Abstract
NASA’s Mars Science Laboratory (MSL) Rover is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover cameras described in Maki et al. (J. Geophys. Res. 108(E12): 8071, 2003). Images returned from the engineering cameras will be used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The Navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The Hazard Avoidance Cameras (Hazcams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a 1024×1024 pixel detector and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer “A” and the other set is connected to rover computer “B”. The Navcams and Front Hazcams each provide similar views from either computer. The Rear Hazcams provide different views from the two computers due to the different mounting locations of the “A” and “B” Rear Hazcams. This paper provides a brief description of the engineering camera properties, the locations of the cameras on the vehicle, and camera usage for surface operations.
This is a preview of subscription content,
to check access.










Similar content being viewed by others
References
D.A. Alexander, R. Deen, P. Andres, P. Zamani, H. Mortensen, A. Chen, M. Cayanan, J. Hall, V. Klochko, O. Pariser, C. Stanley, C. Thompson, G. Yagi, Processing of Mars Exploration Rover imagery for science and operations planning. J. Geophys. Res. 111, E02S02 (2006). doi:10.1029/2005JE002462
J.F. Bell III, S.W. Squyres, K.E. Herkenhoff, J.N. Maki, H.M. Arneson, D. Brown, S.A. Collins, A. Dingizian, S.T. Elliot, E.C. Hagerott, A.G. Hayes, M.J. Johnson, J.R. Johnson, J. Joseph, K. Kinch, M.T. Lemmon, R.V. Morris, L. Scherr, M. Schwochert, M.K. Shepard, G.H. Smith, J.N. Sohl-Dickstein, R. Sullivan, W.T. Sullivan, M. Wadsworth, Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 108(E12), 8063 (2003). doi:10.1029/2003JE002070
C. Chang, S. Chatterjee, P.R. Kube, A quantization error analysis for convergent stereo, in ICIP-94: Image Processing. Proceedings of IEEE International Conference, 13–16 Nov. 1994, vol. 2 (1994), pp. 735–739. doi:10.1109/ICIP.1994.413668
D.B. Gennery, Least-squares camera calibration including lens distortion and automatic editing of calibration points (Chap. 5), in Calibration and Orientation of Cameras in Computer Vision, ed. by A. Grun, T. Huang (Springer, Berlin, 2001), pp. 123–136. ISBN 3-540-65283-3
D.B. Gennery, Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68(3), 239–266 (2006). doi:10.1007/s11263-006-5168-1
A. Kiely, M. Klimesh, The ICER progressive wavelet image compressor, Jet Propulsion Laboratory IPN progress report, 42-155, 2003. http://ipnpr.jpl.nasa.gov/
M. Klimesh, V. Stanton, D. Watola, Hardware implementation of a lossless image compression algorithm using a field programmable gate array, Jet Propulsion Laboratory TMO progress report 42-144 October–December 2000, pp. 1–11, February 15, 2001. http://tmo.jpl.nasa.gov/progress_report/42-144/144H.pdf
S.K. LaVoie, W.B. Green, A.J. Runkle, D.A. Alexander, P.A. Andres, E.M. DeJong, E.D. Duxbury, D.J. Freda, Z. Gorjian, J.R. Hall, F.R. Hartman, S.R. Levoe, J.L. Lorre, J.M. McAuley, S. Suzuki, P.J. Woncik, J.R. Wright, Processing and analysis of Mars Pathfinder science data at the Jet Propulsion Laboratory’s Science Data Processing Systems Section. J. Geophys. Res. 104(E4), 8831 (1999)
M. Lemmon, P. Smith, C. Shinohara, R. Tanner, P. Woida, A. Shaw, J. Hughes, R. Reynolds, R. Woida, J. Penegor, C. Oquest, S.F. Hviid, M. Madsen, M. Olsen, K. Leer, L. Drube, R.V. Morris, D. Britt, The Phoenix Surface Stereo Imager (SSI) investigation. Lunar Planet. Sci. XXXIX (2008). 2156.pdf
J.N. Maki, J.F. Bell III, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliott, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, Mars Exploration Rover Engineering Cameras. J. Geophys. Res. 108(E12), 8071 (2003). doi:10.1029/2003JE002077
G.H. Smith, E.C. Hagerott, L.M. Scherr, K.E. Herkenhoff, J.F. Bell III, Optical designs for the Mars ’03 Rover Cameras, in Current Developments in Lens Design and Optical Engineering II, ed. by R.E. Fischer, R.B. Johnson, W.J. Smith. Proc. SPIE, vol. 4441 (2001), p. 118
M.J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: a low complexity, context-based, lossless image compression algorithm, in Proc. 1996 IEEE Data Compression Conference (1996), pp. 140–149
Y. Yakimovsky, R. Cunningham, A system for extracting three-dimensional measurements from a stereo pair of TV cameras, January 7, 1977. Comput. Graph. Image Process. 7, 195–210 (1978)
Acknowledgements
This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The authors thank the two anonymous reviewers for their insightful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Maki, J., Thiessen, D., Pourangi, A. et al. The Mars Science Laboratory Engineering Cameras. Space Sci Rev 170, 77–93 (2012). https://doi.org/10.1007/s11214-012-9882-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-012-9882-4