Space Science Reviews

, Volume 170, Issue 1–4, pp 641–737 | Cite as

Selection of the Mars Science Laboratory Landing Site

  • M. GolombekEmail author
  • J. Grant
  • D. Kipp
  • A. Vasavada
  • R. Kirk
  • R. Fergason
  • P. Bellutta
  • F. Calef
  • K. Larsen
  • Y. Katayama
  • A. Huertas
  • R. Beyer
  • A. Chen
  • T. Parker
  • B. Pollard
  • S. Lee
  • Y. Sun
  • R. Hoover
  • H. Sladek
  • J. Grotzinger
  • R. Welch
  • E. Noe Dobrea
  • J. Michalski
  • M. Watkins


The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20 km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1) latitude (±30°) for thermal management of the rover and instruments, (2) elevation (<−1 km) for sufficient atmosphere to slow the spacecraft, (3) relief of <100–130 m at baselines of 1–1000 m for control authority and sufficient fuel during powered descent, (4) slopes of <30° at baselines of 2–5 m for rover stability at touchdown, (5) moderate rock abundance to avoid impacting the belly pan during touchdown, and (6) a radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.


Landing sites Mars Surface materials Surface characteristics Mars Science Laboratory 



Research described in this paper was partially done by the MSL project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was supported by the Mars Data Analysis Program. Derived data products were sponsored by the Critical Data Products program administered by the JPL Mars Exploration Program office. We especially thank members of the Council of Atmospheres and Council of Terrains for work on characterizing MSL landing sites. We thank L. Redmond and N. Warner for help with the figures.


  1. P. Aftabi, Laboratory testing of the ice-salt intrusions and extrusions in craters for determining Mars landing site, in Lunar Planet. Sci., vol. XXXIX (Lunar and Planetary Institute, Houston, 2008). Abstract 1179 Google Scholar
  2. K. Ali, C. Vanelli, J. Biesiadecki, M. Maimone, Y. Cheng, M. San Martin, J. Alexander, Attitude and position estimation on the Mars Exploration Rovers, in IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005 Google Scholar
  3. F.S. Anderson, A.F.C. Haldemann, N.T. Bridges, M.P. Golombek, T.J. Parker, G. Neumann, Analysis of MOLA data for the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8084 (2003). doi: 10.1029/2003JE002125 CrossRefGoogle Scholar
  4. J.A. Anderson, S.C. Sides, D.L. Soltesz, T.L. Sucharski, K.J. Becker, Modernization of the integrated software for imagers and spectrometers, in Lunar Planet. Sci., vol. XXXV (Lunar and Planetary Institute, Houston, 2004). Abstract 2039 Google Scholar
  5. R.B. Anderson, J.F. Bell III, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76–128 (2010) ADSCrossRefGoogle Scholar
  6. V. Ansan, N. Mangold, A. Lucas, A. Gendrin, S. Le Mouelic, F. Poulet, J.-P. Bibring, Omega Co-Investigator Team, Analysis of layered deposits in Terby Crater (Hellas region, Mars) using multiple datasets MOC, THEMIS and OMEGA/MEX, in Lunar Planet. Sci., vol. XXXVII (Lunar and Planetary Institute, Houston, 2005). Abstract 1378 Google Scholar
  7. V. Ansan, D. Loizeau, N. Mangold, S. Le Mouélic, J. Carter, F. Poulet, G. Dromart, A. Lucas, J.-P. Bibring, A. Gendrin, B. Gondet, Y. Langevin, Ph. Masson, S. Murchie, J.F. Mustard, G. Neukum, Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus (2011). doi: 10.1016/j.icarus.2010.09.011 Google Scholar
  8. R.E. Arvidson et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets. J. Geophys. Res. 111, E12S08 (2006). doi: 10.1029/2006JE002728 ADSCrossRefGoogle Scholar
  9. R. Arvidson et al., Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res. 113, E00A03 (2008). doi: 10.1029/2007JE003021 ADSCrossRefGoogle Scholar
  10. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, A global view of martian surface compositions from MGS-TES. Science 287(5458), 1626–1630 (2000). doi: 10.1126/science.287.5458.1626 ADSCrossRefGoogle Scholar
  11. J.L. Bandfield, D. Rogers, M.D. Smith, P.R. Christensen, Atmospheric correction and surface spectral unit mapping using thermal emission imaging system data. J. Geophys. Res. 109, E10008 (2004). doi: 10.1029/2004JE002289 ADSCrossRefGoogle Scholar
  12. R.A. Beyer, R.L. Kirk, Meter-scale slopes of candidate MSL landing sites from point photoclinometry. Space Sci. Rev., this issue Google Scholar
  13. R.A. Beyer, A.S. McEwen, R.L. Kirk, Meter-scale slopes of candidate MER landing sites from point photoclinometry. J. Geophys. Res. 108(E12), 8085 (2003). doi: 10.1029/2003JE002120 CrossRefGoogle Scholar
  14. P. Bhandari, G. Birur, M. Pauken, A. Paris, K. Novak, M. Prina, B. Ramirez, D. Bame, Mars Science Laboratory thermal control architecture, in ICES 2005 Conference, Rome, Italy, July 2005 Google Scholar
  15. J.P. Bhattacharya, T.H.D. Payenberg, S.D. Lang, M.C. Bourke, Dynamic river channels suggest a long-lived Noachian crater lake on Mars. Geophys. Res. Lett. 32, L10201 (2005). doi: 10.1029/2005GL022747 ADSCrossRefGoogle Scholar
  16. J.-P. Bibring, Y. Langevin, A. Gendrin, B. Gondet, F. Poulet, M. Berthé, A. Soufflot, R. Arvidson, N. Mangold, J. Mustard, P. Drossart, OMEGA team, Mars surface diversity as revealed by the OMEGA/Mars Express observations. Science 307, 1576–1581 (2005) ADSCrossRefGoogle Scholar
  17. J.-P. Bibring, Y. Langevin, J.F. Mustard, F. Poulet, R. Arvidson, A. Gendrin, B. Gondet, N. Mangold, P. Pinet, F. Forget, OMEGA team, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science 312, 400–404 (2006). doi: 10.1126/science.1122659 ADSCrossRefGoogle Scholar
  18. J.J. Biesiadecki, M.W. Maimone, The Mars Exploration Rover surface mobility flight software: Driving ambition, in March 2006 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, 8 March 2006 Google Scholar
  19. J.J. Biesiadecki et al., Mars Exploration Rover surface operations: Driving opportunity at Meridiani Planum, in October 2005 IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005 Google Scholar
  20. J.J. Biesiadecki, P.C. Leger, M.W. Maimone, Tradeoffs between directed and autonomous driving on the Mars Exploration Rovers. Int. J. Robot. Res. 26(1), 91–104 (2007) CrossRefGoogle Scholar
  21. J. Biesiadecki, R. Liebersbach, M. Maimone, Mars Exploration Rover mobility and IDD downlink analysis tools, in International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS) Proceedings, Los Angeles, CA, 27 February 2008 Google Scholar
  22. D. Biggs, M. Andrews, Acceleration of iterative image restoration algorithms. J. Appl. Opt. 36(8), 1766–1775 (1997) ADSCrossRefGoogle Scholar
  23. J.L. Bishop, E.Z. Noe Dobrea, N.K. McKeown, M. Parente, B.L. Ehlmann, J.R. Michalski, R.E. Milliken, F. Poulet, G.A. Swayze, J.F. Mustard, S.L. Murchie, J.-P. Bibring, Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars. Science 321, 830–833 (2008). doi: 10.1126/science.1159699 ADSCrossRefGoogle Scholar
  24. M.J. Broxton, L.J. Edwards, The Ames Stereo pipeline: Automated 3D surface reconstruction from orbital imagery, in Lunar and Planetary Science, vol. XXXIX (Lunar and Planetary Institute, Houston, 2008). Abstract #2419 (CD-ROM) Google Scholar
  25. P. Brugarolas, M. San Martin, E. Wong, The RCS attitude controller for the exo-atmospheric and guided Entry phases of the Mars Science Laboratory, in International Planetary Probe Workshop, Barcelona, Spain (2010) Google Scholar
  26. B.J. Butler, The 3.5-cm radar investigation of Mars and Mercury: Planetological implications. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, 1994, 28 Google Scholar
  27. N.A. Cabrol, H.E. Newson, R. Landheim, C.P. McKay, Hydrogeologic evolution of Gale crater and its relevance to the exobiological exploration of Mars. Icarus 139, 235–245 (1999) ADSCrossRefGoogle Scholar
  28. B. Cantor, P.B. James, M. Caplinger, M.J. Wolf, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653–23688 (2001) ADSCrossRefGoogle Scholar
  29. J. Carsten, A. Rankin, D. Ferguson, A. Stentz, Global path planning on board the Mars Exploration Rovers, in Proceedings of the 2007 IEEE Aerospace Conference, March 2007 Google Scholar
  30. A. Chen, A. Vasavada, A. Cianciolo, J. Barnes, D. Tyler, S. Rafkin, D. Hinson, S. Lewis, Atmospheric risk assessment for the Mars Science Laboratory entry, descent, and landing system, in IEEE Aerospace Conference, Big Sky, MT (2010). IEEEAC paper#1153 Google Scholar
  31. Y. Cheng, A.E. Johnson, L.H. Matthies, C.F. Olson, Optical landmark detection for spacecraft navigation, in AAS/AIAA Astrodynamics Specialist Conference, Ponce, Puerto Rico (2003). Google Scholar
  32. Y. Cheng, M. Maimone, L. Matthies, Visual odometry on the Mars Exploration Rovers, in IEEE Conference on Systems, Man and Cybernetics, The Big Island, Hawaii, USA, October 2005 Google Scholar
  33. Y. Cheng, M. Maimone, L. Matthies, Visual odometry on the Mars Exploration Rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006) CrossRefGoogle Scholar
  34. P.R. Christensen, Martian dust mantling and surface composition: Interpretation of thermophysical properties. J. Geophys. Res. 87, 9985–9998 (1982) ADSCrossRefGoogle Scholar
  35. P.R. Christensen, The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986a) ADSCrossRefGoogle Scholar
  36. P.R. Christensen, Regional dust deposits on Mars: Physical properties, age, and history. J. Geophys. Res. 91, 3533–3545 (1986b) ADSCrossRefGoogle Scholar
  37. P.R. Christensen, Aqueous mineral deposits in an ancient, channeled, equatorial terrain. Abstract Submitted for a New MSL Landing Site to the Landing Site Steering Committee, Aug. 22, 2009, posted at
  38. P.R. Christensen, M.C. Malin, High resolution thermal imaging of Mars (abs.), in Lunar Planet. Sci., vol. XIX (Lunar and Planetary Institute, Houston, 1988), pp. 180–181 Google Scholar
  39. P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 686–727 Google Scholar
  40. P.R. Christensen, D.L. Anderson, S.C. Chase, R.N. Clark, H.H. Kieffer, M.C. Malin, J.C. Pearl, J. Carpenter, N. Bandiera, F.G. Brown, S. Silverman, Thermal Emission Spectrometer experiment: Mars Observer Mission. J. Geophys. Res. 97(E5), 7719–7734 (1992) ADSCrossRefGoogle Scholar
  41. P.R. Christensen et al., Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res. 106, 23823–23871 (2001) ADSCrossRefGoogle Scholar
  42. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  43. G. Dromart, C. Quantin, O. Broucke, Stratigraphic architectures spotted in southern Melas Chasma, Vallis Marineris, Mars. Geology 35(4), 363–366 (2007) ADSCrossRefGoogle Scholar
  44. K.S. Edgett, The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars 1, 5–58 (2005). doi: 10.1555/mars.2005.0002 ADSCrossRefGoogle Scholar
  45. B.L. Ehlmann, J.F. Mustard, C.I. Fassett, S.C. Schon, J.W. Head III, D.J. Des Marais, J.A. Grant, S.L. Murchie, CRISM team, Clay mineralogy and organic preservation potential of lacustrine sediments from a Martian delta environment, Jezero crater, Nili Fossae, Mars. Nat. Geosci. 1 (2008a). doi: 10.1038/ngeo207
  46. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, F. Poulet, J.L. Bishop, A.J. Brown, W.M. Calvin, R.N. Clark, D.J. Des Marias, R.E. Milliken, L.H. Roach, T.L. Roush, G.A. Swayze, J.J. Wray, Orbital identification of carbonate-bearing rocks on Mars. Science 322, 1828–1832 (2008b). doi: 10.1126/science.1164759 ADSCrossRefGoogle Scholar
  47. B.L. Ehlmann, J.F. Mustard, G.A. Swayze, R.N. Clark, J.L. Bishop, F. Poulet, D.J. Des Marais, L.H. Roach, R.E. Milliken, J.J. Wray, O. Barnouin-Jha, S.L. Murchie, Identification of hydrated silicate minerals on Mars using MRO-CRISM: Geologic context near Nili Fossae and implications for aqueous alteration. J. Geophys. Res. 114, E00D08 (2010). doi: 10.1029/2009JE003339 CrossRefGoogle Scholar
  48. E.S. Eliason et al., Software interface specification for HiRISE reduced data record products. MRO JPL Document D-32006, 2009, online at
  49. W.H. Farrand, T.D. Glotch, J.W. Rice Jr., J.A. Hurowitz, G.A. Swayze, Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region. Icarus 204(2), 478–488 (2009) ADSCrossRefGoogle Scholar
  50. C.I. Fassett, J.W. Head, Fluvial sedimentary deposits on Mars: Ancient deltas in a crater lake in the Nili Fossae region. Geophys. Res. Lett. 32, L14201 (2005). doi: 10.1029/2005GL023456 ADSCrossRefGoogle Scholar
  51. R.L. Fergason et al., THEMIS thermal inertia of the MSL landing sites. Space Sci. Rev., this issue Google Scholar
  52. R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006b). doi: 10.1029/2005JE002583 ADSCrossRefGoogle Scholar
  53. R.L. Fergason, P.R. Christensen, H.H. Kieffer, High-resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications. J. Geophys. Res. 111, E12004 (2006a). doi: 10.1029/2006JE002735 ADSCrossRefGoogle Scholar
  54. J.B. Garvin, J.J. Frawley, J.B. Abshire, Vertical roughness of Mars from Mars Orbiter Laser Altimeter. Geophys. Res. Lett. 26, 381–384 (1999) ADSCrossRefGoogle Scholar
  55. S.B. Goldberg, M.W. Maimone, L. Matthies, Stereo vision and rover navigation software for planetary exploration, in March 2002 IEEE Aerospace Conference Proceedings, Big Sky, Montana, USA, vol. 5 (2002), pp. 2025–2036. doi: 10.1109/AERO.2002.1035370 Google Scholar
  56. M. Golombek, D. Rapp, Size-frequency distributions of rocks on Mars and Earth analog sites: Implications for future landed missions. J. Geophys. Res. 102, 4117–4129 (1997) ADSCrossRefGoogle Scholar
  57. M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997a) ADSCrossRefGoogle Scholar
  58. M.P. Golombek et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997b) ADSCrossRefGoogle Scholar
  59. M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999) ADSCrossRefGoogle Scholar
  60. M.P. Golombek et al., Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003a). doi: 10.1029/2003JE002074, 48pp. CrossRefGoogle Scholar
  61. M.P. Golombek et al., Rock size-frequency distributions on Mars and implications for MER landing safety and operations. J. Geophys. Res. 108(E12), 8086 (2003b). doi: 10.1029/2002JE002035 CrossRefGoogle Scholar
  62. M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436 (2005). doi: 10.1038/nature03600
  63. M. Golombek, J. Grant, L. Lorenzoni, A. Steltzner, A.R. Vasavada, C. Voorhees, M. Watkins M, Preliminary constraints and plans for Mars Science Laboratory landing site selection, in Lunar and Planetary Science, vol. XXXVII (Lunar and Planetary Institute, Houston, 2006a). Abstract #2172 (CD-ROM) Google Scholar
  64. M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover transverse. J. Geophys. Res. 111, E02S07 (2006b). doi: 10.1029/2005JE002503 ADSCrossRefGoogle Scholar
  65. M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, Landing sites proposed for the Mars Science Laboratory mission, in Lunar and Planetary Science, vol. XXXVIII (Lunar and Planetary Institute, Houston, 2007a). Abstract #1392 (CD-ROM) Google Scholar
  66. M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, L. Lorenzoni, J. Griffes, Preliminary constraints, plans and proposed landing sites for the Mars Science Laboratory mission, in The Seventh International Conference on Mars, Pasadena, CA, July 9–13, 2007 (Lunar and Planetary Institute, Houston, 2007b). Abstract #3037 (CD-ROM) Google Scholar
  67. M.P. Golombek et al., Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 113, E00A09 (2008a). doi: 10.1029/2007JE003065 ADSCrossRefGoogle Scholar
  68. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008b), pp. 468–497. Chap. 21 CrossRefGoogle Scholar
  69. M. Golombek, J. Grant, A.R. Vasavada, M. Watkins, E. Noe Dobrea, J. Griffes, T. Parker, Downselection of landing sites for the Mars Science Laboratory, in Lunar and Planetary Science, vol. XXXIX (Lunar and Planetary Institute, Houston, 2008c). Abstract #2181 (CD-ROM) Google Scholar
  70. M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, Selection of four landing sites for the Mars Science Laboratory, in Lunar and Planetary Science, vol. XL (Lunar and Planetary Institute, Houston, 2009a). Abstract #1404 (CD-ROM) Google Scholar
  71. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, A. Huertas, R.E. Arvidson, T. Heet, J.F. Bell III, M.T. Mellon, A.S. McEwen, Relationships between remote sensing data and surface properties of Mars landing sites, in 40th Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2009b). Abstract 1409 (CD-ROM) Google Scholar
  72. M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, R. Kirk, R. Fergason, R. Beyer, A. Huertas, R. Milliken, Y. Sun, Landing sites under consideration for Mars Science Laboratory, in 41st Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2010). Abstract #2407 (CD-ROM) Google Scholar
  73. M.P. Golombek, A. Huertas, D. Kipp, Rocks and rock size-frequency distributions at the Mars Science Laboratory landing sites, in 42nd Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2011a). Abstract #1547 Google Scholar
  74. M. Golombek, J. Grant, A.R. Vasavada, J. Grotzinger, M. Watkins, D. Kipp, E. Noe Dobrea, J. Griffes, T. Parker, Final four landing sites for the Mars Science Laboratory, in 42nd Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2011b). Abstract #1520 Google Scholar
  75. M. Golombek, A. Huertas, D. Kipp, F. Calef, Detection and characterization of rocks and rock distribution at the Mars Science Laboratory Landing Sites. Mars (2012), submitted Google Scholar
  76. J.A. Grant, T.J. Parker, Drainage evolution of the Margaritifer Sinus region, Mars. J. Geophys. Res. 107, 5066 (2002). doi: 10.1029/2001JE001678 CrossRefGoogle Scholar
  77. J.A. Grant, S.A. Wilson, Late alluvial fan formation in southern Margaritifer Terra, Mars. Geophys. Res. Lett. 38, L08201 (2011). doi: 10.1029/2011GL046844 CrossRefGoogle Scholar
  78. J.A. Grant, R.P. Irwin III, J.P. Grotzinger, R.E. Milliken, L.L. Tornabene, A.S. McEwen, C.M. Weitz, S.W. Squyres, T.D. Glotch, B.J. Thomson, HiRISE imaging of impact megabreccia and sub-meter aqueous strata in Holden Crater, Mars. Geology 36, 195–198 (2008). doi: 10.1130/G24340A ADSCrossRefGoogle Scholar
  79. J.A. Grant, M.P. Golombek, J. Grotzinger, S.A. Wilson, M. Watkins, A.R. Vasavada, J. Griffes, T. Parker, The science process for selecting the landing site for the 2011 Mars Science Laboratory. Planet. Space Sci. (2010a). doi: 10.1016/j.pss.2010.06.016 Google Scholar
  80. J.A. Grant, R.P. Irwin III, S.A. Wilson, Aqueous depositional settings in Holden crater, Mars, in Lakes on Mars, ed. by N.A. Cabrol, E.A. Grin (Elsevier, Oxford, 2010b). Chap. 12 Google Scholar
  81. J.A. Grant, R.P. Irwin III, S.A. Wilson, D. Buczkowski, K. Siebach, A lake in Uzboi Vallis and implications for Late Noachian-Early Hesperian climate on Mars. Icarus 212(1), 110–122 (2011) ADSCrossRefGoogle Scholar
  82. J. Grotzinger, Beyond water on Mars. Nat. Geosci. 2, 231–233 (2009). doi: 10.1038/ngeo480 ADSCrossRefGoogle Scholar
  83. J. Grotzinger et al., Mars Science Laboratory Mission and science investigation. Space Sci. Rev., this issue. doi: 10.1007/s11214-012-9892-2
  84. K. Gwinner, F. Scholten, R. Jaumann, T. Roatsch, J. Oberst, G. Neukum, Global mapping of Mars by systematic derivation of Mars Express HRSC high-resolution digital elevation models and orthoimages, in ISPRS IV/7 Extraterrestrial Mapping Workshop, Houston, TX (2007) Google Scholar
  85. K. Gwinner, F. Scholten, M. Spiegel, R. Schmidt, B. Giese, J. Oberst, R. Jaumann, C. Heipke, G. Neukum, Derivation and validation of high-resolution digital terrain models from Mars Express HRSC-data. Photogramm. Eng. Remote Sens. 75(9), 1127–1141 (2009) Google Scholar
  86. K. Gwinner, J. Oberst, R. Jaumann, G. Neukum, Regional HRSC multi-orbit digital terrain models for the Mars Science Laboratory candidate landing sites, in 41st Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2010a). Abstract 2727 (CD-ROM) Google Scholar
  87. K. Gwinner et al., Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth Planet. Sci. Lett. 294, 506 (2010b) ADSCrossRefGoogle Scholar
  88. T. Hagfors, Backscattering from an undulating surface with applications to radar returns from the Moon. J. Geophys. Res. 69, 3779–3784 (1964) ADSCrossRefGoogle Scholar
  89. A.F.C. Haldemann, D.L. Mitchell, R.F. Jurgens, M.A. Slade, D.O. Muhleman, Mars Pathfinder landing site assessment with Goldstone delay-Doppler and CW radar experiments. J. Geophys. Res. 102, 4097–4106 (1997) ADSCrossRefGoogle Scholar
  90. J.K. Harmon, R.E. Arvidson, E.A. Guinness, B.A. Campbell, M.A. Slade, Mars mapping with delay-Doppler radar. J. Geophys. Res. 104, 14065–14089 (1999) ADSCrossRefGoogle Scholar
  91. M.H. Hecht, A.R. Vasavada, Transient liquid water near an artificial heat source on Mars. Mars 2, 83–96 (2006). doi: 10.1555/mars.2006.0006 ADSCrossRefGoogle Scholar
  92. T.L. Heet, R.E. Arvidson, S.C. Cull, M.T. Mellon, K.D. Seelos, Geomorphic and geologic settings of the Phoenix Lander mission landing site. J. Geophys. Res. 114, E00E04 (2009). doi: 10.1029/2009JE003416 ADSCrossRefGoogle Scholar
  93. S.W. Hobbs, D.J. Paull, M.C. Bourke, Aeolian processes and dune morphology in Gale Crater. Icarus 210, 102–115 (2010). doi: 10.1016/j.icarus.2010.06.006 ADSCrossRefGoogle Scholar
  94. T.J. Holmes et al., Light microscopic images reconstructed by maximum likelihood, in Handbook of Biological Confocal Microscopy, ed. by J.B. Pawley (Plenum Press, New York, 1995) Google Scholar
  95. B.M. Hynek, R.J. Phillips, The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin. Earth Planet. Sci. Lett. 274, 214–220 (2008) ADSCrossRefGoogle Scholar
  96. B.M. Hynek, R.E. Arvidson, R.J. Phillips, Geologic setting and origin of Terra Meridiani hematite deposit on Mars. J. Geophys. Res. 107, 5088 (2002). doi: 10.1029/2002JE001891 CrossRefGoogle Scholar
  97. R. Irwin, An overview of the setting of Holden crater. Presentation at the 4th MSL Landing Site Workshop, Sept. 27–29, 2010, in Monrovia, CA.
  98. R.P. Irwin III, J.A. Grant, Geologic Map of MTM-15027, -20027, -25027, -25032 Quadrangles, Margaritifer Terra region of Mars. U.S. Geol. Surv. Scientific Investigations Map, scale 1:500,000, 2011 Google Scholar
  99. B.M. Jakosky, The effects of nonideal surfaces on the derived thermal properties of Mars. J. Geophys. Res. 84(B14), 8252–8262 (1979) ADSCrossRefGoogle Scholar
  100. B.M. Jakosky, P.R. Christensen, Global duricrust on Mars: Analysis of remote-sensing data. J. Geophys. Res. 91, 3547–3559 (1986) ADSCrossRefGoogle Scholar
  101. D.J. Jerolmack, D. Mohrig, M.T. Zuber, S. Byrne, A minimum time for the formation of Holden northeast fan, Mars. Geophys. Res. Lett. 31, L21701 (2004). doi: 10.1029/2004GL021326 ADSCrossRefGoogle Scholar
  102. H.H. Kieffer, S.C. Chase Jr., E. Miner, G. Münch, G. Neugebauer, Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78(20), 4291–4312 (1973) ADSCrossRefGoogle Scholar
  103. H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82(28), 4249–4291 (1977) ADSCrossRefGoogle Scholar
  104. J.R. Kim, J.P. Muller, Multi-resolution topographic data extraction from Martian stereo imagery. Planet. Space Sci. 57(14–15), 2095–2112 (2009). doi: 10.1016/j.pss.2009.09.024 ADSCrossRefGoogle Scholar
  105. D. Kipp, Terrain safety assessment in support of the Mars Science Laboratory mission, in IEEE Aerospace Conference, Big Sky, MT (2012). doi: 10.1109/AERO.2012.6186995 Google Scholar
  106. D. Kipp, M. San Martin, J. Essmiller, D. Way, Mars Science Laboratory entry, descent and landing triggers, in IEEE Aerospace Conference, Big Sky, MT (2007). IEEAC paper #1445 Google Scholar
  107. R. Kirk et al., High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow angle images. J. Geophys. Res. 108(E12), 8088 (2003). doi: 10.1029/2003JE002131 CrossRefGoogle Scholar
  108. R.L. Kirk et al., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. J. Geophys. Res. 113, E00A24 (2008). doi: 10.1029/2007JE003000 ADSCrossRefGoogle Scholar
  109. R.L. Kirk, E. Howington-Kraus, D. Galuszka, B. Redding, J. Antonsen, K. Coker, E. Foster, M. Hopkins, A. Licht, A. Fennema, F. Calef III, S. Nuti, T.J. Parker, M.P. Golombek, “Wall to wall” 1-m topographic coverage of the Mars Science Laboratory candidate landing sites, in 42nd Lunar and Planetary Science Conference (2011a). Abstract #2407 Google Scholar
  110. R.L. Kirk et al., Near-complete 1-m topographic models of the MSL candidate landing sites: Site safety and quality evaluation, in European Planetary Science Conference, vol. 6, (2011b). Abstract EPSC2011-1465 Google Scholar
  111. A. Kleinbohl et al., Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res. 114, E10006 (2009). doi: 10.1029/2009JE003358 ADSCrossRefGoogle Scholar
  112. K.W. Larsen, R.F. Jurgens, A.F.C. Haldemann, M.A. Slade, H.C. Rumsey Jr., Terrestrial quadstatic interferometric radar observations of Mars. IEEE Trans. Geosci. Remote Sens. 48(6), 2670–2684 (2010). doi: 10.1109/TGRS.2010.2040084 ADSCrossRefGoogle Scholar
  113. P.C. Leger et al., Mars Exploration Rover surface operations: Driving Spirit at Gusev crater, in October 2005 IEEE Systems, Man and Cybernetics Conference Proceedings, Hawaii, USA, 10 October 2005 Google Scholar
  114. K.W. Lewis, O. Aharonson, Stratigraphic analysis of the distributary fan in Eberswalde crater using stereo imagery. J. Geophys. Res. 111, E06001 (2006). doi: 10.1029/2005JE002555 ADSCrossRefGoogle Scholar
  115. D. Loizeau, N. Mangold, F. Poulet, J.-P. Bibring, A. Gendrin, V. Ansan, C. Gomez, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Phyllosilicates in the Mawrth Vallis region of Mars. J. Geophys. Res. 112, E08S08 (2007). doi: 10.1029/2006JE002877 ADSCrossRefGoogle Scholar
  116. D. Loizeau, N. Mangold, F. Poulet, V. Ansan, E. Hauber, J.-P. Bibring, B. Gondet, Y. Langevin, P. Masson, G. Neukum, Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus 205, 396 (2010). doi: 10.1016/j.icarus.2009.04.018 ADSCrossRefGoogle Scholar
  117. M. Maimone, J. Morrison, Rover navigation 101: Autonomous rover navigation. JPL Mars Exploration Rover website, January 13, 2004 Google Scholar
  118. M. Maimone, J. Biesiadecki, E. Tunstel, Y. Cheng, C. Leger, Surface navigation and mobility intelligence on the Mars Exploration Rovers, in Intelligence for Space Robotics, March (TSI Press, San Antonio, 2006), pp. 45–69. Chap. 3 Google Scholar
  119. M. Maimone, Y. Cheng, L. Matthies, Two years of visual odometry on the Mars Exploration Rovers. J. Field Robot. 24(3), 169–186 (2007a) CrossRefGoogle Scholar
  120. M.W. Maimone, P.C. Leger, J.J. Biesiadecki, Overview of the Mars Exploration Rovers’ autonomous mobility and vision capabilities, in IEEE International Conference on Robotics and Automation (ICRA) Space Robotics Workshop, Rome, Italy, 14 April 2007b Google Scholar
  121. M.C. Malin, K.S. Edgett, Sedimentary Rocks of Early Mars. Science 290(5498), 1927–1937 (2000) ADSCrossRefGoogle Scholar
  122. M.C. Malin, K.S. Edgett, Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001a) ADSCrossRefGoogle Scholar
  123. M.C. Malin, K.S. Edgett, Rock stratigraphy in Gale crater, Mars, in 32nd Lunar and Planetary Science Conference, (Lunar and Planetary Institute, Houston, 2001b). Abstract #1005 Google Scholar
  124. M.C. Malin, K.S. Edgett, Evidence for persistent flow and aqueous sedimentation on Mars. Science 302, 1931–1934 (2003). doi: 10.1126/science.10905444 ADSCrossRefGoogle Scholar
  125. M.C. Malin et al., Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007). doi: 10.1029/2006JE002808 ADSCrossRefGoogle Scholar
  126. N. Mangold, F. Poulet, J.F. Mustard, J.-P. Bibring, B. Bondet, Y. Langevin, V. Ansan, P. Masson, C. Fasset, J.W. Head, H. Hoffmann, G. Neukum, Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust. J. Geophys. Res. 112, E08S04 (2007). doi: 10.1029/2006JE002835 ADSCrossRefGoogle Scholar
  127. N. Mangold, V. Ansan, P. Masson, C. Vincendon, Estimate of the aeolian dust thickness in Arabia Terra, Mars: Implications of a thick mantle (20 m) for hydrogen detection. Géomorph. Relief Process. Environ. 1, 23–32 (2009) CrossRefGoogle Scholar
  128. H. Masursky, N.L. Crabill, The Viking landing sites: Selection and certification. Science 193, 809–812 (1976a) ADSCrossRefGoogle Scholar
  129. H. Masursky, N.L. Crabill, Search for the Viking 2 landing site. Science 194, 62–68 (1976b) ADSCrossRefGoogle Scholar
  130. H. Masursky, N.L. Crabill, Viking site selection and certification. NASA SP-429, 34pp., 1981 Google Scholar
  131. L.M. Matthies et al., Computer Vision on Mars. Int. J. Comput. Vis. (2007a). doi: 10.1007/s11263-007-0046-z Google Scholar
  132. L. Matthies, M. Maimone, Y. Cheng, A. Johnson, R. Willson, Computer vision in the Mars Exploration Rover (MER) mission, in Computational Vision in Neural and Machine Systems (Cambridge University Press, Cambridge, 2007b), pp. 71–84. ISBN 978-0-521-86260-8. Chap. 4 Google Scholar
  133. S. Mattson, A. Boyd, R.L. Kirk, D.A. Cook, E. Howington-Kraus, HiJACK: Correcting spacecraft jitter in HiRISE images of Mars, in European Planetary Science Conference, vol. 4 (2009). Abstract EPSC2009-0604 Google Scholar
  134. A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007). doi: 10.1029/2005JE002605 ADSCrossRefGoogle Scholar
  135. A.S. McEwen et al., The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus 205, 2–37 (2010). doi: 10.1016/j.icarus.2009.04.023 ADSCrossRefGoogle Scholar
  136. N.K. McKeown et al., Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate. J. Geophys. Res. 114, E00D10 (2009) ADSCrossRefGoogle Scholar
  137. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000) ADSCrossRefGoogle Scholar
  138. M.T. Mellon, W.C. Feldman, T.H. Prettyman, The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004). doi: 10.1016/j.icarus.2003.10.022 ADSCrossRefGoogle Scholar
  139. M.T. Mellon et al., The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 399–427. Chap. 19 CrossRefGoogle Scholar
  140. G.F. Mendeck, L.E. Craig, Entry guidance for the 2011 Mars Science Laboratory Mission, in AIAA Atmospheric Flight Mechanics Conference and Exhibit, Portland, Oregon Aug. 8–11 2011. AIAA 2011-6639 Google Scholar
  141. MEPAG, Special Regions Science Analysis Group et al., Findings of the Mars Special Regions Science Analysis Group. Astrobiology 6, 677–732 (2006). doi: 10.1089/ast.2006.6.677 ADSCrossRefGoogle Scholar
  142. J.M. Metz, J.P. Grotzinger, D. Mohrig, R. Milliken, B. Prather, C. Pirmez, A.S. McEwen, C.M. Weitz, Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114, E10002 (2009). doi: 10.1029/2009JE003365 ADSCrossRefGoogle Scholar
  143. J.R. Michalski, E.Z.N. Noe Dobrea, Evidence for a sedimentary origin of clay minerals in the Mawrth Vallis region, Mars. Geology 35, 830–833 (2007). doi: 10.1130/G23854A.1 CrossRefGoogle Scholar
  144. J. Michalski, F. Poulet, J.-P. Bibring, N. Mangold, Analysis of phyllosilicate deposits in the Nili Fossae region of Mars: Comparison of TES and OMEGA data. Icarus 206, 269–289 (2010a). doi: 10.1016/j.icarus.2009.09.006 ADSCrossRefGoogle Scholar
  145. J.R. Michalski et al., The Mawrth Vallis region of Mars: A potential landing site for the Mars Science Laboratory (MSL) mission. Astrobiology 10(7), 687–703 (2010b) ADSCrossRefGoogle Scholar
  146. S.B. Miller, A.S. Walker, Further developments of Leicadigital photogrammetric systems by Helava. ACSM/ASPRS Annu. Conv. Expo. Tech. Pap. 3, 256–263 (1993) Google Scholar
  147. S.B. Miller, A.S. Walker, Die Entwicklung der digitalen photogrammetrischen Systeme von Leica und Helava. Z. Photogramm. Fernerkund. 63(1), 4–16 (1995) Google Scholar
  148. R.E. Milliken, D. Bish, Sources and sinks of clay minerals on Mars. Philos. Mag. 90(17), 2293–2308 (2010) ADSCrossRefGoogle Scholar
  149. R.E. Milliken, J. Grotzinger, J.A. Grant, R. Arvidson, S. Murchie, Understanding sedimentary sources and sinks on Mars from orbit. Geol. Soc. Am. Prog. Abstr. (2008). Abstract 134-1 Google Scholar
  150. R.E. Milliken, J.P. Grotzinger, B.J. Thomson, Paleoclimate of Mars as captured by the stratigraphic record in Gale crater. Geophys. Res. Lett. 37, L04201 (2010). doi: 10.1029/2009GL041870 CrossRefGoogle Scholar
  151. J.M. Moore, A.D. Howard, Large alluvial fans on Mars. J. Geophys. Res. 110, E04005 (2005). doi: 10.1029/2005JE002352 ADSCrossRefGoogle Scholar
  152. H.J. Moore, B.M. Jakosky, Viking landing sites, remote-sensing observations, and physical properties of martian surface materials. Icarus 81, 164–184 (1989) ADSCrossRefGoogle Scholar
  153. J.M. Moore, A.D. Howard, W.D. Dietrich, P.M. Schenk, Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. 30, E06001 (2003). doi: 10.1029/2003GL019002 Google Scholar
  154. MSL Project, MSL landing site selection user’s guide to engineering constraints. The Mars Science Laboratory Project Document, Jet Propulsion Laboratory, Pasadena, CA, vol. 4.5, 2007, 15 pp. Google Scholar
  155. S. Murchie et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007). doi: 10.1029/2006JE002682 ADSCrossRefGoogle Scholar
  156. J.F. Mustard, B.L. Ehlmann, Three distinct habitable environments defined by aqueous alteration traversing the alkaline-acidic transition. Abstract submitted for a New MSL Landing Site to the Landing Site Steering Committee, Aug. 22, 2009, posted at
  157. J.F. Mustard et al., Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454, 305–309 (2008). doi: 10.1038/nature07097 ADSCrossRefGoogle Scholar
  158. J.F. Mustard, B.L. Ehlmann, S.L. Murchie, F. Poulet, N. Mangold, J.W. Head, J.-P. Bibring, L.H. Roach, Composition, morphology, and stratigraphy of Noachain/Phyllosian crust around the Isidis Basin. J. Geophys. Res. 114, E00D12 (2010). doi: 10.1029/2009JE003349 CrossRefGoogle Scholar
  159. G.A. Neumann, J.B. Abshire, O. Aharonson, J.B. Garvin, X. Sun, M.T. Zuber, Mars Orbiter Laser Altimeter pulse width measurements and footprint scale roughness. Geophys. Res. Lett. 30, 1561–1565 (2003) ADSCrossRefGoogle Scholar
  160. H.E. Newsom, N.L. Lanza, A.M. Ollila, S.M. Wiseman, T.L. Roush, G.A. Marzo, L.L. Tornabene, C.H. Okubo, M.M. Osterloo, V.E. Hamilton, L.S. Crumpler, Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus 205, 64–72 (2010). doi: 10.1016/j.icarus.2009.03.030 ADSCrossRefGoogle Scholar
  161. E.Z. Noe Dobrea et al., Mineralogy and stratigraphy of phyllossilicate-bearing and dark mantling units in the greater Mawrth Vallis/west Arabia Terra area: Constraints on geological origin. J. Geophys. Res. (2010). doi: 10.1029/2009JE003351 Google Scholar
  162. E.Z. Noe Dobrea, J. Michalski, G. Swayze, Aqueous mineralogy and stratigraphy at and around the proposed Mawrth Vallis MSL Landing Site: New insights into the aqueous history of the region, Mars. Mars 6, 32–46 (2011) Google Scholar
  163. K.S. Novak, Y. Liu, C.-J. Lee, S. Hendricks, Mars Science Laboratory Rover actuator thermal design, in 40th ICES Conference, Barcelona, Spain, July 2010 Google Scholar
  164. S.A. Nowicki, P.R. Christensen, Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. 112, E05007 (2007). doi: 10.1029/2006JE002798 ADSCrossRefGoogle Scholar
  165. T. Ojala, M. Pietikainen, Unsupervised texture segmentation using feature distributions. Pattern Recognit. 32, 477–486 (1999) CrossRefGoogle Scholar
  166. M.M. Osterloo, V.E. Hamilton, J.L. Bandfield, T.D. Glotch, A.M. Baldridge, P.R. Christensen, L.L. Tornabene, F.S. Anderson, Chloride-bearing materials in the southern highlands of Mars. Science 319(5870), 1651–1654 (2008). doi: 10.1126/science.1150690 ADSCrossRefGoogle Scholar
  167. M.M. Osterloo, F.S. Anderson, V.E. Hamilton, B.M. Hynek, Geologic context of proposed chloride- bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010). doi: 10.1029/2010JE003613 ADSCrossRefGoogle Scholar
  168. F.D. Palluconi, H.H. Kieffer, Thermal inertia mapping of Mars from 60°S to 60°N. Icarus 45, 415–426 (1981) ADSCrossRefGoogle Scholar
  169. T.J. Parker, M.P. Golombek, M.W. Powell, Geomorphic/geologic mapping, localization, and traverse planning at the Opportunity landing site, Mars, in 41st Lunar Planet. Sci. (Lunar and Planetary Institute, Houston, 2010). Abstract #2638 (CD-ROM) Google Scholar
  170. S.M. Pelkey, B.M. Jakosky, Surficial geologic surveys of Gale Crater and Melas Chasma, Mars: Integration of remote-sensing data. Icarus 160, 228–257 (2002) ADSCrossRefGoogle Scholar
  171. S.M. Pelkey, B.M. Jakosky, P.R. Christensen, Surficial properties in Gale Crater, Mars from Mars Odyssey THEMIS data. Icarus 167, 244–270 (2004) ADSCrossRefGoogle Scholar
  172. L.K. Pleskot, E.D. Miner, Time variability of Martian bolometric albedo. Icarus 45, 179–201 (1981) ADSCrossRefGoogle Scholar
  173. B.D. Pollard, C.W. Chen, The radar terminal descent sensor for the Mars Science Laboratory mission, in Proceedings of the Aerospace Engineering Symposium, Big Sky, MT (2009). doi: 10.1109/AERO.2009.4839463 Google Scholar
  174. M. Pondrelli, A. Baliva, S. Di Lorenzo, L. Marinangeli, A.P. Rossi, Complex evolution of paleolacustrine systems on Mars: An example from the Holden crater. J. Geophys. Res. 110, E04016 (2005). doi: 10.1029/2004JE002335 ADSCrossRefGoogle Scholar
  175. M. Pondrelli, A. Pio Rossi, L. Marinangeli, E. Hauber, A. Baliva, An application of sequence stratigraphy to Mars: The Eberswalde fan delta. GeoActa 1, 237–253 (2008). Special Publication Google Scholar
  176. C. Popa, F. Esposito, L. Colangeli, New landing site proposal for Mars Science Laboratory (MSL) in Xanthe Terra, in Lunar Planet. Sci., vol. XLI (Lunar and Planetary Institute, Houston, 2010) Abstract 1807 Google Scholar
  177. F. Poulet, J.-P. Bibring, J.F. Mustard, A. Gendrin, N. Mangold, Y. Langevin, R.E. Arvidson, B. Gondet, C. Gomez (OMEGA Team), Phyllosilicates on Mars and implications for the early Mars history. Nature 438, 623–628 (2005) ADSCrossRefGoogle Scholar
  178. F. Poulet, C. Gomez, J.-P. Bibring, Y. Langevin, B. Gondet, P. Pinet, G. Belluci, J. Mustard, Martian surface mineralogy from Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps. J. Geophys. Res. 112, E08S02 (2007). doi: 10.1029/2006JE002840 ADSCrossRefGoogle Scholar
  179. F. Poulet, R.E. Arvidson, C. Gomez, R.V. Morris, J.-P. Bibring, Y. Langevin, B. Gondet, J. Griffes, Mineralogy of Terra Meridiani and western Arabia Terra from OMEGA/MEx and implications for their formation. Icarus 195(1), 106–160 (2008a). doi: 10.1016/j.icarus.2007.11.031 ADSCrossRefGoogle Scholar
  180. F. Poulet, N. Mangold, D. Loizeau, J.-P. Bibring, Y. Langevin, J. Michalski, B. Gondet, Abundance of minerals in the phyllosilicate-rich units on Mars. Astron. Astrophys. 487(2), L41–L44 (2008b) ADSCrossRefGoogle Scholar
  181. R. Prakash et al., Mars Science Laboratory entry, descent, and landing system overview, in IEEE Aerospace Conference (2008). doi: 10.1109/AERO.2008.4526283. IEEEAC paper #1531 Google Scholar
  182. N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68–94 (2007). doi: 10.1016/j.icarus.2007.05.013 ADSCrossRefGoogle Scholar
  183. N.E. Putzig, M.T. Mellon, R.E. Arvidson, K.A. Kretke, Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus 173, 325–341 (2005) ADSCrossRefGoogle Scholar
  184. C. Quantin, P. Allemand, N. Mangold, G. Dromart, C. Delacourt, Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. J. Geophys. Res. 110, E12S19 (2005). doi: 10.1029/2005JE002440 ADSCrossRefGoogle Scholar
  185. S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus 151, 228–256 (2001) ADSCrossRefGoogle Scholar
  186. M.S. Rice, S. Gupta, J.F. Bell III, N.H. Warner, Influence of fault controlled topography on fluvio-deltaic sedimentary systems in Eberswalde crater, Mars. Geophys. Res. Lett. 38, L16203 (2011). doi: 10.1029/2011GL048149 ADSCrossRefGoogle Scholar
  187. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 (2002). doi: 10.1029/2001JE001580 CrossRefGoogle Scholar
  188. D.H. Scott, K.L. Tanaka, Geologic map of the western equatorial region of Mars. U. S. Geological Survey Miscellaneous Investigations Series I-1802-A, scale 1:15,000,000, 1986 Google Scholar
  189. R.A. Simpson, J.K. Harmon, S.H. Zisk, T.W. Thompson, D.O. Muhleman, Radar determination of Mars surface properties, in MARS, ed. by H.H. Kieffer et al. (University of Arizona Press, Tucson, 1992), pp. 652–685 Google Scholar
  190. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004) ADSCrossRefGoogle Scholar
  191. D.E. Smith, M.T. Zuber, The relationship between MOLA northern hemisphere topography and the 6.1-Mbar atmospheric pressure surface of Mars. Geophys. Res. Lett. 25, 4397–4400 (1998) ADSCrossRefGoogle Scholar
  192. D.E. Smith et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001) ADSCrossRefGoogle Scholar
  193. S.W. Squyres et al., Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle Crater to Purgatory Ripple. J. Geophys. Res. 111, E12S12 (2006). doi: 10.1029/2006JE002771 ADSCrossRefGoogle Scholar
  194. A. Steltzner, D. Kipp, A. Chen, D. Burkhart, C. Guernsey, G. Mendeck, R. Mitcheltree, R. Powell, T. Rivellini, M. San Martin, D. Way, Mars Science Laboratory entry descent and landing system, in IEEE Aerospace Conference, Big Sky, MT (2006). IEEAC paper #1497 Google Scholar
  195. R.E. Summons, J.P. Amend, D. Bish, R. Buick, G.D. Cody, D.J. Des Marais, G. Dromart, J.L. Eigenbrode, A.H. Knoll, D.Y. Sumner, Preservation of Martian organic and environmental records: Final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011). doi: 10.1089/ast.2010.0506 ADSCrossRefGoogle Scholar
  196. B.J. Thomson et al., Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data. Icarus 214, 413–432 (2011) ADSCrossRefGoogle Scholar
  197. D. Tyler, J.R. Barnes, R.M. Haberle, Simulation of surface meteorology at the Pathfinder and VL1 sites using a Mars mesoscale model. J. Geophys. Res. 107(E4), 5018 (2002). doi: 10.1029/2001JE001618 CrossRefGoogle Scholar
  198. M. Varma, A. Zisserman, A statistical approach to texture classification from single images. Int. J. Comput. Vis. 62(1–2), 61–81 (2005) Google Scholar
  199. A.R. Vasavada et al., Environmental characterization for the Mars Science Laboratory EDL and surface operations. Space Sci. Rev., this issue Google Scholar
  200. M. Vincendon, J. Mustard, F. Forget, M. Kreslavsky, A. Spiga, S. Murchie, J.-P. Bibring, Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010). doi: 10.1029/2009GL041426 CrossRefGoogle Scholar
  201. D.W. Way, R.W. Powell, A. Chen, A.D. Steltzner, A.M.S. Martin, P.D. Burhart, G.F. Mendeck, Mars Science Laboratory: Entry, descent, and landing system performance, in IEEE Aerospace Conference, Big Sky, MT (2007). IEEAC paper #1467 Google Scholar
  202. C.V. White, G. Antoun, J. Tippmann, Analysis and testing of the Mars Science Laboratory entry, descent, and landing loads—Part 2—Landing loads phase, in 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, April 2012 Google Scholar
  203. S.A. Wilson, A.D. Howard, J.M. Moore, J.A. Grant, Geomorphic and stratigraphic analysis of crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009 (2007). doi: 10.1029/2006JE002830 ADSCrossRefGoogle Scholar
  204. S.M. Wiseman, R.E. Arvidson, F. Poulet, R.V. Morris, S. Murchie, F.P. Seelos, J.C. Andrews-Hanna, CRISM Science Team, Stratigraphic context of phyllosilicate deposits in Sinus Meridiani, Mars, in Lunar Planet. Sci., LPI, Houston, TX, vol. XXXIX (2008). Abstract 7035 Google Scholar
  205. J.J. Wray, B.L. Ehlmann, S.W. Squyres, J.F. Mustard, R.L. Kirk, Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Lett. 35, L12202 (2008) ADSCrossRefGoogle Scholar
  206. J. Yen, B. Cooper, F. Hartman, S. Maxwell, J. Wright, C. Leger, Physical-based simulation for Mars Exploration Rover tactical sequencing, in Proceedings of the 2005 IEEE Conference on Systems, Man, and Cybernetics, October 2005 Google Scholar
  207. B. Zhang, Towards a higher level of automation in softcopy photogrammetry: NGATE and LIDAR processing in SOCET SET1. Paper presented at Geocue Corporation 2nd Annual Technical Exchange Conference, Nashville, Tenn., 26–27 September 2006 Google Scholar
  208. B. Zhang, S. Miller, Adaptive automatic terrain extraction. Proc. SPIE Int. Soc. Opt. Eng. 3072, 27–36 (1997) ADSGoogle Scholar
  209. B. Zhang, S. Miller, K. DeVenecia, S. Walker, Automatic terrain extraction using multiple image pair and back matching. Paper presented at ASPRS 2006 Annual Conference, Am. Soc. Photogramm. Remote Sens., Reno, Nevada, 1–5 May 2006 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Golombek
    • 1
    Email author
  • J. Grant
    • 2
  • D. Kipp
    • 1
  • A. Vasavada
    • 1
  • R. Kirk
    • 3
  • R. Fergason
    • 3
  • P. Bellutta
    • 1
  • F. Calef
    • 1
  • K. Larsen
    • 4
  • Y. Katayama
    • 1
    • 5
  • A. Huertas
    • 1
  • R. Beyer
    • 6
  • A. Chen
    • 1
  • T. Parker
    • 1
  • B. Pollard
    • 1
  • S. Lee
    • 1
  • Y. Sun
    • 1
    • 7
  • R. Hoover
    • 1
    • 8
  • H. Sladek
    • 1
    • 9
  • J. Grotzinger
    • 7
  • R. Welch
    • 1
  • E. Noe Dobrea
    • 1
    • 10
  • J. Michalski
    • 1
    • 10
  • M. Watkins
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.National Air and Space MuseumSmithsonian InstitutionWashingtonUSA
  3. 3.U.S. Geological SurveyFlagstaffUSA
  4. 4.Laboratory Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  5. 5.Lunar and Planetary Exploration Program GroupJapan Aerospace Exploration AgencyTokyoJapan
  6. 6.NASA Ames Research CenterMoffett FieldUSA
  7. 7.California Institute of TechnologyPasadenaUSA
  8. 8.University of ColoradoBoulderUSA
  9. 9.University of Montana WesternDillonUSA
  10. 10.Planetary Science InstituteTucsonUSA

Personalised recommendations