Space Science Reviews

, Volume 174, Issue 1–4, pp 329–364 | Cite as

Geochemical Consequences of Widespread Clay Mineral Formation in Mars’ Ancient Crust

  • Bethany L. EhlmannEmail author
  • Gilles Berger
  • Nicolas Mangold
  • Joseph R. Michalski
  • David C. Catling
  • Steven W. Ruff
  • Eric Chassefière
  • Paul B. Niles
  • Vincent Chevrier
  • Francois Poulet


Clays form on Earth by near-surface weathering, precipitation in water bodies within basins, hydrothermal alteration (volcanic- or impact-induced), diagenesis, metamorphism, and magmatic precipitation. Diverse clay minerals have been detected from orbital investigation of terrains on Mars and are globally distributed, indicating geographically widespread aqueous alteration. Clay assemblages within deep stratigraphic units in the Martian crust include Fe/Mg smectites, chlorites and higher temperature hydrated silicates. Sedimentary clay mineral assemblages include Fe/Mg smectites, kaolinite, and sulfate, carbonate, and chloride salts. Stratigraphic sequences with multiple clay-bearing units have an upper unit with Al-clays and a lower unit with Fe/Mg-clays. The typical restriction of clay minerals to the oldest, Noachian terrains indicates a distinctive set of processes involving water-rock interaction that was prevalent early in Mars history and may have profoundly influenced the evolution of Martian geochemical systems. Current analyses of orbital data have led to the proposition of multiple clay-formation mechanisms, varying in space and time in their relative importance. These include near-surface weathering, formation in ice-dominated near-surface groundwaters, and formation by subsurface hydrothermal fluids. Near-surface, open system formation of clays would lead to fractionation of Mars’ crustal reservoir into an altered crustal reservoir and a sedimentary reservoir, potentially involving changes in the composition of Mars’ atmosphere. In contrast, formation of clays in the subsurface by either aqueous alteration or magmatic cooling would result in comparatively little geochemical fractionation or interaction of Mars’ atmospheric, crustal, and magmatic reservoirs, with the exception of long-term sequestration of water. Formation of clays within ice would have geochemical consequences intermediate between these endmembers. We outline the future analyses of orbital data, in situ measurements acquired within clay-bearing terrains, and analyses of Mars samples that are needed to more fully elucidate the mechanisms of martian clay formation and to determine the consequences for the geochemical evolution of the planet.


Mars Clay minerals Phyllosilicates Weathering Alteration Geochemistry Mineralogy Noachian 



Thanks to J. Bell, J. Bishop, and M. Toplis for thorough reviews that improved this manuscript. Thanks also to M. Toplis and the ISSI conference organizers for promoting fruitful interdisciplinary discussion of clays on Mars. E. Chassefière acknowledges support from CNRS EPOV interdisciplinary program.


  1. O. Abramov, D.A. Kring, Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. 110, E12S09 (2005) CrossRefGoogle Scholar
  2. J.H. Ahn, D.R. Peacor, D.S. Coombs, Formation mechanisms of illite, chlorite, and mixed-layer illite-chlorite in Triassic volcanogenic sediments from the Southland Syncline. New Zealand. Contrib. Mineral. Petrol. 99, 82–89 (1988) ADSCrossRefGoogle Scholar
  3. C.C. Allen, M.J. Jercinovic, T. See, K. Keil, Experimental shock lithification of water-bearing rock powders. Geophys. Res. Lett. 9, 1013–1016 (1982a) ADSCrossRefGoogle Scholar
  4. C.C. Allen, J.L. Gooding, K. Keil, Hydrothermally altered impact melt rock and breccia: contributions to the soil of Mars. J. Geophys. Res. 87, 10,083–10,101 (1982b) ADSCrossRefGoogle Scholar
  5. J.C. Alt, Very low grade hydrothermal metamorphism of basic igneous rocks, in Low Grade Metamorphism, ed. by M. Frey, D. Robinson (Blackwell Scientific, Oxford, 1999), pp. 169–201 Google Scholar
  6. T. Altheide, V. Chevrier, E. Noe Dobrea, Mineralogical characterization of acid weathered phyllosilicates with implications for secondary Martian deposits. Geochim. Cosmochim. Acta 74, 6232–6248 (2010) ADSCrossRefGoogle Scholar
  7. R.K.R. Ambers, Relationships between clay mineralogy, hydrothermal metamorphism, and topography in a western cascades watershed, Oregon, USA. Geomorphology 28, 47–61 (2001) ADSCrossRefGoogle Scholar
  8. D. Ames, I.M. Kjarsgaard, K.O. Pope, B. Dressler, M. Pilkington, Secondary alteration of the impactite and mineralization in the basal tertiary sequence, Yaxcopoil-1, Chixulub impact crater, Mexico. Meteorit. Planet. Sci. 39(7), 1145–1167 (2004) ADSCrossRefGoogle Scholar
  9. V. Ansan, N. Mangold, P. Masson, E. Gailhardis, G. Neukum, Topography of valley networks on Mars from the Mars Express High Resolution Stereo Camera digital elevation models. J. Geophys. Res. 113, E07006 (2008). doi: 10.1029/2007JE002986 CrossRefGoogle Scholar
  10. V. Ansan, D. Loizeau, N. Mangold, S. Le Mouélic, J. Carter, F. Poulet, G. Dromart, A. Lucas, J.-P. Bibring, A. Gendrin, B. Gondet, Y. Langevin, Ph. Masson, S. Murchie, J.F. Mustard, G. Neukum, Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus 211, 273–304 (2011). doi: 10.1016/j.icarus.2010.09.011 ADSCrossRefGoogle Scholar
  11. P. Arkai, F.P. Sassi, J. Desmons, A systematic nomenclature for metamorphic rocks. 5. Very low- to low-grade metamorphic rocks. Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. SCMR website ( (2003)
  12. R.E. Arvidson, J.L. Gooding, H.J. Moore, The Martian surface as imaged, sampled, and analyzed by the Viking landers. Rev. Geophys. 21(1), 39–60 (1989) ADSCrossRefGoogle Scholar
  13. A.K. Baird, B.C. Clark, On the original igneous source of Martian fines. Icarus 45, 113–123 (1981) ADSCrossRefGoogle Scholar
  14. A.M. Baldridge et al., Contemporaneous deposition of phyllosilicates and sulfates: using Australian acidic saline lake deposits to describe geochemical variability on Mars. Geophys. Res. Lett. 36 (2009). doi: 10.1029/2009GL040069
  15. J.L. Bandfield, Global mineral distributions on Mars. J. Geophys. Res. 107(E6) (2002). doi: 10.1029/2001JE001510
  16. J.L. Bandfield, T.D. Glotch, P.R. Christensen, Spectroscopic identification of carbonate minerals in the Martian dust. Science 301, 1084–1087 (2003) ADSCrossRefGoogle Scholar
  17. A. Banin et al., Surface chemistry and mineralogy, in Mars, ed. by H.H. Kieffer et al. (Univ. of Arizona Press, Tucson, 1992), pp. 594–625 Google Scholar
  18. A. Banin et al., Acidic volatiles and the Mars soil. J. Geophys. Res. 102, 13341–13356 (1997) ADSCrossRefGoogle Scholar
  19. K.J. Benison et al., Sedimentology of acid saline lakes in Southern Western Australia: newly described products and processes of an extreme environment. J. Sediment. Res. 77, 366–388 (2007) ADSCrossRefGoogle Scholar
  20. J.F. Bell, T.B. McCord, P.D. Owensby, Observational evidence of crystalline iron oxides on Mars. J. Geophys. Res. 95, 14,447–14,461 (1990) ADSGoogle Scholar
  21. G. Berger, B. Velde, Chemical parameters controlling the propylitic and argillic alteration process. Eur. J. Mineral. 4, 1439–1454 (1992) Google Scholar
  22. G. Berger, M.J. Toplis, E. Treguier, C. d’Uston, P. Pinet, Evidence in favor of small amounts of ephemeral and transient water during alteration at Meridiani Planum, Mars. Am. Mineral. 94, 1279–1282 (2009) ADSCrossRefGoogle Scholar
  23. J.P. Bibring et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006) ADSCrossRefGoogle Scholar
  24. J.-P. Bibring et al., Coupled ferric oxides and sulfates on the Martian surface. Science 317, 1206–1210 (2007) ADSCrossRefGoogle Scholar
  25. J.L. Bishop, P. Schiffman, E. Murad, M.D. Dyar, A. Drief, M.D. Lane, Characterization of alteration products in Tephra from Haleakala, Maui: A visible-infrared spectroscopy, Mössbauer spectroscopy, XRD, EPMA and TEM study. Clays Clay Miner. 55(1), 1–17 (2007) ADSCrossRefGoogle Scholar
  26. J.L. Bishop, M.D. Lane, M.D. Dyar, A.J. Brown, Reflectance and emission spectroscopy study of four groups of phyllosilicates: smectites, kaolinite-serpentines, chlorites and micas. Clay Miner. 43, 35–54 (2008a) CrossRefGoogle Scholar
  27. J.L. Bishop et al., Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830–833 (2008b) ADSCrossRefGoogle Scholar
  28. J.L. Bishop et al., Mineralogy of Juventae Chasma: Sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau. J. Geophys. Res. 114, E00D09 (2009) CrossRefGoogle Scholar
  29. J.L. Bishop, W.P. Gates, H.D. Makarewicz, N.K. McKeown, T. Hiroi, Reflectance spectroscopy of beidellites and their importance for Mars. Clays Clay Miner. 59(4), 376–397 (2011) ADSCrossRefGoogle Scholar
  30. D. Blake et al., Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9905-1 Google Scholar
  31. A. Bouvier, J. Blichert-Toft, J.D. Vervoort, F. Albarède, The age of SNC meteorites and the antiquity of the Martian surface. Earth Planet. Sci. Lett. 240, 221–233 (2005) ADSCrossRefGoogle Scholar
  32. W.V. Boynton et al., Elemental abundances determined via the Mars Odyssey GRS, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell (Cambridge University Press, Cambridge, 2008), pp. 105–124 Google Scholar
  33. W.V. Boynton et al., Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 61–64 (2009) ADSGoogle Scholar
  34. T. Bristow, R.E. Milliken, Terrestrial perspective on authigenic clay mineral production in ancient Martian lakes. Clays Clay Miner. 59(4), 339–358 (2011) ADSCrossRefGoogle Scholar
  35. D.L. Buczkowski et al., Investigation of an Argyre basin ring structure using Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars. J. Geophys. Res. 115, E12011 (2010) ADSCrossRefGoogle Scholar
  36. R. Buick, The earliest records of life on Earth, in Planets and Life: The Emerging Science of Astrobiology, ed. by W.T. Sullivan, J. Baross (Cambridge University Press, Cambridge, 2007), pp. 237–264 Google Scholar
  37. M.A. Bullock, J.M. Moore, Atmospheric conditions on early Mars and the missing layered carbonates. Geophys. Res. Lett. 34, L19201 (2007). doi: 10.1029/2007GL030688 ADSCrossRefGoogle Scholar
  38. R.G. Burns, Dehydroxylated clay silicates on Mars: Riddles about the Martian regolith solved with ferrian saponites. MSATT Workshop on Chemical Weathering on Mars, LPI Tech. Rept., 92-04, 6–7, 1992 Google Scholar
  39. R.G. Burns, Rates and mechanisms of chemical-weathering of ferromagnesian silicate minerals on Mars. Geochim. Cosmochim. Acta 57(19), 4555–4574 (1993) ADSCrossRefGoogle Scholar
  40. R.G. Burns, D.S. Fisher, Iron-sulfur mineralogy of Mars: magmatic evolution and chemical weathering products. J. Geophys. Res. 95(B9), 14,415–14,421 (1990). doi: 10.1029/JB095iB09p14415 ADSGoogle Scholar
  41. J. Carter, F. Poulet, J.-P. Bibring, S. Murchie, Detection of hydrated silicates in crustal outcrops in the northern plains of Mars. Science 328, 1682–1686 (2010) ADSCrossRefGoogle Scholar
  42. J. Carter, F. Poulet, Orbital identification of clays and carbonates in Gusev crater. Icarus 219(1), 250–253 (2012) ADSCrossRefGoogle Scholar
  43. H. Chamley, Clay Sedimentology (Springer, Berlin, 1989), pp. 391–422 Google Scholar
  44. H.G. Changela, J.C. Bridges, Alteration assemblages in the nakhlites: variation with depth on Mars. Meteorit. Planet. Sci. 45, 1847–1867 (2011) ADSCrossRefGoogle Scholar
  45. E. Chassefière, F. Leblanc, Constraining methane release due to serpentinization by the observed D/H ratio on Mars. Earth Planet. Sci. Lett. (2011). doi: 10.1016/j.epsl.2011.08.013 Google Scholar
  46. C. Che, T.D. Glotch, D.L. Bish, J.R. Michalski, W. Xu, Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. J. Geophys. Res. 116 (2011). doi: 10.1029/2010JE003740
  47. V. Chevrier, F. Poulet, J.-P. Bibring, Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature 448, 60–63 (2007) ADSCrossRefGoogle Scholar
  48. P.R. Christensen et al., Detection of crystalline hematite mineralization on Mars by the thermal emission spectrometer: evidence for near-surface water. J. Geophys. Res. 105, 9623–9642 (2000) ADSCrossRefGoogle Scholar
  49. B.C. Clark, Implications of abundant hydroscopic minerals in the Martian regolith. Icarus 34, 645–665 (1978) ADSCrossRefGoogle Scholar
  50. B.C. Clark, R.E. Arvidson, R. Gellert, R.V. Morris, D.W. Ming, L. Richter, S.W. Ruff, J.R. Michalski, W.H. Farrand, A.S. Yen et al., Evidence for montmorillonite or its compositional equivalent in Columbia hills, Mars. J. Geophys. Res. 112, E06S01 (2007). doi: 10.1029/2006JE002756 CrossRefGoogle Scholar
  51. R.N. Clark et al., Diversity of mineralogy and occurrences of phyllosilicates on Mars. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract P43D-04 (2008) Google Scholar
  52. E. Dehouck, N. Mangold, S. Le Mouélic, V. Ansan, F. Poulet, Ismenius Cavus, Mars: a deep paleolake with phyllosilicate deposits. Planet. Space Sci. 58(6), 941–946 (2010) ADSCrossRefGoogle Scholar
  53. E. Dehouck, V. Chevrier, A. Gaudin, N. Mangold, P.-E. Mathé, P. Rochette, Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim. Cosmochim. Acta 90, 47–63 (2012) ADSCrossRefGoogle Scholar
  54. B.L. Ehlmann et al., Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008a) ADSCrossRefGoogle Scholar
  55. B.L. Ehlmann et al., Clay minerals in delta deposits and organic preservation potential on Mars. Nat. Geosci. 1, 355–358 (2008b). doi: 10.1038/ngeo207 ADSCrossRefGoogle Scholar
  56. B.L. Ehlmann et al., Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, 1–33 (2009) CrossRefGoogle Scholar
  57. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010) CrossRefGoogle Scholar
  58. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, J.-P. Bibring, A. Meunier, A.A. Fraeman, Y. Langevin, Subsurface water and clay mineral formation during the early history of Mars. Nature 479, 53–60. doi: 10.1038/nature10582 (2011a) ADSCrossRefGoogle Scholar
  59. B.L. Ehlmann, J.F. Mustard, R.N. Clark, G.A. Swayze, S.L. Murchie, Evidence for low-grade metamorphism, hydrothermal alteration, and diagnosis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 59(4), 359–377 (2011b) ADSCrossRefGoogle Scholar
  60. G. Etiope, M. Schoell, H. Hosgormez, Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet. Sci. Lett. 310, 96–104 (2011) ADSCrossRefGoogle Scholar
  61. A.G. Fairen et al., Noachian and more recent phyllosilcates in impact craters on Mars. Proc. Natl. Acad. Sci. USA 107, 12,095–12,100 (2010) CrossRefGoogle Scholar
  62. S. Fabre, G. Berger, A. Nédélec, Continental weathering under high-CO2 atmospheres during Precambrian times. G-cubed 12 (2011). doi: 10.1029/2010GC003444
  63. W.H. Farrand et al., Discovery of jarosite within the Mawrth Vallis region of Mars: implications for the geologic history of the region. Icarus 204, 478–488 (2009) ADSCrossRefGoogle Scholar
  64. C.I. Fassett, J.W. Head, The timing of Martian valley network activity: constraints from buffered crater counting. Icarus 195, 61–89 (2008) ADSCrossRefGoogle Scholar
  65. C.I. Fassett, J.W. Head, Sequence and timing of conditions on early Mars. Icarus 211, 1204–1214 (2011) ADSCrossRefGoogle Scholar
  66. W.C. Feldman et al., Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109, E09006 (2004). doi: 10.1029/2003JE002160 CrossRefGoogle Scholar
  67. M.E. Fleet, R. Howie, A Rock Forming Minerals, Vol. 3A: Micas (Geological Society of London, London, 2006). 780pp Google Scholar
  68. H. Franzson, R. Zierenberg, P. Schiffman, Chemical transport in geothermal systems in Iceland: evidence from hydrothermal alteration. J. Volcanol. Geotherm. Res. 173, 217–229 (2008) ADSCrossRefGoogle Scholar
  69. F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279, 34–43 (2009) ADSCrossRefGoogle Scholar
  70. F. Gaillard et al., Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. (2012, this issue) Google Scholar
  71. A. Gaudin, E. Dehouck, N. Mangold, Evidence for weathering on early Mars from a comparison with terrestrial weathering profiles. Icarus 216(1), 257–268 (2011) ADSCrossRefGoogle Scholar
  72. P. Gavin, V. Chevrier, Thermal alteration of nontronite and montmorillonite: implications for the Martian surface. Icarus 208, 721–734 (2010) ADSCrossRefGoogle Scholar
  73. A. Gendrin et al., Sulfates in Martian layered terrains: the OMEGA/Mars Express view. Science 307, 1587–1591 (2005). doi: 10.1126/science.1109087 ADSCrossRefGoogle Scholar
  74. T.D. Glotch, J.L. Bandfield, P.R. Christensen, W.M. Calvin, S.M. McLennan, B.C. Clark, A.D. Rogers, S.W. Squyres, Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. J. Geophys. Res. 111, E12S03 (2006). doi: 10.1029/2005JE002672 CrossRefGoogle Scholar
  75. T.D. Glotch et al., Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars. Geophys. Res. Lett. 37, L16202 (2010) ADSCrossRefGoogle Scholar
  76. B. Gondet et al., First detection of Al-rich phyllosilicate on Mars from OMEGA-MEx. Eur. Geophys. Union Conf., abs. EGU06-A-03691, 2006 Google Scholar
  77. J.L. Gooding, Soil mineralogy and chemistry on Mars: possible clues from salts and clays in SNC meteorites. Icarus 99, 28–41 (1992) ADSCrossRefGoogle Scholar
  78. J.A. Grant, S.A. Wilson, Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011). doi: 10.1029 CrossRefGoogle Scholar
  79. E.A. Guinness et al., Hyperspectral reflectance mapping of cinder cones at the summit of Mauna Kea and implications for equivalent observations on Mars. J. Geophys. Res. 112, E08S11 (2007). doi: 10.1029/2006JE002822 ADSCrossRefGoogle Scholar
  80. R.M. Haberle, Early Mars climate models. J. Geophys. Res. 103, 28467–28479 (1998) ADSCrossRefGoogle Scholar
  81. I. Halevy et al., A sulfur dioxide climate feedback on early Mars. Science 318, 1903–1907 (2007) ADSCrossRefGoogle Scholar
  82. J.J. Hagerty, H.E. Newsom, Hydrothermal alteration at the Lonar lake impact structure, India: implications for impact cratering on Mars. Meteorit. Planet. Sci. 38(3), 365–381 (2003) ADSCrossRefGoogle Scholar
  83. R.L. Hay, Geologic occurrence of zeolites and some associated minerals. Pure Appl. Chem. 58, 1339–1342 (1986) CrossRefGoogle Scholar
  84. R.L. Hay, T.K. Tyser, Chemical sedimentology and paleoenvironmental history of Lake Olduvai, a Pliocene lake in northern Tanzania. GSA Bull. 113(12), 1505–1521 (2001) CrossRefGoogle Scholar
  85. J.W. Head, J.F. Mustard, M.A. Kreslavsky, R.E. Milliken, D.R. Marchant, Recent ice ages on Mars. Nature 426, 797–802 (2003). doi: 10.1038/nature02114 ADSCrossRefGoogle Scholar
  86. M.H. Hecht et al., Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325, 64–67 (2009) ADSGoogle Scholar
  87. B.H. Horgan, J.F. Bell III, Widespread weathered glass on the surface of Mars. Geology 40, 391–394 (2012). doi: 10.1130/G32755.1 CrossRefGoogle Scholar
  88. J. Hower, E.V. Eslinger, M.E. Hower, E.A. Perry, Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull. 87, 725–737 (1976) CrossRefGoogle Scholar
  89. J. Hurowitz et al., Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 3, 323–326 (2010) ADSCrossRefGoogle Scholar
  90. S.F. Hviid, D.P. Agerkvist, M. Olsen, C. Bender Koch, M.B. Madsen, Heated nontronite: possible relations to the magnetic phase in the Martian soil. Hyperfine Interact. 91, 529–533 (1994) ADSCrossRefGoogle Scholar
  91. B.M. Jakosky, M.H. Carr, Possible precipitation of ice at low latitudes of Mars during periods of high obliquity. Nature 315, 559–561 (1985) ADSCrossRefGoogle Scholar
  92. S.S. Johnson, A.A. Pavlov, M.A. Mischna, Fate of SO2 in the ancient Martian atmosphere: implications for transient greenhouse warming. J. Geophys. Res. 114, E11011 (2009). doi: 10.1029/2008JE003313 ADSCrossRefGoogle Scholar
  93. D. Jouglet, F. Poulet, J. Mustard, R. Milliken, J.-P. Bibring, Y. Langevin, B. Gondet, Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 mm hydration feature. J. Geophys. Res. 112, E08S06 (2007). doi: 10.1029/2006JE002846 CrossRefGoogle Scholar
  94. J.F. Kasting, D. Catling, Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003) ADSCrossRefGoogle Scholar
  95. J.L. Keeling et al., Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays Clay Miner. 48(5), 537–548 (2000) ADSCrossRefGoogle Scholar
  96. G. Klingelhofer et al., Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer Spectrometer. Science 306, 1740–1745 (2004) ADSCrossRefGoogle Scholar
  97. L.R. Kump, S.L. Brantley, M.A. Arther, Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000) ADSCrossRefGoogle Scholar
  98. H. Lammer et al., Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. (2012, this issue) Google Scholar
  99. Y. Langevin et al., Sulfates in the north polar region of Mars detected by OMEGA/Mars Express. Science 307, 1584–1586 (2005) ADSCrossRefGoogle Scholar
  100. B. Lanson, D. Beaufort, G. Berger, J.C. Lacharpagne, Illitization of diagenetic kaolinite-to-dickite conversion series: the Lower Permian Rotliegend sandstone reservoir, offshore of the Netherlands. J. Sediment. Res. 66, 501–518 (1996) Google Scholar
  101. B. Lanson et al., Authigenic kaolin and illitic minerals during diagenesis of sandstones: a review. Clay Miner. 37, 1–22 (2002) CrossRefGoogle Scholar
  102. D. Larsen, E.C. Stephens, V.B. Zivkovic, Postimpact alteration of sedimentary breccias in the ICDP-USGS eyreville A and B cores with comparison to the Cape Charles core, Chesapeake Bay impact structure, Virginia, USA. GSA Spec. Pap. 458, 699–721 (2009) Google Scholar
  103. J. Laskar et al., Orbital forcing of the Martian polar layered deposits. Nature 419, 375–377 (2002) ADSCrossRefGoogle Scholar
  104. K.A. Lichtenberg et al., Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars. J. Geophys. Res. 115, E00D17 (2010) CrossRefGoogle Scholar
  105. L. Le Deit et al., Extensive surface pedogenic alteration of the Martian Noachian crust suggested by plateau phyllosilicates around Valles Marineris. J. Geophys. Res. 117, E00J05 (2012). doi: 10.1029/2011JE003983 CrossRefGoogle Scholar
  106. A.P. Lisitzin, K.S. Rodlfa, Sedimentation in the World Ocean with emphasis on the nature, in Distribution and Behavior of Marine Suspensions. Society of Economic Paleontologists and Mineralogists, Special Publication, vol. 17, Tulsa (1972), 218pp Google Scholar
  107. D. Loizeau, N. Mangold, F. Poulet, J.-P. Bibring, A. Gendrin, V. Ansan, C. Gomez, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Phyllosilicates in the Mawrth Vallis region of Mars. J. Geophys. Res. 112(E8), E08S08 (2007). doi: 10.1029/2006JE002877 CrossRefGoogle Scholar
  108. D. Loizeau, N. Mangold, F. Poulet, V. Ansan, E. Hauber, J.-P. Bibring, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205(2), 396–418 (2010) ADSCrossRefGoogle Scholar
  109. D. Loizeau et al., Characterization of hydrated silicate-bearing outcrops in Tyrrhena Terra, Mars. Icarus 219(1), 476–497 (2012) ADSCrossRefGoogle Scholar
  110. P.R. Mahaffy et al., The sample analysis at Mars Investigation and Instrument Suite. Space Sci. Rev. (2012). doi: 10.1007/s11214-012-9879-z Google Scholar
  111. N. Mangold et al., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 112, E08S04 (2007). doi: 10.1029/2006JE002835 CrossRefGoogle Scholar
  112. N. Mangold, Relationships between clay-rich units and fluvial landforms in the Nili Fossae and Mawrth Vallis, in Brown-Vernadsky MicroSymposium, Early Climate and Weathering on Mars, Houston (2008) Google Scholar
  113. N. Mangold, L. Roach, R. Milliken, S. Le Mouélic, V. Ansan, J.P. Bibring, P. Masson, J.F. Mustard, S. Murchie, G. Neukum, A late Amazonian alteration layer related to local volcanism on Mars. Icarus 207, 265–276 (2010) ADSCrossRefGoogle Scholar
  114. N. Mangold et al., Late Hesperian aqueous alteration at Majuro crater, Mars. Planet. Space Sci. (2012a) doi: 10.1016/j.pss.2012.03.014 Google Scholar
  115. N. Mangold, E.S. Kite, M. Kleinhans, H. Newsom, V. Ansan, E. Hauber, E. Kraal, C. Quantin-Nataf, K. Tanaka, The origin and timing of fluvial activity at Eberswalde crater, Mars. Icarus 220(2), 530–551 (2012b) ADSCrossRefGoogle Scholar
  116. G.A. Marzo et al., Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010) ADSCrossRefGoogle Scholar
  117. M.L. McDowell, V.E. Hamilton, Seeking phyllosilicates in thermal infrared data: a laboratory and Martian data case study. J. Geophys. Res. 114, E06007 (2009). doi: 10.1029/2008JE003317 CrossRefGoogle Scholar
  118. N. McKeown et al., Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009) CrossRefGoogle Scholar
  119. H.Y. McSween et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res. 111, E02S10 (2006). doi: 10.1029/2005JE002477 CrossRefGoogle Scholar
  120. J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, Oxford, 1989) Google Scholar
  121. R.J. Merriman, Clay minerals and sedimentary basin history. Eur. J. Mineral. 17, 7–20 (2005) CrossRefGoogle Scholar
  122. R.J. Merriman, D.R. Peacor, Very low-grade metapelite: mineralogy, microfabrics and measuring reaction progress, in Low-Grade Metamorphism, ed. by M. Frey, D. Robinson (Blackwell, Oxford, 1999), pp. 10–60 Google Scholar
  123. A. Meunier, Clays (Springer, Berlin, 2005) Google Scholar
  124. A. Meunier et al., The Fe-Rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean eon. Orig. Life Evol. Biosph. 40, 253–272 (2010) ADSCrossRefGoogle Scholar
  125. M. Meybeck, Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 287, 401–428 (1987) CrossRefGoogle Scholar
  126. J.R. Michalski, R.L. Fergason, Composition and thermal inertia of the Mawrth Vallis region of Mars from TES and THEMIS data. Icarus 199, 24–48 (2009). doi: 10.1016/j.icarus.2008.08.016 ADSCrossRefGoogle Scholar
  127. J.R. Michalski, P.B. Niles, Deep crustal carbonate rocks exposed by meteor impact on Mars. Nat. Geosci. 3, 751–755 (2010) ADSCrossRefGoogle Scholar
  128. J.R. Michalski, E.Z. Noe Dobrea, Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35(10), 91–954 (2007) CrossRefGoogle Scholar
  129. J.R. Michalski et al., Mineralogical constraints on the high-silica Martian surface component observed by TES. Icarus 174, 161–177 (2005) ADSCrossRefGoogle Scholar
  130. J.R. Michalski et al., Effects of chemical weathering on infrared spectra of Columbia River Basalt and spectral interpretations of Martian alteration. Earth Planet. Sci. Lett. 248, 822–829 (2006) ADSCrossRefGoogle Scholar
  131. J.R. Michalski, S.J. Reynolds, P.B. Niles, T.G. Sharp, P.R. Christensen, Alteration mineralogy in detachment zones; insights from Swansea, Arizona. Geosphere 3(4), 184–198 (2007) CrossRefGoogle Scholar
  132. J. Michalski et al., The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10, 687–703 (2010a) ADSCrossRefGoogle Scholar
  133. J. Michalski, F. Poulet, J.-P. Bibring, N. Mangold, Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data. Icarus 206, 269–289 (2010b) ADSCrossRefGoogle Scholar
  134. T. Mikouchi et al., Relative burial depths of nakhlites: an update, in Lunar Planet. Sci. Conf. 37th, vol. 1865 (2006) Google Scholar
  135. R.E. Milliken, D.L. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90(17), 2293–2308 (2010) ADSCrossRefGoogle Scholar
  136. R.E. Milliken, J.F. Mustard, Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. J. Geophys. Res. 110, E12001 (2005). doi: 10.1029/2005JE002534 ADSCrossRefGoogle Scholar
  137. R.E. Milliken, J.F. Mustard, F. Poulet, D. Jouglet, J.-P. Bibring, B. Gondet, Y. Langevin, Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface. J. Geophys. Res. 112, E08S07 (2007). doi: 10.1029/2006JE002853 CrossRefGoogle Scholar
  138. R.E. Milliken et al., Opaline silica in young deposits on Mars. Geology 36, 847–850 (2008) ADSCrossRefGoogle Scholar
  139. R.E. Milliken et al., Missing salts on early Mars. Geophys. Res. Lett. 36, L11202 (2009) ADSCrossRefGoogle Scholar
  140. R.E. Milliken et al., Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett. 37, L04201 (2010) CrossRefGoogle Scholar
  141. R.V. Morris et al., Evidence for possible pigmentary hematite on Mars based on optical, magnetic, and Mossbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94(B4), 2760–2778 (1989) ADSCrossRefGoogle Scholar
  142. R.V. Morris, D.C. Golden, J.F. Bell III, H.V. Lauer Jr, Hematite, pyroxene, and phyllosilicates on Mars: implications from oxidized impact melt rocks from Manicouagan Crater, Quebec, Canada. J. Geophys. Res. 100, 5319–5328 (1995) ADSCrossRefGoogle Scholar
  143. R.V. Morris et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples. J. Geophys. Res. 105(E1), 1757–1817 (2000). doi: 10.1029/1999JE001059 ADSCrossRefGoogle Scholar
  144. R.V. Morris et al., Mossbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 111, E02S13 (2006). doi: 10.1029/2005JE002584 CrossRefGoogle Scholar
  145. R.V. Morris et al., Identification of carbonate-rich outcrops on Mars by the Spirit rover. Science 329, 421–424 (2010) ADSCrossRefGoogle Scholar
  146. S. Murchie et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007). doi: 10.1029/2006JE002682 CrossRefGoogle Scholar
  147. S.L. Murchie et al., A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 114, 1–30 (2009) Google Scholar
  148. J.F. Mustard et al., Olivine and pyroxene diversity in the crust of Mars. Science 307, 1594–1597 (2005) ADSCrossRefGoogle Scholar
  149. J.F. Mustard et al., Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian. J. Geophys. Res. 112, E08S03 (2007). doi: 10.1029/2006JE002834 CrossRefGoogle Scholar
  150. J.F. Mustard et al., Hydrated silicate minerals on Mars observed by the Mars reconnaissance orbiter CRISM instrument. Nature 454, 305–309 (2008) ADSCrossRefGoogle Scholar
  151. J.F. Mustard et al., Composition, morphology, and stratigraphy of Noachian crust around the Isidis basin. J. Geophys. Res. 114, 1–18 (2009) CrossRefGoogle Scholar
  152. M.V. Naumov, Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5, 165–184 (2005) CrossRefGoogle Scholar
  153. A. Neubeck, N.T. Duc, D. Bastviken, P. Crill, N.G. Holm, Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70 C. Geochem. Trans. 12(6) (2011). doi: 10.1186/1467-4866-12-6
  154. H.E. Newsom, Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44, 207–216 (1980) ADSCrossRefGoogle Scholar
  155. P.B. Niles, J.R. Michalski, Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nat. Geosci. 2, 215–220 (2009) ADSCrossRefGoogle Scholar
  156. P.B. Niles et al., Stable isotope measurements of Martian atmospheric CO2 at the Phoenix landing site. Science 329, 1334–1337 (2010) ADSCrossRefGoogle Scholar
  157. P.B. Niles, D.C. Catling, G. Berger, E. Chassefière, B.L. Ehlmann, J.R. Michalski, R. Morris, S.W. Ruff, B. Sutter, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci. Rev. (2012, this issue) Google Scholar
  158. E.Z. Noe Dobrea et al., Mineralogy and stratigraphy of phyllosilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J. Geophys. Res. 115, E00D19 (2010). doi: 10.1029/2009JE003351 CrossRefGoogle Scholar
  159. L.E. Nyquist et al., Ages and geologic histories of Martian meteorites. Space Sci. Rev. 96, 105–164 (2001) ADSCrossRefGoogle Scholar
  160. M.M. Osterloo et al., Chloride-bearing materials in the southern highlands of Mars. Science 319, 1651–1654 (2008). doi: 10.1126/science.1150690 ADSCrossRefGoogle Scholar
  161. M.M. Osterloo et al., Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010) ADSCrossRefGoogle Scholar
  162. C. Oze, M. Sharma, Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005). doi: 10.1029/2005GL022691 ADSCrossRefGoogle Scholar
  163. S.M. Pelkey et al., CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. J. Geophys. Res. 112, E08S14 (2007). doi: 10.1029/2006JE002831 CrossRefGoogle Scholar
  164. F. Poulet et al., Phyllosilicates on Mars and implications for early Martian climate. Nature 481, 623–627 (2005) ADSCrossRefGoogle Scholar
  165. F. Poulet, C. Gomez, J.-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, J. Mustard, Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): global mineral maps. J. Geophys. Res. 112, 08S02 (2007). doi: 10.1029/2006JE002840 CrossRefGoogle Scholar
  166. F. Poulet et al., Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487, L41–L44 (2008a) ADSCrossRefGoogle Scholar
  167. F. Poulet, R.E. Arvidson, C. Gomez, R.V. Morris, J.-P. Bibring, Y. Langevin, B. Gondet, J. Griffes, Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation. Icarus 195, 106–130 (2008b). doi: 10.1016/j.icarus.2007.11.031 ADSCrossRefGoogle Scholar
  168. J.A. Rathbun, S.W. Squyres, Hydrothermal systems associated with Martian impact craters. Icarus 157, 362–372 (2002) ADSCrossRefGoogle Scholar
  169. R.R. Remy, R.E. Ferrell, Distributions and origin and analcime in lacustrine mudstones of the Green River Formation, South-Central Uinta Basin, Utah. Clays Clay Miner. 37(5), 419–432 (1989) ADSCrossRefGoogle Scholar
  170. S.W. Ruff et al., The rocks of Gusev Crater as viewed by the Mini-TES instrument. J. Geophys. Res. 111, E12S18 (2006). doi: 10.1029/2006JE002747 CrossRefGoogle Scholar
  171. M.R. Salvatore, J.F. Mustard, M.B. Wyatt, S.L. Murchie, Definitive evidence of Hesperian basalt in Acidalia and Chryse planitiae. J. Geophys. Res. 115, E07005 (2010). doi: 10.1029/2009JE003519 CrossRefGoogle Scholar
  172. J.M. Saxton, I.C. Lyon et al., Oxygen isotopic composition of carbonate in the Nakhla meteorite: Implications for the hydrosphere and atmosphere of Mars. Geochim. Cosmochim. Acta 64(7), 1299–1309 (2000) ADSCrossRefGoogle Scholar
  173. P. Schiffman, H.W. Day, Petrological methods for the study of very low grade metabasites, in Low-Grade Metamorphism, ed. by M. Frey, D. Robinson (Blackwell, Oxford, 1999), pp. 108–142 Google Scholar
  174. P. Schiffman et al., Controls on palagonitization versus pedogenic weathering of basaltic tephra: evidence from the consolidation and geochemistry of the Keanakako’i Ash member, Kilauea Volcano. Geochem. Geophys. Geosyst. 1, 2000GC000068 (2000) Google Scholar
  175. P. Schiffman et al., Distinguishing palagonitized from pedogenically-altered basaltic Hawaiian tephra: mineralogical and geochemical criteria, in Volcano-Ice Interactions on Earth and Mars, ed. by J.L. Smellie, M.G. Chapman (Geological Society, London, 2002), pp. 393–405 Google Scholar
  176. P. Schneiderhöhn, Nontronit von Hohen Hagen und Chloropal vom Meenser Steinberg bei Göttingen, in Tschermaks Mineralogische und Petrograpische Mitteilungen, vol. 10 (1965), pp. 385–399 Google Scholar
  177. S.P. Schwenzer, D.A. Kring, Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology 37, 1091–1094 (2009) CrossRefGoogle Scholar
  178. G. Siefferman, G. Millot, Equatorial and tropical weathering of recent basalts from Cameroon: allophones, halloysite, metahalloysite, kaolinite, and gibbsite, in Proc. of the International Clay Conference, vol. 1, Tokyo (Israel Universities Press, Jerusalem, 1969) Google Scholar
  179. A. Singer, The mineralogy of the clay fraction from basaltic soils in the Galilee, Israel. J. Soil Sci 17(1), 136–147 (1966) CrossRefGoogle Scholar
  180. R. Singer, T. McCord, R. Clark, J. Adams, R. Huguenin, Mars surface composition from reflectance spectroscopy: a summary. J. Geophys. Res. 84(B14), 8415–8426 (1979) ADSCrossRefGoogle Scholar
  181. J.R. Skok, J.F. Mustard, S.L. Murchie, M.B. Wyatt, B.L. Ehlmann, Spectrally distinct ejecta in Syrtis Major, Mars: evidence for environmental change at the Hesperian-Amazonian boundary. J. Geophys. Res. 115, E00D14 (2010). doi: 10.1029/2009JE003338 CrossRefGoogle Scholar
  182. F.S. Spear, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Mineralogical Society of America, Washington, 1995) Google Scholar
  183. R.J. Spencer, L.A. Hardie, Control of seawater composition by mixing of river waters and mid-ocean ridge hydrothermal brines, in Fluid-Mineral interactions: A Tribute to H.P. Eugster, ed. by R.J. Spencer, I.-M. Chou. Geochemical Society Special Publication, vol. 19 (1990), pp. 409–419 Google Scholar
  184. S.W. Squyres, R.E. Arvidson, J.F. Bell III, J. Bruckner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L.S. Crumpler et al., The Opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science 306(5702), 1698–1703 (2004) ADSCrossRefGoogle Scholar
  185. S.W. Squyres et al., Detection of silica-rich deposits on Mars. Science 320, 1063–1067 (2008) ADSCrossRefGoogle Scholar
  186. J. Srodon, Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth Planet. Sci. 27, 19–53 (1999) ADSCrossRefGoogle Scholar
  187. S. Story et al., Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars. J. Geophys. Res. 115, E12012 (2010). doi: 10.1029/2010JE003687 ADSCrossRefGoogle Scholar
  188. R.C. Surdam, D.B. McGowan, T.L. Dunn, Diagenetic pathways of sandstone and shale sequences. Contrib. Geol. 27, 21–31 (1989) Google Scholar
  189. G.A. Swayze et al. Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada, in Summaries of the Third Annual JPL Airborne Geosciences Workshop, Volume 1: AVIRIS Workshop (JPL Publication 92-14, 1992), pp. 47–49 Google Scholar
  190. G.A. Swayze et al., Mineral mapping Mauna Kea and Mauna Loa shield volcanos on Hawaii using AVIRIS data and the USGS tetracorder spectral identification system: Lessons applicable to the search for relict Martian hydrothermal systems, in Proceedings of the 11th JPL Airborne Earth Science Workshop, ed. by R.O. Green, (2002), pp. 373–387. JPL Publication 03-4 Google Scholar
  191. G.A. Swayze et al., Discovery of the acid-sulfate mineral alunite in Terra Sirenum, Mars, using MRO CRISM: Possible evidence for acid-saline lacustrine deposits? Eos Trans. AGU 89(53) (2008) Google Scholar
  192. T.D. Swindle, E.K. Olson, 40Ar-39Ar studies of whole rock Naklites: evidence for the timing of formation and aqueous alteration on Mars. Meteorit. Planet. Sci. 39(5), 755–766 (2004) ADSCrossRefGoogle Scholar
  193. T.D. Swindle et al., Noble gases in iddingsite from the Lafayette meteorite: Evidence for liquid water on Mars in the last few hundred million years. Meteorit. Planet. Sci. 35, 107–115 (2000) ADSCrossRefGoogle Scholar
  194. G.J. Taylor et al., Causes of variations in K/Th on Mars. J. Geophys. Res. 111, E03S06 (2006). doi: 10.1029/2006JE002676 ADSGoogle Scholar
  195. G.J. Taylor et al., Mapping Mars geochemically. Geology 38(2), 183–186 (2010) CrossRefGoogle Scholar
  196. P. Thollot et al., Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus. J. Geophys. Res. 117, E00J06 (2012) CrossRefGoogle Scholar
  197. F. Tian et al., Photochemical and climate consequences of sulfur outgassing on early Mars. Earth Planet. Sci. Lett. 295, 412–418 (2010) ADSCrossRefGoogle Scholar
  198. N.J. Tosca, A.H. Knoll, Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 286, 379–386 (2009) ADSCrossRefGoogle Scholar
  199. N.J. Tosca et al., Smectite formation on early Mars: experimental constraints, in Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes? (2008), abstr. 7030 Google Scholar
  200. P. Toulmin III et al., Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82(28), 4625–4634 (1977). doi: 10.1029/JS082i028p04625 ADSCrossRefGoogle Scholar
  201. E. Tréguier et al., Overview of Mars surface geochemical diversity through APXS data multidimensional analysis: First attempt at modelling rock alteration. J. Geophys. Res. 113, E12S34 (2008). doi: 10.1029/2007JE003010 CrossRefGoogle Scholar
  202. A.H. Treiman, D.J. Lindstrom, Trace element geochemistry of Martian iddingsite in the Lafayette meteorite. J. Geophys. Res. 102, 1953–1963 (1997) ADSGoogle Scholar
  203. M.A. Velbel, A.I. Losiak, Denticles on chain silicate grain surfaces and their utility as indicators of weathering conditions on Earth and Mars. J. Sediment. Res. 80, 771–780 (2010) ADSCrossRefGoogle Scholar
  204. A. Wang, R.L. Korotev, B.L. Jolliff, L.A. Haskin, L.S. Crumpler, W.H. Farrand, K.E. Herkenhoff, P.A. de Souza Jr., A.G. Kusack, J.A. Hurowitz et al., Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev Crater. J. Geophys. Res. 111, E02S16 (2006). doi: 10.1029/2005JE002516 CrossRefGoogle Scholar
  205. G. Whitney, Role of water in the smectite-to-illite reaction. Clays Clay Miner. 38, 343–350 (1990) ADSCrossRefGoogle Scholar
  206. R.J. Weldon, W.M. Thomas, M.B. Boslough, T.J. Arhens, Shock-induced color changes in nontronite: implications for the Martian fines. J. Geophys. Res. 97, 10102–10114 (1982) ADSCrossRefGoogle Scholar
  207. T. Wiesenberger, R.S. Selbekk, Multi-stage zeolite facies mineralization in the Hvalfjordur area, Iceland. Int. J. Earth Sci. (2008). doi: 10.1007/s00531-007-0296-6 Google Scholar
  208. R. Wordsworth, F. Forget, E. Millour, J.-B. Madeleine, Comparison of scenarios for Martian valley network formation using a 3D model of the early climate and water cycle. EPSC abstracts, vol. 6, EPSC-DPS2011-1373, 2011 Google Scholar
  209. J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008). doi: 10.1029/2008GL034385 ADSCrossRefGoogle Scholar
  210. J.J. Wray, S.L. Murchie, S.W. Squyres, F.P. Seelos, L.L. Tornabene, Diverse aqueous environments on ancient Mars revealed in the southern highlands. Geology 37, 1043–1046 (2009a) ADSCrossRefGoogle Scholar
  211. J.J. Wray, E.Z. Noe Dobrea, R.E. Arvidson, S.M. Wiseman, S.W. Squyres, A.S. McEwen, J.F. Mustard, S.L. Murchie, Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars. Geophys. Res. Lett. 36, L21201 (2009b). doi: 10.1029/2009GL040734 ADSCrossRefGoogle Scholar
  212. J.J. Wray et al., Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. J. Geophys. Res. 116, E01001 (2011) CrossRefGoogle Scholar
  213. C.M. Weitz, J.L. Bishop, P. Thollot, N. Mangold, L.H. Roach, Diverse mineralogies in two troughs of Noctis Labyrinthus, Mars. Geology 39(10), 899–902 (2011) CrossRefGoogle Scholar
  214. Y.-C. Yau, D.R. Peacor, R.E. Beane, E.J. Essene, S.D. McDowell, Microstructures, formation mechanisms, and depth-zoning of phyllosilicates in geothermally altered shales, Salton Sea, California. Clays Clay Miner. 36, 1–10 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Bethany L. Ehlmann
    • 1
    • 2
    Email author
  • Gilles Berger
    • 3
  • Nicolas Mangold
    • 4
  • Joseph R. Michalski
    • 5
    • 6
  • David C. Catling
    • 7
  • Steven W. Ruff
    • 8
  • Eric Chassefière
    • 9
  • Paul B. Niles
    • 10
  • Vincent Chevrier
    • 11
  • Francois Poulet
    • 12
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.IRAPCNRS-Université ToulouseToulouseFrance
  4. 4.Laboratoire Planétologie et Géodynamique de NantesCNRS/Université de NantesNantesFrance
  5. 5.Planetary Science InstituteTucsonUSA
  6. 6.MineralogyNatural History MuseumLondonUK
  7. 7.Department of Earth and Space Sciences/Astrobiology ProgramUniversity of WashingtonSeattleUSA
  8. 8.School of Earth and Space ExplorationArizona State UniversityTempeUSA
  9. 9.Laboratoire IDES, UMR 8148, Université Paris-SudCNRSOrsayFrance
  10. 10.Astromaterials Research and Exploration ScienceNASA Johnson Space CenterHoustonUSA
  11. 11.W.M. Keck Laboratory for Space and Planetary Simulation, Arkansas Center for Space and Planetary ScienceUniversity of ArkansasFayettevilleUSA
  12. 12.Institut d’Astrophysique SpatialeUniversité Paris-SudOrsayFrance

Personalised recommendations