Advertisement

Space Science Reviews

, Volume 173, Issue 1–4, pp 5–47 | Cite as

Ion Acceleration at the Earth’s Bow Shock

  • D. BurgessEmail author
  • E. Möbius
  • M. Scholer
Article

Abstract

The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.

Keywords

Ion acceleration Bow shock Space plasma Collisionless shock Particle acceleration 

Notes

Acknowledgements

The authors thank ISSI for support to attend the workshop “Particle Acceleration in Cosmic Plasmas.” D. Burgess acknowledges support of STFC grant ST/H002731/1. E. Möbius acknowledges support of NASA grant NNX11AB65G, and gratefully acknowledges the support of the U.S. Department of Energy through LANL’s Laboratory Directed Research and Development (LDRD) Program and Institute Geophysics and Planetary Physics.

References

  1. G.C. Anagnostopoulos, E.T. Sarris, S.M. Krimigis, Magnetospheric origin of energetic (at least 50 keV) ions upstream of the bow shock—The October 31, 1977, event. J. Geophys. Res. 91, 3020–3028 (1986). doi: 10.1029/JA091iA03p03020 ADSCrossRefGoogle Scholar
  2. K.A. Anderson, R.P. Lin, F. Martel, C.S. Lin, G.K. Parks, H. Rème, Thin sheets of energetic electrons upstream from the Earth’s bow shock. Geophys. Res. Lett. 6, 401–404 (1979) ADSCrossRefGoogle Scholar
  3. W.I. Axford, Acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 12, (1981a), pp. 155–203 Google Scholar
  4. W.I. Axford, Late paper: acceleration of cosmic rays by shock waves, in ESA Special Publication, ed. by S.A. Colgate ESA Special Publication, vol. 161 (1981b), p. 425 Google Scholar
  5. S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161–203 (2005). doi: 10.1007/s11214-005-3827-0 ADSCrossRefGoogle Scholar
  6. S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, G. Paschmann, N. Skopke, Deceleration of the solar wind upstream from the earth’s bow shock and the origin of diffuse upstream ions. J. Geophys. Res. 85, 2981–2990 (1980). doi: 10.1029/JA085iA06p02981 ADSCrossRefGoogle Scholar
  7. A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978) ADSGoogle Scholar
  8. D. Biskamp, H. Welter, Numerical studies of magnetosonic collisionless shock-waves. Nuclear Fusion 12(6), 663–666 (1972). doi: 10.1088/0029-5515/12/6/006 CrossRefGoogle Scholar
  9. X. Blanco-Cano, N. Omidi, C.T. Russell, Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res. (Space Phys.) 111, 10205 (2006). doi: 10.1029/2005JA011421 ADSCrossRefGoogle Scholar
  10. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock 2. Origin. J. Geophys. Res. 86, 4405–4414 (1981a). doi: 10.1029/JA086iA06p04405 ADSCrossRefGoogle Scholar
  11. C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock. I Basic properties. J. Geophys. Res. 86, 4397–4413 (1981b). doi: 10.1029/JA086iA06p04397 ADSCrossRefGoogle Scholar
  12. D. Burgess, Shock drift acceleration at low energies. J. Geophys. Res. 92, 1119–1130 (1987a) ADSCrossRefGoogle Scholar
  13. D. Burgess, Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys. 5, 133–145 (1987b) ADSGoogle Scholar
  14. D. Burgess, Alpha particles in field-aligned beams upstream of the bow shock: Simulations. Geophys. Res. Lett. 16, 163 (1989a) ADSCrossRefGoogle Scholar
  15. D. Burgess, Cyclical behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345–349 (1989b) ADSCrossRefGoogle Scholar
  16. D. Burgess, What do we really know about upstream waves? Adv. Space Res. 20, 673–682 (1997). doi: 10.1016/S0273-1177(97)00455-9 ADSCrossRefGoogle Scholar
  17. D. Burgess, J.G. Luhmann, Scatter-free propagation of low-energy protons in the magnetosheath—Implications for the production of field-aligned ion beams by nonthermal leakage. J. Geophys. Res. 91, 1439–1449 (1986). doi: 10.1029/JA091iA02p01439 ADSCrossRefGoogle Scholar
  18. D. Burgess, M. Scholer, Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas 14(1), 012108 (2007). doi: 10.1063/1.2435317 ADSCrossRefGoogle Scholar
  19. D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi: 10.1007/s11214-005-3832-3 ADSCrossRefGoogle Scholar
  20. D.D. Childers, C.T. Russell, Power spectra of the interplanetary magnetic field near the earth. NASA Spec. Publ. 308, 375 (1972) ADSGoogle Scholar
  21. M.I. Desai, D. Burgess, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 113, A00B06 (2008) ADSCrossRefGoogle Scholar
  22. M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, T.T. von Rosenvinge, R.P. Lepping, Characteristics of energetic (≳30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. J. Geophys. Res. 105, 61–78 (2000). doi: 10.1029/1999JA900406 ADSCrossRefGoogle Scholar
  23. M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. Lett. 645, 81–84 (2006). doi: 10.1086/505935 ADSCrossRefGoogle Scholar
  24. J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The foreshock. Space Sci. Rev. 118, 41–94 (2005). doi: 10.1007/s11214-005-3824-3 ADSCrossRefGoogle Scholar
  25. J.P. Edmiston, C.F. Kennel, D. Eichler, Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett. 9, 531–534 (1982). doi: 10.1029/GL009i005p00531 ADSCrossRefGoogle Scholar
  26. D. Eichler, Energetic particle spectra in finite shocks—The earth’s bow shock. Astrophys. J. 244, 711–716 (1981). doi: 10.1086/158748 ADSCrossRefGoogle Scholar
  27. D.C. Ellison, Monte Carlo simulation of charged particles upstream of the earth’s bow shock. Geophys. Res. Lett. 8, 991–994 (1981). doi: 10.1029/GL008i009p00991 ADSCrossRefGoogle Scholar
  28. D.C. Ellison, E. Moebius, Diffusive shock acceleration—Comparison of a unified shock model to bow shock observations. Astrophys. J. 318, 474–484 (1987). doi: 10.1086/165384 ADSCrossRefGoogle Scholar
  29. D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—Comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990). doi: 10.1086/168544 ADSCrossRefGoogle Scholar
  30. D.C. Ellison, J. Giacalone, D. Burgess, S.J. Schwartz, Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J. Geophys. Res. 982, 21085 (1993). doi: 10.1029/93JA01753 ADSCrossRefGoogle Scholar
  31. M.A. Forman, G.E. Morfill, Time-dependent acceleration of solar wind plasma to MeV energies at corotating interplanetary shocks, in International Cosmic Ray Conference, vol. 5 (1979), p. 328 Google Scholar
  32. S.A. Fuselier, Ion distributions in the Earth’s foreshock upstream from the bow shock. Adv. Space Res. 15, 43–52 (1995). doi: 10.1016/0273-1177(94)00083-D ADSCrossRefGoogle Scholar
  33. S.A. Fuselier, W.K.H. Schmidt, H+ and He2+ heating at the Earth’s bow shock. J. Geophys. Res. 991, 11539–11546 (1994). doi: 10.1029/94JA00350 ADSCrossRefGoogle Scholar
  34. S.A. Fuselier, M.F. Thomsen, He(2+) in field-aligned beams—ISEE results. Geophys. Res. Lett. 19, 437–440 (1992). doi: 10.1029/92GL00375 ADSCrossRefGoogle Scholar
  35. S.A. Fuselier, M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Gyrating and intermediate ion distributions upstream from the earth’s bow shock. J. Geophys. Res. 91, 91–99 (1986). doi: 10.1029/JA091iA01p00091 ADSCrossRefGoogle Scholar
  36. J. Giacalone, Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452–458 (2004). doi: 10.1086/421043 ADSCrossRefGoogle Scholar
  37. J. Giacalone, S.J. Schwartz, D. Burgess, Observations of suprathermal ions in association with SLAMS. Geophys. Res. Lett. 20, 149–152 (1993). doi: 10.1029/93GL00067 ADSCrossRefGoogle Scholar
  38. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett. 19, 433–436 (1992). doi: 10.1029/92GL00379 ADSCrossRefGoogle Scholar
  39. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Ion injection and acceleration at parallel shocks—Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993). doi: 10.1086/172157 ADSCrossRefGoogle Scholar
  40. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, L. Bennett, Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res. 102, 19789–19804 (1997). doi: 10.1029/97JA01529 ADSCrossRefGoogle Scholar
  41. B.E. Gordon, M.A. Lee, E. Möbius, K.J. Trattner, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. 104, 28263–28278 (1999). doi: 10.1029/1999JA900356 ADSCrossRefGoogle Scholar
  42. J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, On the source of diffuse, suprathermal ions observed in the vicinity of the earth’s bow shock. J. Geophys. Res. 94, 3555–3563 (1989). doi: 10.1029/JA094iA04p03555 ADSCrossRefGoogle Scholar
  43. T. Hada, M. Oonishi, B. Lembège, P. Savoini, Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1233 (2003). doi: 10.1029/2002JA009339 ADSCrossRefGoogle Scholar
  44. P. Hellinger, P. Trávníček, B. Lembège, P. Savoini, Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett. 34, 14109 (2007). doi: 10.1029/2007GL030239 ADSCrossRefGoogle Scholar
  45. M.M. Hoppe, C.T. Russell, Plasma rest frame frequencies and polarizations of the low-frequency upstream waves—ISEE 1 and 2 observations. J. Geophys. Res. 88, 2021–2027 (1983). doi: 10.1029/JA088iA03p02021 ADSCrossRefGoogle Scholar
  46. M.M. Hoppe, C.T. Russell, L.A. Frank, T.E. Eastman, E.W. Greenstadt, Upstream hydromagnetic waves and their association with backstreaming ion populations—ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471–4492 (1981). doi: 10.1029/JA086iA06p04471 ADSCrossRefGoogle Scholar
  47. T.S. Horbury, P.J. Cargill, E.A. Lucek, A. Balogh, M.W. Dunlop, T.M. Oddy, C. Carr, P. Brown, A. Szabo, K.-H. Fornaçon, Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys. 19, 1399–1409 (2001). doi: 10.5194/angeo-19-1399-2001 ADSCrossRefGoogle Scholar
  48. F.M. Ipavich, G. Gloeckler, M. Scholer, Temporal development of composition, spectra, and anisotropies during upstream particle events. J. Geophys. Res. 86, 11153–11160 (1981). doi: 10.1029/JA086iA13p11153 ADSCrossRefGoogle Scholar
  49. F.M. Ipavich, J.T. Gosling, M. Scholer, Correlation between the He/H ratios in upstream particle events and in the solar wind. J. Geophys. Res. 89, 1501–1507 (1984). doi: 10.1029/JA089iA03p01501 ADSCrossRefGoogle Scholar
  50. F.M. Ipavich, G. Gloeckler, C.Y. Fan, L.A. Fisk, D. Hovestadt, B. Klecker, M. Scholer, J.J. Ogallagher, Initial observations of low energy charged particles near the earth’s bow shock on ISEE-1. Space Sci. Rev. 23, 93 (1979). doi: 10.1007/BF00174113 ADSCrossRefGoogle Scholar
  51. F.M. Ipavich, A.B. Galvin, G. Gloeckler, M. Scholer, D. Hovestadt, A statistical survey of ions observed upstream of the earth’s bow shock—Energy spectra, composition, and spatial variation. J. Geophys. Res. 86, 4337–4342 (1981). doi: 10.1029/JA086iA06p04337 ADSCrossRefGoogle Scholar
  52. F.M. Ipavich, G. Gloeckler, D.C. Hamilton, L.M. Kistler, J.T. Gosling, Protons and alpha particles in field-aligned beams upstream of the bow shock. Geophys. Res. Lett. 15, 1153–1156 (1988). doi: 10.1029/GL015i010p01153 ADSCrossRefGoogle Scholar
  53. C.F. Kennel, J.P. Edmiston, T. Hada, A Quarter Century of Collisionless Shock Research. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 34, (1985), pp. 1–36 Google Scholar
  54. A. Kis, M. Scholer, B. Klecker, E. Möbius, E.A. Lucek, H. Rème, J.M. Bosqued, L.M. Kistler, H. Kucharek, Multi-spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophys. Res. Lett. 312, 20801 (2004). doi: 10.1029/2004GL020759 CrossRefGoogle Scholar
  55. A. Kis, M. Scholer, B. Klecker, H. Kucharek, E.A. Lucek, H. Rème, Scattering of field-aligned beam ions upstream of Earth’s bow shock. Ann. Geophys. 25, 785–799 (2007). doi: 10.5194/angeo-25-785-2007 ADSCrossRefGoogle Scholar
  56. V.V. Krasnoselskikh, B. Lembège, P. Savoini, V.V. Lobzin, Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas 9, 1192–1209 (2002). doi: 10.1063/1.1457465 MathSciNetADSCrossRefGoogle Scholar
  57. D. Krauss-Varban, N. Omidi, Structure of medium Mach number quasi-parallel shocks—Upstream and downstream waves. J. Geophys. Res. 96, 17715 (1991). doi: 10.1029/91JA01545 ADSCrossRefGoogle Scholar
  58. S.M. Krimigis, D. Venkatesan, J.C. Barichello, E.T. Sarris, Simultaneous measurements of energetic protons and electrons in the distant magnetosheath, magnetotail, and upstream in the solar wind. Geophys. Res. Lett. 5, 961–964 (1978). doi: 10.1029/GL005i011p00961 ADSCrossRefGoogle Scholar
  59. E.A. Kronberg, A. Kis, B. Klecker, P.W. Daly, E.A. Lucek, Multipoint observations of ions in the 30–160 keV energy range upstream of the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 114, 3211 (2009). doi: 10.1029/2008JA013754 CrossRefGoogle Scholar
  60. H. Kucharek, M. Scholer, Origin of diffuse superthermal ions at quasi-parallel supercritical collisionless shocks. J. Geophys. Res. 962, 21195 (1991). doi: 10.1029/91JA02321 ADSCrossRefGoogle Scholar
  61. H. Kucharek, E. Möbius, M. Scholer, C. Mouikis, L. Kistler, T. Horbury, A. Balogh, H. Réme, J. Bosqued, On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys. 22, 2301–2308 (2004). doi: 10.5194/angeo-22-2301-2004 ADSCrossRefGoogle Scholar
  62. Y. Kuramitsu, V. Krasnoselskikh, Gyroresonant surfing acceleration. Phys. Rev. Lett. 94(3), 031102 (2005a). doi: 10.1103/PhysRevLett.94.031102 ADSCrossRefGoogle Scholar
  63. Y. Kuramitsu, V. Krasnoselskikh, Particle acceleration by elliptically and linearly polarized waves in the vicinity of quasi-parallel shocks. J. Geophys. Res. (Space Phys.) 110, 10108 (2005b). doi: 10.1029/2005JA011048 ADSCrossRefGoogle Scholar
  64. G. Le, C.T. Russell, A study of ULF wave foreshock morphology. I—ULF foreshock boundary. II—Spatial variation of ULF waves. Planet. Space Sci. 40, 1203–1213 (1992). doi: 10.1016/0032-0633(92)90077-2 ADSCrossRefGoogle Scholar
  65. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth’s bow shock. J. Geophys. Res. 87, 5063–5080 (1982). doi: 10.1029/JA087iA07p05063 ADSCrossRefGoogle Scholar
  66. M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109–6119 (1983). doi: 10.1029/JA088iA08p06109 ADSCrossRefGoogle Scholar
  67. B. Lembege, J.M. Dawson, Self-consistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids 30, 1767–1788 (1987). doi: 10.1063/1.866191 ADSCrossRefGoogle Scholar
  68. B. Lembège, P. Savoini, P. Hellinger, P.M. Trávníček, Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms. J. Geophys. Res. (Space Phys.) 114, 3217 (2009). doi: 10.1029/2008JA013618 CrossRefGoogle Scholar
  69. V.V. Lobzin, V.V. Krasnoselskikh, J.-M. Bosqued, J.-L. Pinçon, S.J. Schwartz, M. Dunlop, Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett. 340, 05107 (2007). doi: 10.1029/2006GL029095 CrossRefGoogle Scholar
  70. M.A. Malkov, Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E 58, 4911–4928 (1998). doi: 10.1103/PhysRevE.58.4911 ADSCrossRefGoogle Scholar
  71. M.A. Malkov, H.J. Voelk, Theory of ion injection at shocks. Astron. Astrophys. 300, 605 (1995) ADSGoogle Scholar
  72. S. Matsukiyo, M. Scholer, Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1459 (2003). doi: 10.1029/2003JA010080 ADSCrossRefGoogle Scholar
  73. C. Mazelle, B. Lembège, A. Morgenthaler, K. Meziane, T.S. Horbury, V. Génot, E.A. Lucek, I. Dandouras, Self-reformation of the quasi-perpendicular shock: CLUSTER observations. in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 471–474. doi: 10.1063/1.3395905 Google Scholar
  74. M.E. McKean, N. Omidi, D. Krauss-Varban, Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res. 100, 3427–3437 (1995). doi: 10.1029/94JA02529 ADSCrossRefGoogle Scholar
  75. K. Meziane, A.M. Hamza, M. Wilber, C. Mazelle, M.A. Lee, Anomalous foreshock field-aligned beams observed by Cluster. Ann. Geophys. 29, 1967–1975 (2011). doi: 10.5194/angeo-29-1967-2011 ADSCrossRefGoogle Scholar
  76. B. Miao, H. Kucharek, E. Möbius, C. Mouikis, H. Matsui, Y.C.-M. Liu, E.A. Lucek, Remote sensing of local structure of the quasi-perpendicular Earth’s bow shock by using field-aligned beams. Ann. Geophys. 27, 913–921 (2009). doi: 10.5194/angeo-27-913-2009 ADSCrossRefGoogle Scholar
  77. E. Möbius, H. Kucharek, C. Mouikis, E. Georgescu, L.M. Kistler, M.A. Popecki, M. Scholer, J.M. Bosqued, H. Rème, C.W. Carlson, B. Klecker, A. Korth, G.K. Parks, J.C. Sauvaud, H. Balsiger, M.-B. Bavassano-Cattaneo, I. Dandouras, A.M. Dilellis, L. Eliasson, V. Formisano, T. Horbury, W. Lennartsson, R. Lundin, M. McCarthy, J.P. McFadden, G. Paschmann, Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS. Ann. Geophys. 19, 1411–1420 (2001). doi: 10.5194/angeo-19-1411-2001 ADSCrossRefGoogle Scholar
  78. E. Moebius, D. Hovestadt, B. Klecker, M. Scholer, F.M. Ipavich, A burst of energetic O(+) ions during an upstream particle event. Geophys. Res. Lett. 13, 1372–1375 (1986). doi: 10.1029/GL013i013p01372 ADSCrossRefGoogle Scholar
  79. E. Moebius, M. Scholer, N. Sckopke, G. Paschmann, H. Luehr, The distribution function of diffuse ions and the magnetic field power spectrum upstream of earth’s bow shock. Geophys. Res. Lett. 14, 681–684 (1987). doi: 10.1029/GL014i007p00681 ADSCrossRefGoogle Scholar
  80. O. Moullard, D. Burgess, T.S. Horbury, E.A. Lucek, Ripples observed on the surface of the Earth’s quasi-perpendicular bow shock. J. Geophys. Res. (Space Phys.) 111, 9113 (2006). doi: 10.1029/2005JA011594 CrossRefGoogle Scholar
  81. M. Oka, T. Terasawa, Y. Saito, T. Mukai, Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res. (Space Phys.) 110, 05101 (2005). doi: 10.1029/2004JA010688 CrossRefGoogle Scholar
  82. N. Omidi, X. Blanco-Cano, C.T. Russell, Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res. (Space Phys.) 110, 12212 (2005). doi: 10.1029/2005JA011169 ADSCrossRefGoogle Scholar
  83. G. Paschmann, N. Sckopke, S.J. Bame, J.R. Asbridge, J.T. Gosling, C.T. Russell, E.W. Greenstadt, Association of low-frequency waves with suprathermal ions in the upstream solar wind. Geophys. Res. Lett. 6, 209–212 (1979). doi: 10.1029/GL006i003p00209 ADSCrossRefGoogle Scholar
  84. G. Paschmann, N. Sckopke, J.R. Asbridge, S.J. Bame, J.T. Gosling, Energization of solar wind ions by reflection from the earth’s bow shock. J. Geophys. Res. 85, 4689–4693 (1980). doi: 10.1029/JA085iA09p04689 ADSCrossRefGoogle Scholar
  85. G. Paschmann, N. Sckopke, I. Papamastorakis, J.R. Asbridge, S.J. Bame, J.T. Gosling, Characteristics of reflected and diffuse ions upstream from the earth’s bow shock. J. Geophys. Res. 86, 4355–4364 (1981). doi: 10.1029/JA086iA06p04355 ADSCrossRefGoogle Scholar
  86. T.R. Sanderson, R. Reinhard, K.-P. Wenzel, The propagation of upstream protons between the earth’s bow shock and ISEE 3. J. Geophys. Res. 86, 4425–4434 (1981). doi: 10.1029/JA086iA06p04425 ADSCrossRefGoogle Scholar
  87. E.T. Sarris, G.C. Anagnostopoulos, S.M. Krimigis, Simultaneous measurements of energetic ion (50 keV and above) and electron (220 keV and above) activity upstream of earth’s bow shock and inside the plasma sheet—Magnetospheric source for the November 3 and December 3, 1977 upstream events. J. Geophys. Res. 92, 12083–12096 (1987). doi: 10.1029/JA092iA11p12083 ADSCrossRefGoogle Scholar
  88. E.T. Sarris, S.M. Krimigis, T.P. Armstrong, Observations of magnetospheric bursts of high-energy protons and electrons at approximately 35 earth radii with Imp 7. J. Geophys. Res. 81, 2341–2355 (1976). doi: 10.1029/JA081i013p02341 ADSCrossRefGoogle Scholar
  89. E.T. Sarris, S.M. Krimigis, C.O. Bostrom, T.P. Armstrong, Simultaneous multispacecraft observations of energetic proton bursts inside and outside the magnetosphere. J. Geophys. Res. 83, 4289–4305 (1978). doi: 10.1029/JA083iA09p04289 ADSCrossRefGoogle Scholar
  90. M. Scholer, Diffuse ions at a quasi-parallel collisionless shock—Simulations. Geophys. Res. Lett. 17, 1821–1824 (1990). doi: 10.1029/GL017i011p01821 ADSCrossRefGoogle Scholar
  91. M. Scholer, D. Burgess, The role of upstream waves in supercritical quasi-parallel shock re-formation. J. Geophys. Res. 97, 8319–8326 (1992). doi: 10.1029/92JA00312 ADSCrossRefGoogle Scholar
  92. M. Scholer, D. Burgess, Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas 14(7), 072103 (2007). doi: 10.1063/1.2748391 ADSCrossRefGoogle Scholar
  93. M. Scholer, S. Matsukiyo, Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys. 22, 2345–2353 (2004). doi: 10.5194/angeo-22-2345-2004 ADSCrossRefGoogle Scholar
  94. M. Scholer, T. Terasawa, Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett. 17, 119–122 (1990). doi: 10.1029/GL017i002p00119 ADSCrossRefGoogle Scholar
  95. M. Scholer, H. Kucharek, K.-H. Trattner, Injection and acceleration of H+ and He2+ at Earth’s bow shock. Ann. Geophys. 17, 583–594 (1999). doi: 10.1007/s00585-999-0583-6 ADSGoogle Scholar
  96. M. Scholer, I. Shinohara, S. Matsukiyo, Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res. (Space Phys.) 108, 1014 (2003). doi: 10.1029/2002JA009515 ADSCrossRefGoogle Scholar
  97. M. Scholer, G. Gloeckler, F.M. Ipavich, D. Hovestadt, B. Klecker, Pitch angle distributions of energetic protons near the earth’s bow shock. Geophys. Res. Lett. 6, 707–710 (1979). doi: 10.1029/GL006i009p00707 ADSCrossRefGoogle Scholar
  98. M. Scholer, D. Hovestadt, B. Klecker, F.M. Ipavich, G. Gloeckler, Upstream particle events close to the bow shock and 200 earth radii upstream—ISEE-1 and ISEE-3 observations. Geophys. Res. Lett. 7, 73–76 (1980). doi: 10.1029/GL007i001p00073 ADSCrossRefGoogle Scholar
  99. M. Scholer, D. Hovestadt, F.M. Ipavich, G. Gloeckler, Upstream energetic ions and electrons—Bow shock-associated or magnetospheric origin. J. Geophys. Res. 86, 9040–9046 (1981). doi: 10.1029/JA086iA11p09040 ADSCrossRefGoogle Scholar
  100. M. Scholer, E. Moebius, L.M. Kistler, B. Klecker, F.M. Ipavich, Multispacecraft observations of energetic ions upstream and downstream of the bow shock. Geophys. Res. Lett. 16, 571–574 (1989). doi: 10.1029/GL016i006p00571 ADSCrossRefGoogle Scholar
  101. M. Scholer, H. Kucharek, V.V. Krasnosselskikh, K.-H. Trattner, Injection and acceleration of ions at collisionless shocks: kinetic simulations, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt, J.R. Jokipii, M.A. Lee, E. Möbius, T.H. Zurbuchen. American Institute of Physics Conference Series, vol. 528, (2000), pp. 250–257. doi: 10.1063/1.1324320 Google Scholar
  102. S.J. Schwartz, Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series 1, 249–270 (1998) Google Scholar
  103. S.J. Schwartz, D. Burgess, On the theoretical/observational comparison of field-aligned ion beams in the earth’s foreshock. J. Geophys. Res. 89, 2381–2384 (1984). doi: 10.1029/JA089iA04p02381 ADSCrossRefGoogle Scholar
  104. S.J. Schwartz, M.F. Thomsen, J.T. Gosling, Ions upstream of the earth’s bow shock—A theoretical comparison of alternative source populations. J. Geophys. Res. 88, 2039–2047 (1983). doi: 10.1029/JA088iA03p02039 ADSCrossRefGoogle Scholar
  105. S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Luehr, Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209–4227 (1992). doi: 10.1029/91JA02581 ADSCrossRefGoogle Scholar
  106. N. Sckopke, G. Paschmann, S.J. Bame, J.T. Gosling, C.T. Russell, Evolution of ion distributions across the nearly perpendicular bow shock—Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res. 88, 6121–6136 (1983). doi: 10.1029/JA088iA08p06121 ADSCrossRefGoogle Scholar
  107. N. Sckopke, G. Paschmann, A.L. Brinca, C.W. Carlson, H. Luehr, Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res. 95, 6337–6352 (1990). doi: 10.1029/JA095iA05p06337 ADSCrossRefGoogle Scholar
  108. B.U.Ö. Sonnerup, Acceleration of particles reflected at a shock front. J. Geophys. Res. 74, 1301–1304 (1969). doi: 10.1029/JA074i005p01301 ADSCrossRefGoogle Scholar
  109. T. Sugiyama, Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas 18(2), 022302 (2011). doi: 10.1063/1.3552026 ADSCrossRefGoogle Scholar
  110. T. Sugiyama, T. Terasawa, A scatter-free ion acceleration process in the parallel shock. Adv. Space Res. 24, 73–76 (1999). doi: 10.1016/S0273-1177(99)00427-5 ADSCrossRefGoogle Scholar
  111. T. Sugiyama, M. Fujimoto, T. Mukai, Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res. 106, 21657–21674 (2001). doi: 10.1029/2001JA900063 ADSCrossRefGoogle Scholar
  112. M. Tanaka, C.C. Goodrich, D. Winske, K. Papadopoulos, A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res. 88, 3046–3054 (1983). doi: 10.1029/JA088iA04p03046 ADSCrossRefGoogle Scholar
  113. T. Terasawa, Energy spectrum of ions accelerated through Fermi process at the terrestrial bow shock. J. Geophys. Res. 86, 7595–7606 (1981). doi: 10.1029/JA086iA09p07595 ADSCrossRefGoogle Scholar
  114. T. Terasawa, Ion acceleration. Adv. Space Res. 15, 53–62 (1995). doi: 10.1016/0273-1177(94)00084-E ADSCrossRefGoogle Scholar
  115. K.J. Trattner, M. Scholer, Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett. 18, 1817–1820 (1991). doi: 10.1029/91GL02084 ADSCrossRefGoogle Scholar
  116. K.J. Trattner, E. Möbius, M. Scholer, B. Klecker, M. Hilchenbach, H. Luehr, Statistical analysis of diffuse ion events upstream of the Earth’s bow shock. J. Geophys. Res. 991, 13389 (1994). doi: 10.1029/94JA00576 ADSCrossRefGoogle Scholar
  117. T. Umeda, Y. Kidani, M. Yamao, S. Matsukiyo, R. Yamazaki, On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res. (Space Phys.) 115, 10250 (2010). doi: 10.1029/2010JA015458 ADSCrossRefGoogle Scholar
  118. G. Wibberenz, H.M. Fischer, F. Zoellich, E. Keppler, Dynamics of intense upstream ion events. J. Geophys. Res. 90, 283–301 (1985). doi: 10.1029/JA090iA01p00283 ADSCrossRefGoogle Scholar
  119. C.S. Wu, A fast Fermi process—Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res. 89, 8857–8862 (1984). doi: 10.1029/JA089iA10p08857 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Astronomy UnitQueen Mary University of LondonLondonUK
  2. 2.Space Science Center and Department of PhysicsUniversity of New HampshireDurhamUSA
  3. 3.Space Science and ApplicationsLos Alamos National Laboratory, MS D466Los AlamosUSA
  4. 4.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany

Personalised recommendations