, Multiple CMEs and large gradual SEP events, in Proc. Int. Conf. Cosmic Rays 29th, vol. 1 (2005b), p. 173

    Google Scholar 

  82. G. Li, G.P. Zank, W.K.M. Rice, Acceleration and transport of heavy ions at coronal mass ejection-driven shocks. J. Geophys. Res. 110, A06104 (2005). doi:10.1029/2004JA010600

    ADS  Article  Google Scholar 

  83. G. Li et al., Shock geometry and spectral breaks in large SEP events. Astrophys. J. 702, 998 (2009)

    ADS  Article  Google Scholar 

  84. G. Li, R. Moore, R.A. Mewaldt, L. Zhao, A.W. Labrador, A twin-CME scenario for ground level enhancement events. Space Sci. Rev. (2012). doi:10.1007/s11214-011-9823-7

    Google Scholar 

  85. R.P. Lin, Energy release and particle acceleration in flares: summary and future prospects. Space Sci. Rev. 159, 421 (2011). doi:10.1007/s11214-011-9801-0

    ADS  Article  Google Scholar 

  86. C. Lopate, Fifty years of ground level solar particle event observations, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti, AGU Monograph Series (AGU, Washington, 2006), p. 283

    Chapter  Google Scholar 

  87. E.A. Lucek, T.S. Horbury, I. Dandouras, H. Reme, Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. 113, A07S02 (2008). doi:10.1029/2007JA012756

    ADS  Article  Google Scholar 

  88. G. Mann, A. Klassen, H. Aurass, H.-T. Classen, Formation and development of shock waves in the solar corona and the near-Sun interplanetary space. Astron. Astrophys. 400, 329 (2003)

    ADS  Article  Google Scholar 

  89. G.M. Mason et al., Particle acceleration and sources in the November 1997 solar energetic particle events. Geophys. Res. Lett. 26, 141 (1999a)

    ADS  Article  Google Scholar 

  90. G.M. Mason, J.E. Mazur, J.R. Dwyer, 3He enhancements in large solar energetic particle events. Astrophys. J. 525, L133 (1999b)

    ADS  Article  Google Scholar 

  91. G.M. Mason et al., Abundances of heavy and ultraheavy ions in 3He-rich solar flares. Astrophys. J. 606, 555 (2004)

    ADS  Article  Google Scholar 

  92. S. Masson et al., Acceleration of relativistic protons during the 20 January 2005 flare and CME. Sol. Phys. 257, 305 (2009)

    ADS  Article  Google Scholar 

  93. J.E. Mazur, G.M. Mason, M.D. Looper, R.A. Leske, R.A. Mewaldt, Charge states of solar energetic particles using the geomagnetic cutoff technique: SAMPEX measurements in the 6 November 1997 solar particle event. Geophys. Res. Lett. 26, 173 (1999)

    ADS  Article  Google Scholar 

  94. D.J. McComas, N.A. Schwadron, An explanation of the Voyager paradox: particle acceleration at a blunt termination shock. Geophys. Res. Lett. 33, L04102 (2006). doi:10.1029/2005GL025437

    Article  Google Scholar 

  95. K.G. McCracken, H. Moraal, P.H. Stoker, Investigation of the multiple-component structure of the 20 January 2005 cosmic ray ground level enhancement. J. Geophys. Res. 113, A12101 (2008). doi:10.1029/2007JA012829

    ADS  Article  Google Scholar 

  96. R.B. McKibben, Azimuthal propogation of low-energy solar-flare protons as observed from spacecraft very widely separated in solar azimuth. J. Geophys. Res. 77, 3957 (1972)

    ADS  Article  Google Scholar 

  97. R.A. Mewaldt, Solar energetic particle composition, energy spectra, and space weather. Space Sci. Rev. 124, 303 (2007). doi:10.1007/s11214-006-9091-0

    ADS  Article  Google Scholar 

  98. R.A. Mewaldt et al. (eds.), Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium. AIP Conference Proceedings, vol. 528 (2000). Cover picture

    Google Scholar 

  99. R.A. Mewaldt et al., Proton, helium, and electron spectra during the large solar particle events of October-November 2003. J. Geophys. Res. 110, A09S18 (2005). doi:10.1029/2005JA011038

    ADS  Article  Google Scholar 

  100. R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, The source material for large solar energetic particle events, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti, AGU Monograph Series, vol. 165 (2006), p. 115

    Chapter  Google Scholar 

  101. R.A. Mewaldt et al., On the differences in composition between solar energetic particles and solar wind. Space Sci. Rev. 130, 207 (2007)

    ADS  Article  Google Scholar 

  102. R.A. Mewaldt et al., How efficient are coronal mass ejections at accelerating solar energetic particles? in Particle Acceleration and Transport in the Heliosphere and Beyond. AIP Conference Proceedings, vol. 1039 (2008), p. 111

    Google Scholar 

  103. R.A. Mewaldt et al., STEREO observations of energetic neutral hydrogen atoms during the 2006 December 5 solar flare. Astrophys. J. 693, L11 (2009)

    ADS  Article  Google Scholar 

  104. R.A. Mewaldt et al., Observations and interpretations of energetic neutral hydrogen atoms from the December 5, 2006 solar event, in Twelfth International Solar Wind Conference. AIP Conference Proceedings, vol. 1216 (AIP, New York, 2010), p. 592

    Google Scholar 

  105. R.A. Mewaldt et al., Energy spectra, composition, and other properties of ground-level events during Solar Cycle 23. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9884-2

    Google Scholar 

  106. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), pp. 865–869

    MATH  Google Scholar 

  107. M. Neugebauer, J. Giacalone, Multispacecraft observations of interplanetary shocks: nonplanarity and energetic particles. J. Geophys. Res. 110, A12106 (2005). doi:10.1029/2005JA011380

    ADS  Article  Google Scholar 

  108. M. Neugebauer et al., Encounter of the Ulysses spacecraft with the ion tail of Comet McNaught. Astrophys. J. 667, 1262 (2007)

    ADS  Article  Google Scholar 

  109. C.K. Ng, D.V. Reames, Focused interplanetary transport of approximately 1 MeV solar energetic protons through self-generated Alfvén waves. Astrophys. J. 424, 1032 (1994)

    ADS  Article  Google Scholar 

  110. C.K. Ng, D.V. Reames, A.J. Tylka, Effect of proton-amplified waves on the evolution of solar energetic particle composition in gradual events. Geophys. Res. Lett. 26, 2145 (1999)

    ADS  Article  Google Scholar 

  111. V. Ontiveros, A. Vourlidas, Quantitative measurements of coronal mass ejection-driven shocks from LASCO observations. Astrophys. J. 693, 267 (2009)

    ADS  Article  Google Scholar 

  112. E.N. Parker, The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9 (1965)

    ADS  Article  Google Scholar 

  113. G. Paschmann et al., Characteristics of reflected and diffuse ions upstream from the Earth’s bow shock. J. Geophys. Res. 86, 4355 (1981)

    ADS  Article  Google Scholar 

  114. V.S. Ptuskin, Cosmic-ray acceleration by long-wave turbulence. Pis’ma Astron. Zh. 14, 599 (1988)

    ADS  Google Scholar 

  115. V.S. Ptuskin, Propagation, confinement models, and large-scale dynamical effects of galactic cosmic rays. Space Sci. Rev. 99, 281 (2001)

    ADS  Article  Google Scholar 

  116. K.R. Pyle, J.A. Simpson, A. Barnes, J.D. Mihalov, Shock acceleration of nuclei and electrons in the heliosphere beyond 24 AU. Astrophys. J. 282, 107 (1984)

    ADS  Article  Google Scholar 

  117. J.C. Raymond, S. Krucker, R.P. Lin, V. Petrosian, Observational aspects of particle acceleration in large solar flares. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9897-x

  118. D.V. Reames, Acceleration of energetic particles by shock waves from large solar flares. Astrophys. J. 358, L63 (1990)

    ADS  Article  Google Scholar 

  119. D.V. Reames, Coronal abundances determined from energetic particles. Adv. Space Res. 15, 41 (1995)

    ADS  Article  Google Scholar 

  120. D.V. Reames, Particle acceleration by CME-driven shock waves, in Proc. Int. Conf. Cosmic Rays 26th. AIP Conference Proceedings, vol. 516 (AIP, New York, 2000), pp. 289–300

    Google Scholar 

  121. D.V. Reames, C.K. Ng, Streaming-limited intensities of solar energetic particles. Astrophys. J. 504, 1002 (1998)

    ADS  Article  Google Scholar 

  122. D.V. Reames, C.K. Ng, Streaming-limited intensities of solar energetic particles on the intensity plateau. Astrophys. J. 723, 1286 (2010)

    ADS  Article  Google Scholar 

  123. D.V. Reames et al., Energy spectra of ions accelerated in impulsive and gradual solar events. Astrophys. J. 483, 515 (1997a)

    ADS  Article  Google Scholar 

  124. D.V. Reames, S.W. Kahler, C.K. Ng, Spatial and temporal invariance in the spectra of energetic particles in gradual solar events. Astrophys. J. 491, 414 (1997b)

    ADS  Article  Google Scholar 

  125. D.V. Reames et al., Late-phase acceleration of energetic ions in corotating interaction regions. Geophys. Res. Lett. 24, 2917 (1997c)

    ADS  Article  Google Scholar 

  126. E.C. Roelof, Propagation of solar cosmic rays in the interplanetary magnetic field, in Lectures in High-Energy Astrophysics, ed. by H. Ögelman, J.R. Wayland, NASA SP-199 (NASA, Washington, 1969), p. 111

    Google Scholar 

  127. E.T. Sarris, J.A. Van Allen, Effects of interplanetary shock waves on energetic charged particles. J. Geophys. Res. 79, 4157 (1974)

    ADS  Article  Google Scholar 

  128. K.M. Schure, A.R. Bell, L. O’C. Drury, A.M. Bykov, Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. (2012, this issue). doi:10.1007/s11214-012-9871-7

  129. N.A. Schwadron, D.J. McComas, Pickup ions from energetic neutral atoms. Astrophys. J. 712, L157 (2010)

    ADS  Article  Google Scholar 

  130. N.A. Schwadron, M.A. Lee, D.J. McComas, Diffusive acceleration at the blunt termination shock. Astrophys. J. 675, 1584 (2008)

    ADS  Article  Google Scholar 

  131. S.J. Schwartz, D. Burgess, Quasi-parallel shocks—a patchwork of three-dimensional structures. Geophys. Res. Lett. 18, 373 (1991)

    ADS  Article  Google Scholar 

  132. E.C. Stone et al., The advanced composition explorer. Space Sci. Rev. 86, 1 (1998)

    ADS  Article  Google Scholar 

  133. B.T. Tsurutani, E.J. Smith, D.E. Jones, Waves observed upstream of interplanetary shocks. J. Geophys. Res. 88, 5645 (1983)

    ADS  Article  Google Scholar 

  134. A.J. Tylka, W.F. Dietrich, A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events, in Int. Cosmic Ray Conf. 31st (2009). http://icrc2009.uni.lodz.pl/proc/pdf/icrc0273.pdf

    Google Scholar 

  135. A.J. Tylka, M.A. Lee, A model for spectral and compositional variability at high energies in large, gradual solar particle events. Astrophys. J. 646, 1319 (2006)

    ADS  Article  Google Scholar 

  136. A.J. Tylka, D.V. Reames, C.K. Ng, Observations of systematic temporal evolution in elemental composition during gradual solar energetic particle events. Geophys. Res. Lett. 26, 2141 (1999)

    ADS  Article  Google Scholar 

  137. A.J. Tylka, P.R. Boberg, R.E. McGuire, C.K. Ng, D.V. Reames, Temporal evolution in the spectra of gradual solar energetic particle events, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, ed. by R.A. Mewaldt et al., AIP Conference Proceedings, vol. 528 (AIP, New York, 2000), pp. 147–152

    Google Scholar 

  138. A.J. Tylka et al., Evidence for remnant flare suprathermals in the source population of solar energetic particles in the 2000 Bastille Day event. Astrophys. J. 558, L59 (2001)

    ADS  Article  Google Scholar 

  139. A.J. Tylka et al., Shock geometry, seed populations, and the origin of variable elemental composition at high energies in large gradual solar particle events. Astrophys. J. 625, 474 (2005)

    ADS  Article  Google Scholar 

  140. R. Vainio, On the generation of Alfvén waves by solar energetic particles. Astron. Astrophys. 406, 735 (2003)

    ADS  Article  Google Scholar 

  141. P. van Nes, R. Reinhard, T.R. Sanderson, K.-P. Wenzel, R.D. Zwickl, The energy spectrum of 35- to 1600-keV protons associated with interplanetary shocks. J. Geophys. Res. 89, 2122 (1984)

    ADS  Article  Google Scholar 

  142. L. Wang, R.P. Lin, S. Krucker, G.M. Mason, A statistical study of solar electron events over one solar cycle. Astrophys. J. (2012, submitted)

  143. M.E. Wiedenbeck et al., How common is energetic 3He in the inner heliosphere? in Solar Wind 10 Proceedings of the Tenth International Solar Wind Conference, ed. by M. Velli, R. Bruno, F. Malara, AIP Conf. Proc., vol. 679 (AIP, New York, 2003), pp. 652–655

    Google Scholar 

  144. G.P. Zank, G. Li, V. Florinski, Q. Hu, D. Lario, C.W. Smith, Particle acceleration at perpendicular shock waves: model and observations. J. Geophys. Res. 111, A06108 (2006). doi:10.1029/2005JA011524

    ADS  Article  Google Scholar 

  145. M. Zhang, M.A. Lee, Stochastic acceleration of energetic particles in the heliosphere. Space Sci. Rev. (2011). doi:10.1007/s11214-011-9754-3

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the hospitality of the International Space Science Institute, the stimulating program of the Workshop on Particle Acceleration in Cosmic Plasmas, and the patience of Dr. Andre Balogh while awaiting this typescript. The contribution of M.A.L. was supported, in part, by NASA grants NNX08AJ13G, NNX11AO97G and NNX12AB32G. The contribution of R.A.M. was sponsored by NASA under grants NNX8AI11G, NNX06AC21G, and under subcontract SA2715-26309 from UC Berkeley under NASA contract NAS5-03131. The contribution of J.G. was supported, in part, by NASA grants NNX11AO64G and NNX10AF24G.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin A. Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, M.A., Mewaldt, R.A. & Giacalone, J. Shock Acceleration of Ions in the Heliosphere. Space Sci Rev 173, 247–281 (2012). https://doi.org/10.1007/s11214-012-9932-y

Download citation

Keywords

  • Particle acceleration
  • Solar energetic particles
  • Diffusive shock acceleration