Skip to main content
Log in

Ion Acceleration at the Earth’s Bow Shock

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Earth’s bow shock is the most studied example of a collisionless shock in the solar system. It is also widely used to model or predict the behaviour at other astrophysical shock systems. Spacecraft observations, theoretical modelling and numerical simulations have led to a detailed understanding of the bow shock structure, the spatial organization of the components making up the shock interaction system, as well as fundamental shock processes such as particle heating and acceleration. In this paper we review the observations of accelerated ions at and upstream of the terrestrial bow shock and discuss the models and theories used to explain them. We describe the global morphology of the quasi-perpendicular and quasi-parallel shock regions and the foreshock. The acceleration processes for field-aligned beams and diffuse ion distribution types are discussed with connection to foreshock morphology and shock structure. The different possible mechanisms for extracting solar wind ions into the acceleration processes are also described. Despite several decades of study, there still remain some unsolved problems concerning ion acceleration at the bow shock, and we summarize these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • G.C. Anagnostopoulos, E.T. Sarris, S.M. Krimigis, Magnetospheric origin of energetic (at least 50 keV) ions upstream of the bow shock—The October 31, 1977, event. J. Geophys. Res. 91, 3020–3028 (1986). doi:10.1029/JA091iA03p03020

    Article  ADS  Google Scholar 

  • K.A. Anderson, R.P. Lin, F. Martel, C.S. Lin, G.K. Parks, H. Rème, Thin sheets of energetic electrons upstream from the Earth’s bow shock. Geophys. Res. Lett. 6, 401–404 (1979)

    Article  ADS  Google Scholar 

  • W.I. Axford, Acceleration of cosmic rays by shock waves, in International Cosmic Ray Conference, vol. 12, (1981a), pp. 155–203

    Google Scholar 

  • W.I. Axford, Late paper: acceleration of cosmic rays by shock waves, in ESA Special Publication, ed. by S.A. Colgate ESA Special Publication, vol. 161 (1981b), p. 425

    Google Scholar 

  • S.D. Bale, M.A. Balikhin, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, E. Möbius, S.N. Walker, A. Balogh, D. Burgess, B. Lembège, E.A. Lucek, M. Scholer, S.J. Schwartz, M.F. Thomsen, Quasi-perpendicular shock structure and processes. Space Sci. Rev. 118, 161–203 (2005). doi:10.1007/s11214-005-3827-0

    Article  ADS  Google Scholar 

  • S.J. Bame, J.R. Asbridge, W.C. Feldman, J.T. Gosling, G. Paschmann, N. Skopke, Deceleration of the solar wind upstream from the earth’s bow shock and the origin of diffuse upstream ions. J. Geophys. Res. 85, 2981–2990 (1980). doi:10.1029/JA085iA06p02981

    Article  ADS  Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 443–455 (1978)

    ADS  Google Scholar 

  • D. Biskamp, H. Welter, Numerical studies of magnetosonic collisionless shock-waves. Nuclear Fusion 12(6), 663–666 (1972). doi:10.1088/0029-5515/12/6/006

    Article  Google Scholar 

  • X. Blanco-Cano, N. Omidi, C.T. Russell, Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res. (Space Phys.) 111, 10205 (2006). doi:10.1029/2005JA011421

    Article  ADS  Google Scholar 

  • C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock 2. Origin. J. Geophys. Res. 86, 4405–4414 (1981a). doi:10.1029/JA086iA06p04405

    Article  ADS  Google Scholar 

  • C. Bonifazi, G. Moreno, Reflected and diffuse ions backstreaming from the earth’s bow shock. I Basic properties. J. Geophys. Res. 86, 4397–4413 (1981b). doi:10.1029/JA086iA06p04397

    Article  ADS  Google Scholar 

  • D. Burgess, Shock drift acceleration at low energies. J. Geophys. Res. 92, 1119–1130 (1987a)

    Article  ADS  Google Scholar 

  • D. Burgess, Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys. 5, 133–145 (1987b)

    ADS  Google Scholar 

  • D. Burgess, Alpha particles in field-aligned beams upstream of the bow shock: Simulations. Geophys. Res. Lett. 16, 163 (1989a)

    Article  ADS  Google Scholar 

  • D. Burgess, Cyclical behavior at quasi-parallel collisionless shocks. Geophys. Res. Lett. 16, 345–349 (1989b)

    Article  ADS  Google Scholar 

  • D. Burgess, What do we really know about upstream waves? Adv. Space Res. 20, 673–682 (1997). doi:10.1016/S0273-1177(97)00455-9

    Article  ADS  Google Scholar 

  • D. Burgess, J.G. Luhmann, Scatter-free propagation of low-energy protons in the magnetosheath—Implications for the production of field-aligned ion beams by nonthermal leakage. J. Geophys. Res. 91, 1439–1449 (1986). doi:10.1029/JA091iA02p01439

    Article  ADS  Google Scholar 

  • D. Burgess, M. Scholer, Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas 14(1), 012108 (2007). doi:10.1063/1.2435317

    Article  ADS  Google Scholar 

  • D. Burgess, E.A. Lucek, M. Scholer, S.D. Bale, M.A. Balikhin, A. Balogh, T.S. Horbury, V.V. Krasnoselskikh, H. Kucharek, B. Lembège, E. Möbius, S.J. Schwartz, M.F. Thomsen, S.N. Walker, Quasi-parallel shock structure and processes. Space Sci. Rev. 118, 205–222 (2005). doi:10.1007/s11214-005-3832-3

    Article  ADS  Google Scholar 

  • D.D. Childers, C.T. Russell, Power spectra of the interplanetary magnetic field near the earth. NASA Spec. Publ. 308, 375 (1972)

    ADS  Google Scholar 

  • M.I. Desai, D. Burgess, Particle acceleration at coronal mass ejection-driven interplanetary shocks and the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 113, A00B06 (2008)

    Article  ADS  Google Scholar 

  • M.I. Desai, G.M. Mason, J.R. Dwyer, J.E. Mazur, T.T. von Rosenvinge, R.P. Lepping, Characteristics of energetic (≳30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. J. Geophys. Res. 105, 61–78 (2000). doi:10.1029/1999JA900406

    Article  ADS  Google Scholar 

  • M.I. Desai, G.M. Mason, J.E. Mazur, J.R. Dwyer, Solar cycle variations in the composition of the suprathermal heavy-ion population near 1 AU. Astrophys. J. Lett. 645, 81–84 (2006). doi:10.1086/505935

    Article  ADS  Google Scholar 

  • J.P. Eastwood, E.A. Lucek, C. Mazelle, K. Meziane, Y. Narita, J. Pickett, R.A. Treumann, The foreshock. Space Sci. Rev. 118, 41–94 (2005). doi:10.1007/s11214-005-3824-3

    Article  ADS  Google Scholar 

  • J.P. Edmiston, C.F. Kennel, D. Eichler, Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett. 9, 531–534 (1982). doi:10.1029/GL009i005p00531

    Article  ADS  Google Scholar 

  • D. Eichler, Energetic particle spectra in finite shocks—The earth’s bow shock. Astrophys. J. 244, 711–716 (1981). doi:10.1086/158748

    Article  ADS  Google Scholar 

  • D.C. Ellison, Monte Carlo simulation of charged particles upstream of the earth’s bow shock. Geophys. Res. Lett. 8, 991–994 (1981). doi:10.1029/GL008i009p00991

    Article  ADS  Google Scholar 

  • D.C. Ellison, E. Moebius, Diffusive shock acceleration—Comparison of a unified shock model to bow shock observations. Astrophys. J. 318, 474–484 (1987). doi:10.1086/165384

    Article  ADS  Google Scholar 

  • D.C. Ellison, E. Moebius, G. Paschmann, Particle injection and acceleration at earth’s bow shock—Comparison of upstream and downstream events. Astrophys. J. 352, 376–394 (1990). doi:10.1086/168544

    Article  ADS  Google Scholar 

  • D.C. Ellison, J. Giacalone, D. Burgess, S.J. Schwartz, Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J. Geophys. Res. 982, 21085 (1993). doi:10.1029/93JA01753

    Article  ADS  Google Scholar 

  • M.A. Forman, G.E. Morfill, Time-dependent acceleration of solar wind plasma to MeV energies at corotating interplanetary shocks, in International Cosmic Ray Conference, vol. 5 (1979), p. 328

    Google Scholar 

  • S.A. Fuselier, Ion distributions in the Earth’s foreshock upstream from the bow shock. Adv. Space Res. 15, 43–52 (1995). doi:10.1016/0273-1177(94)00083-D

    Article  ADS  Google Scholar 

  • S.A. Fuselier, W.K.H. Schmidt, H+ and He2+ heating at the Earth’s bow shock. J. Geophys. Res. 991, 11539–11546 (1994). doi:10.1029/94JA00350

    Article  ADS  Google Scholar 

  • S.A. Fuselier, M.F. Thomsen, He(2+) in field-aligned beams—ISEE results. Geophys. Res. Lett. 19, 437–440 (1992). doi:10.1029/92GL00375

    Article  ADS  Google Scholar 

  • S.A. Fuselier, M.F. Thomsen, J.T. Gosling, S.J. Bame, C.T. Russell, Gyrating and intermediate ion distributions upstream from the earth’s bow shock. J. Geophys. Res. 91, 91–99 (1986). doi:10.1029/JA091iA01p00091

    Article  ADS  Google Scholar 

  • J. Giacalone, Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J. 609, 452–458 (2004). doi:10.1086/421043

    Article  ADS  Google Scholar 

  • J. Giacalone, S.J. Schwartz, D. Burgess, Observations of suprathermal ions in association with SLAMS. Geophys. Res. Lett. 20, 149–152 (1993). doi:10.1029/93GL00067

    Article  ADS  Google Scholar 

  • J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett. 19, 433–436 (1992). doi:10.1029/92GL00379

    Article  ADS  Google Scholar 

  • J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, Ion injection and acceleration at parallel shocks—Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J. 402, 550–559 (1993). doi:10.1086/172157

    Article  ADS  Google Scholar 

  • J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, L. Bennett, Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res. 102, 19789–19804 (1997). doi:10.1029/97JA01529

    Article  ADS  Google Scholar 

  • B.E. Gordon, M.A. Lee, E. Möbius, K.J. Trattner, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth’s bow shock revisited. J. Geophys. Res. 104, 28263–28278 (1999). doi:10.1029/1999JA900356

    Article  ADS  Google Scholar 

  • J.T. Gosling, M.F. Thomsen, S.J. Bame, C.T. Russell, On the source of diffuse, suprathermal ions observed in the vicinity of the earth’s bow shock. J. Geophys. Res. 94, 3555–3563 (1989). doi:10.1029/JA094iA04p03555

    Article  ADS  Google Scholar 

  • T. Hada, M. Oonishi, B. Lembège, P. Savoini, Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1233 (2003). doi:10.1029/2002JA009339

    Article  ADS  Google Scholar 

  • P. Hellinger, P. Trávníček, B. Lembège, P. Savoini, Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett. 34, 14109 (2007). doi:10.1029/2007GL030239

    Article  ADS  Google Scholar 

  • M.M. Hoppe, C.T. Russell, Plasma rest frame frequencies and polarizations of the low-frequency upstream waves—ISEE 1 and 2 observations. J. Geophys. Res. 88, 2021–2027 (1983). doi:10.1029/JA088iA03p02021

    Article  ADS  Google Scholar 

  • M.M. Hoppe, C.T. Russell, L.A. Frank, T.E. Eastman, E.W. Greenstadt, Upstream hydromagnetic waves and their association with backstreaming ion populations—ISEE 1 and 2 observations. J. Geophys. Res. 86, 4471–4492 (1981). doi:10.1029/JA086iA06p04471

    Article  ADS  Google Scholar 

  • T.S. Horbury, P.J. Cargill, E.A. Lucek, A. Balogh, M.W. Dunlop, T.M. Oddy, C. Carr, P. Brown, A. Szabo, K.-H. Fornaçon, Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys. 19, 1399–1409 (2001). doi:10.5194/angeo-19-1399-2001

    Article  ADS  Google Scholar 

  • F.M. Ipavich, G. Gloeckler, M. Scholer, Temporal development of composition, spectra, and anisotropies during upstream particle events. J. Geophys. Res. 86, 11153–11160 (1981). doi:10.1029/JA086iA13p11153

    Article  ADS  Google Scholar 

  • F.M. Ipavich, J.T. Gosling, M. Scholer, Correlation between the He/H ratios in upstream particle events and in the solar wind. J. Geophys. Res. 89, 1501–1507 (1984). doi:10.1029/JA089iA03p01501

    Article  ADS  Google Scholar 

  • F.M. Ipavich, G. Gloeckler, C.Y. Fan, L.A. Fisk, D. Hovestadt, B. Klecker, M. Scholer, J.J. Ogallagher, Initial observations of low energy charged particles near the earth’s bow shock on ISEE-1. Space Sci. Rev. 23, 93 (1979). doi:10.1007/BF00174113

    Article  ADS  Google Scholar 

  • F.M. Ipavich, A.B. Galvin, G. Gloeckler, M. Scholer, D. Hovestadt, A statistical survey of ions observed upstream of the earth’s bow shock—Energy spectra, composition, and spatial variation. J. Geophys. Res. 86, 4337–4342 (1981). doi:10.1029/JA086iA06p04337

    Article  ADS  Google Scholar 

  • F.M. Ipavich, G. Gloeckler, D.C. Hamilton, L.M. Kistler, J.T. Gosling, Protons and alpha particles in field-aligned beams upstream of the bow shock. Geophys. Res. Lett. 15, 1153–1156 (1988). doi:10.1029/GL015i010p01153

    Article  ADS  Google Scholar 

  • C.F. Kennel, J.P. Edmiston, T. Hada, A Quarter Century of Collisionless Shock Research. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 34, (1985), pp. 1–36

    Google Scholar 

  • A. Kis, M. Scholer, B. Klecker, E. Möbius, E.A. Lucek, H. Rème, J.M. Bosqued, L.M. Kistler, H. Kucharek, Multi-spacecraft observations of diffuse ions upstream of Earth’s bow shock. Geophys. Res. Lett. 312, 20801 (2004). doi:10.1029/2004GL020759

    Article  Google Scholar 

  • A. Kis, M. Scholer, B. Klecker, H. Kucharek, E.A. Lucek, H. Rème, Scattering of field-aligned beam ions upstream of Earth’s bow shock. Ann. Geophys. 25, 785–799 (2007). doi:10.5194/angeo-25-785-2007

    Article  ADS  Google Scholar 

  • V.V. Krasnoselskikh, B. Lembège, P. Savoini, V.V. Lobzin, Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas 9, 1192–1209 (2002). doi:10.1063/1.1457465

    Article  MathSciNet  ADS  Google Scholar 

  • D. Krauss-Varban, N. Omidi, Structure of medium Mach number quasi-parallel shocks—Upstream and downstream waves. J. Geophys. Res. 96, 17715 (1991). doi:10.1029/91JA01545

    Article  ADS  Google Scholar 

  • S.M. Krimigis, D. Venkatesan, J.C. Barichello, E.T. Sarris, Simultaneous measurements of energetic protons and electrons in the distant magnetosheath, magnetotail, and upstream in the solar wind. Geophys. Res. Lett. 5, 961–964 (1978). doi:10.1029/GL005i011p00961

    Article  ADS  Google Scholar 

  • E.A. Kronberg, A. Kis, B. Klecker, P.W. Daly, E.A. Lucek, Multipoint observations of ions in the 30–160 keV energy range upstream of the Earth’s bow shock. J. Geophys. Res. (Space Phys.) 114, 3211 (2009). doi:10.1029/2008JA013754

    Article  Google Scholar 

  • H. Kucharek, M. Scholer, Origin of diffuse superthermal ions at quasi-parallel supercritical collisionless shocks. J. Geophys. Res. 962, 21195 (1991). doi:10.1029/91JA02321

    Article  ADS  Google Scholar 

  • H. Kucharek, E. Möbius, M. Scholer, C. Mouikis, L. Kistler, T. Horbury, A. Balogh, H. Réme, J. Bosqued, On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys. 22, 2301–2308 (2004). doi:10.5194/angeo-22-2301-2004

    Article  ADS  Google Scholar 

  • Y. Kuramitsu, V. Krasnoselskikh, Gyroresonant surfing acceleration. Phys. Rev. Lett. 94(3), 031102 (2005a). doi:10.1103/PhysRevLett.94.031102

    Article  ADS  Google Scholar 

  • Y. Kuramitsu, V. Krasnoselskikh, Particle acceleration by elliptically and linearly polarized waves in the vicinity of quasi-parallel shocks. J. Geophys. Res. (Space Phys.) 110, 10108 (2005b). doi:10.1029/2005JA011048

    Article  ADS  Google Scholar 

  • G. Le, C.T. Russell, A study of ULF wave foreshock morphology. I—ULF foreshock boundary. II—Spatial variation of ULF waves. Planet. Space Sci. 40, 1203–1213 (1992). doi:10.1016/0032-0633(92)90077-2

    Article  ADS  Google Scholar 

  • M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth’s bow shock. J. Geophys. Res. 87, 5063–5080 (1982). doi:10.1029/JA087iA07p05063

    Article  ADS  Google Scholar 

  • M.A. Lee, Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res. 88, 6109–6119 (1983). doi:10.1029/JA088iA08p06109

    Article  ADS  Google Scholar 

  • B. Lembege, J.M. Dawson, Self-consistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids 30, 1767–1788 (1987). doi:10.1063/1.866191

    Article  ADS  Google Scholar 

  • B. Lembège, P. Savoini, P. Hellinger, P.M. Trávníček, Nonstationarity of a two-dimensional perpendicular shock: Competing mechanisms. J. Geophys. Res. (Space Phys.) 114, 3217 (2009). doi:10.1029/2008JA013618

    Article  Google Scholar 

  • V.V. Lobzin, V.V. Krasnoselskikh, J.-M. Bosqued, J.-L. Pinçon, S.J. Schwartz, M. Dunlop, Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett. 340, 05107 (2007). doi:10.1029/2006GL029095

    Article  Google Scholar 

  • M.A. Malkov, Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E 58, 4911–4928 (1998). doi:10.1103/PhysRevE.58.4911

    Article  ADS  Google Scholar 

  • M.A. Malkov, H.J. Voelk, Theory of ion injection at shocks. Astron. Astrophys. 300, 605 (1995)

    ADS  Google Scholar 

  • S. Matsukiyo, M. Scholer, Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res. (Space Phys.) 108, 1459 (2003). doi:10.1029/2003JA010080

    Article  ADS  Google Scholar 

  • C. Mazelle, B. Lembège, A. Morgenthaler, K. Meziane, T.S. Horbury, V. Génot, E.A. Lucek, I. Dandouras, Self-reformation of the quasi-perpendicular shock: CLUSTER observations. in Twelfth International Solar Wind Conference, vol. 1216 (2010), pp. 471–474. doi:10.1063/1.3395905

    Google Scholar 

  • M.E. McKean, N. Omidi, D. Krauss-Varban, Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res. 100, 3427–3437 (1995). doi:10.1029/94JA02529

    Article  ADS  Google Scholar 

  • K. Meziane, A.M. Hamza, M. Wilber, C. Mazelle, M.A. Lee, Anomalous foreshock field-aligned beams observed by Cluster. Ann. Geophys. 29, 1967–1975 (2011). doi:10.5194/angeo-29-1967-2011

    Article  ADS  Google Scholar 

  • B. Miao, H. Kucharek, E. Möbius, C. Mouikis, H. Matsui, Y.C.-M. Liu, E.A. Lucek, Remote sensing of local structure of the quasi-perpendicular Earth’s bow shock by using field-aligned beams. Ann. Geophys. 27, 913–921 (2009). doi:10.5194/angeo-27-913-2009

    Article  ADS  Google Scholar 

  • E. Möbius, H. Kucharek, C. Mouikis, E. Georgescu, L.M. Kistler, M.A. Popecki, M. Scholer, J.M. Bosqued, H. Rème, C.W. Carlson, B. Klecker, A. Korth, G.K. Parks, J.C. Sauvaud, H. Balsiger, M.-B. Bavassano-Cattaneo, I. Dandouras, A.M. Dilellis, L. Eliasson, V. Formisano, T. Horbury, W. Lennartsson, R. Lundin, M. McCarthy, J.P. McFadden, G. Paschmann, Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS. Ann. Geophys. 19, 1411–1420 (2001). doi:10.5194/angeo-19-1411-2001

    Article  ADS  Google Scholar 

  • E. Moebius, D. Hovestadt, B. Klecker, M. Scholer, F.M. Ipavich, A burst of energetic O(+) ions during an upstream particle event. Geophys. Res. Lett. 13, 1372–1375 (1986). doi:10.1029/GL013i013p01372

    Article  ADS  Google Scholar 

  • E. Moebius, M. Scholer, N. Sckopke, G. Paschmann, H. Luehr, The distribution function of diffuse ions and the magnetic field power spectrum upstream of earth’s bow shock. Geophys. Res. Lett. 14, 681–684 (1987). doi:10.1029/GL014i007p00681

    Article  ADS  Google Scholar 

  • O. Moullard, D. Burgess, T.S. Horbury, E.A. Lucek, Ripples observed on the surface of the Earth’s quasi-perpendicular bow shock. J. Geophys. Res. (Space Phys.) 111, 9113 (2006). doi:10.1029/2005JA011594

    Article  Google Scholar 

  • M. Oka, T. Terasawa, Y. Saito, T. Mukai, Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res. (Space Phys.) 110, 05101 (2005). doi:10.1029/2004JA010688

    Article  Google Scholar 

  • N. Omidi, X. Blanco-Cano, C.T. Russell, Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res. (Space Phys.) 110, 12212 (2005). doi:10.1029/2005JA011169

    Article  ADS  Google Scholar 

  • G. Paschmann, N. Sckopke, S.J. Bame, J.R. Asbridge, J.T. Gosling, C.T. Russell, E.W. Greenstadt, Association of low-frequency waves with suprathermal ions in the upstream solar wind. Geophys. Res. Lett. 6, 209–212 (1979). doi:10.1029/GL006i003p00209

    Article  ADS  Google Scholar 

  • G. Paschmann, N. Sckopke, J.R. Asbridge, S.J. Bame, J.T. Gosling, Energization of solar wind ions by reflection from the earth’s bow shock. J. Geophys. Res. 85, 4689–4693 (1980). doi:10.1029/JA085iA09p04689

    Article  ADS  Google Scholar 

  • G. Paschmann, N. Sckopke, I. Papamastorakis, J.R. Asbridge, S.J. Bame, J.T. Gosling, Characteristics of reflected and diffuse ions upstream from the earth’s bow shock. J. Geophys. Res. 86, 4355–4364 (1981). doi:10.1029/JA086iA06p04355

    Article  ADS  Google Scholar 

  • T.R. Sanderson, R. Reinhard, K.-P. Wenzel, The propagation of upstream protons between the earth’s bow shock and ISEE 3. J. Geophys. Res. 86, 4425–4434 (1981). doi:10.1029/JA086iA06p04425

    Article  ADS  Google Scholar 

  • E.T. Sarris, G.C. Anagnostopoulos, S.M. Krimigis, Simultaneous measurements of energetic ion (50 keV and above) and electron (220 keV and above) activity upstream of earth’s bow shock and inside the plasma sheet—Magnetospheric source for the November 3 and December 3, 1977 upstream events. J. Geophys. Res. 92, 12083–12096 (1987). doi:10.1029/JA092iA11p12083

    Article  ADS  Google Scholar 

  • E.T. Sarris, S.M. Krimigis, T.P. Armstrong, Observations of magnetospheric bursts of high-energy protons and electrons at approximately 35 earth radii with Imp 7. J. Geophys. Res. 81, 2341–2355 (1976). doi:10.1029/JA081i013p02341

    Article  ADS  Google Scholar 

  • E.T. Sarris, S.M. Krimigis, C.O. Bostrom, T.P. Armstrong, Simultaneous multispacecraft observations of energetic proton bursts inside and outside the magnetosphere. J. Geophys. Res. 83, 4289–4305 (1978). doi:10.1029/JA083iA09p04289

    Article  ADS  Google Scholar 

  • M. Scholer, Diffuse ions at a quasi-parallel collisionless shock—Simulations. Geophys. Res. Lett. 17, 1821–1824 (1990). doi:10.1029/GL017i011p01821

    Article  ADS  Google Scholar 

  • M. Scholer, D. Burgess, The role of upstream waves in supercritical quasi-parallel shock re-formation. J. Geophys. Res. 97, 8319–8326 (1992). doi:10.1029/92JA00312

    Article  ADS  Google Scholar 

  • M. Scholer, D. Burgess, Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas 14(7), 072103 (2007). doi:10.1063/1.2748391

    Article  ADS  Google Scholar 

  • M. Scholer, S. Matsukiyo, Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys. 22, 2345–2353 (2004). doi:10.5194/angeo-22-2345-2004

    Article  ADS  Google Scholar 

  • M. Scholer, T. Terasawa, Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett. 17, 119–122 (1990). doi:10.1029/GL017i002p00119

    Article  ADS  Google Scholar 

  • M. Scholer, H. Kucharek, K.-H. Trattner, Injection and acceleration of H+ and He2+ at Earth’s bow shock. Ann. Geophys. 17, 583–594 (1999). doi:10.1007/s00585-999-0583-6

    ADS  Google Scholar 

  • M. Scholer, I. Shinohara, S. Matsukiyo, Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res. (Space Phys.) 108, 1014 (2003). doi:10.1029/2002JA009515

    Article  ADS  Google Scholar 

  • M. Scholer, G. Gloeckler, F.M. Ipavich, D. Hovestadt, B. Klecker, Pitch angle distributions of energetic protons near the earth’s bow shock. Geophys. Res. Lett. 6, 707–710 (1979). doi:10.1029/GL006i009p00707

    Article  ADS  Google Scholar 

  • M. Scholer, D. Hovestadt, B. Klecker, F.M. Ipavich, G. Gloeckler, Upstream particle events close to the bow shock and 200 earth radii upstream—ISEE-1 and ISEE-3 observations. Geophys. Res. Lett. 7, 73–76 (1980). doi:10.1029/GL007i001p00073

    Article  ADS  Google Scholar 

  • M. Scholer, D. Hovestadt, F.M. Ipavich, G. Gloeckler, Upstream energetic ions and electrons—Bow shock-associated or magnetospheric origin. J. Geophys. Res. 86, 9040–9046 (1981). doi:10.1029/JA086iA11p09040

    Article  ADS  Google Scholar 

  • M. Scholer, E. Moebius, L.M. Kistler, B. Klecker, F.M. Ipavich, Multispacecraft observations of energetic ions upstream and downstream of the bow shock. Geophys. Res. Lett. 16, 571–574 (1989). doi:10.1029/GL016i006p00571

    Article  ADS  Google Scholar 

  • M. Scholer, H. Kucharek, V.V. Krasnosselskikh, K.-H. Trattner, Injection and acceleration of ions at collisionless shocks: kinetic simulations, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt, J.R. Jokipii, M.A. Lee, E. Möbius, T.H. Zurbuchen. American Institute of Physics Conference Series, vol. 528, (2000), pp. 250–257. doi:10.1063/1.1324320

    Google Scholar 

  • S.J. Schwartz, Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series 1, 249–270 (1998)

    Google Scholar 

  • S.J. Schwartz, D. Burgess, On the theoretical/observational comparison of field-aligned ion beams in the earth’s foreshock. J. Geophys. Res. 89, 2381–2384 (1984). doi:10.1029/JA089iA04p02381

    Article  ADS  Google Scholar 

  • S.J. Schwartz, M.F. Thomsen, J.T. Gosling, Ions upstream of the earth’s bow shock—A theoretical comparison of alternative source populations. J. Geophys. Res. 88, 2039–2047 (1983). doi:10.1029/JA088iA03p02039

    Article  ADS  Google Scholar 

  • S.J. Schwartz, D. Burgess, W.P. Wilkinson, R.L. Kessel, M. Dunlop, H. Luehr, Observations of short large-amplitude magnetic structures at a quasi-parallel shock. J. Geophys. Res. 97, 4209–4227 (1992). doi:10.1029/91JA02581

    Article  ADS  Google Scholar 

  • N. Sckopke, G. Paschmann, S.J. Bame, J.T. Gosling, C.T. Russell, Evolution of ion distributions across the nearly perpendicular bow shock—Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res. 88, 6121–6136 (1983). doi:10.1029/JA088iA08p06121

    Article  ADS  Google Scholar 

  • N. Sckopke, G. Paschmann, A.L. Brinca, C.W. Carlson, H. Luehr, Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res. 95, 6337–6352 (1990). doi:10.1029/JA095iA05p06337

    Article  ADS  Google Scholar 

  • B.U.Ö. Sonnerup, Acceleration of particles reflected at a shock front. J. Geophys. Res. 74, 1301–1304 (1969). doi:10.1029/JA074i005p01301

    Article  ADS  Google Scholar 

  • T. Sugiyama, Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas 18(2), 022302 (2011). doi:10.1063/1.3552026

    Article  ADS  Google Scholar 

  • T. Sugiyama, T. Terasawa, A scatter-free ion acceleration process in the parallel shock. Adv. Space Res. 24, 73–76 (1999). doi:10.1016/S0273-1177(99)00427-5

    Article  ADS  Google Scholar 

  • T. Sugiyama, M. Fujimoto, T. Mukai, Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res. 106, 21657–21674 (2001). doi:10.1029/2001JA900063

    Article  ADS  Google Scholar 

  • M. Tanaka, C.C. Goodrich, D. Winske, K. Papadopoulos, A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res. 88, 3046–3054 (1983). doi:10.1029/JA088iA04p03046

    Article  ADS  Google Scholar 

  • T. Terasawa, Energy spectrum of ions accelerated through Fermi process at the terrestrial bow shock. J. Geophys. Res. 86, 7595–7606 (1981). doi:10.1029/JA086iA09p07595

    Article  ADS  Google Scholar 

  • T. Terasawa, Ion acceleration. Adv. Space Res. 15, 53–62 (1995). doi:10.1016/0273-1177(94)00084-E

    Article  ADS  Google Scholar 

  • K.J. Trattner, M. Scholer, Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett. 18, 1817–1820 (1991). doi:10.1029/91GL02084

    Article  ADS  Google Scholar 

  • K.J. Trattner, E. Möbius, M. Scholer, B. Klecker, M. Hilchenbach, H. Luehr, Statistical analysis of diffuse ion events upstream of the Earth’s bow shock. J. Geophys. Res. 991, 13389 (1994). doi:10.1029/94JA00576

    Article  ADS  Google Scholar 

  • T. Umeda, Y. Kidani, M. Yamao, S. Matsukiyo, R. Yamazaki, On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res. (Space Phys.) 115, 10250 (2010). doi:10.1029/2010JA015458

    Article  ADS  Google Scholar 

  • G. Wibberenz, H.M. Fischer, F. Zoellich, E. Keppler, Dynamics of intense upstream ion events. J. Geophys. Res. 90, 283–301 (1985). doi:10.1029/JA090iA01p00283

    Article  ADS  Google Scholar 

  • C.S. Wu, A fast Fermi process—Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res. 89, 8857–8862 (1984). doi:10.1029/JA089iA10p08857

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank ISSI for support to attend the workshop “Particle Acceleration in Cosmic Plasmas.” D. Burgess acknowledges support of STFC grant ST/H002731/1. E. Möbius acknowledges support of NASA grant NNX11AB65G, and gratefully acknowledges the support of the U.S. Department of Energy through LANL’s Laboratory Directed Research and Development (LDRD) Program and Institute Geophysics and Planetary Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Burgess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgess, D., Möbius, E. & Scholer, M. Ion Acceleration at the Earth’s Bow Shock. Space Sci Rev 173, 5–47 (2012). https://doi.org/10.1007/s11214-012-9901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-012-9901-5

Keywords

Navigation