Space Science Reviews

, Volume 170, Issue 1–4, pp 77–93

The Mars Science Laboratory Engineering Cameras

  • J. Maki
  • D. Thiessen
  • A. Pourangi
  • P. Kobzeff
  • T. Litwin
  • L. Scherr
  • S. Elliott
  • A. Dingizian
  • M. Maimone
Article

Abstract

NASA’s Mars Science Laboratory (MSL) Rover is equipped with a set of 12 engineering cameras. These cameras are build-to-print copies of the Mars Exploration Rover cameras described in Maki et al. (J. Geophys. Res. 108(E12): 8071, 2003). Images returned from the engineering cameras will be used to navigate the rover on the Martian surface, deploy the rover robotic arm, and ingest samples into the rover sample processing system. The Navigation cameras (Navcams) are mounted to a pan/tilt mast and have a 45-degree square field of view (FOV) with a pixel scale of 0.82 mrad/pixel. The Hazard Avoidance Cameras (Hazcams) are body-mounted to the rover chassis in the front and rear of the vehicle and have a 124-degree square FOV with a pixel scale of 2.1 mrad/pixel. All of the cameras utilize a 1024×1024 pixel detector and red/near IR bandpass filters centered at 650 nm. The MSL engineering cameras are grouped into two sets of six: one set of cameras is connected to rover computer “A” and the other set is connected to rover computer “B”. The Navcams and Front Hazcams each provide similar views from either computer. The Rear Hazcams provide different views from the two computers due to the different mounting locations of the “A” and “B” Rear Hazcams. This paper provides a brief description of the engineering camera properties, the locations of the cameras on the vehicle, and camera usage for surface operations.

Keywords

Mars Cameras Rovers Mars Science Laboratory Remote Sensing Instruments Imaging systems Planetary missions 

References

  1. D.A. Alexander, R. Deen, P. Andres, P. Zamani, H. Mortensen, A. Chen, M. Cayanan, J. Hall, V. Klochko, O. Pariser, C. Stanley, C. Thompson, G. Yagi, Processing of Mars Exploration Rover imagery for science and operations planning. J. Geophys. Res. 111, E02S02 (2006). doi:10.1029/2005JE002462 ADSCrossRefGoogle Scholar
  2. J.F. Bell III, S.W. Squyres, K.E. Herkenhoff, J.N. Maki, H.M. Arneson, D. Brown, S.A. Collins, A. Dingizian, S.T. Elliot, E.C. Hagerott, A.G. Hayes, M.J. Johnson, J.R. Johnson, J. Joseph, K. Kinch, M.T. Lemmon, R.V. Morris, L. Scherr, M. Schwochert, M.K. Shepard, G.H. Smith, J.N. Sohl-Dickstein, R. Sullivan, W.T. Sullivan, M. Wadsworth, Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 108(E12), 8063 (2003). doi:10.1029/2003JE002070 CrossRefGoogle Scholar
  3. C. Chang, S. Chatterjee, P.R. Kube, A quantization error analysis for convergent stereo, in ICIP-94: Image Processing. Proceedings of IEEE International Conference, 13–16 Nov. 1994, vol. 2 (1994), pp. 735–739. doi:10.1109/ICIP.1994.413668 CrossRefGoogle Scholar
  4. D.B. Gennery, Least-squares camera calibration including lens distortion and automatic editing of calibration points (Chap. 5), in Calibration and Orientation of Cameras in Computer Vision, ed. by A. Grun, T. Huang (Springer, Berlin, 2001), pp. 123–136. ISBN 3-540-65283-3 Google Scholar
  5. D.B. Gennery, Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68(3), 239–266 (2006). doi:10.1007/s11263-006-5168-1 CrossRefGoogle Scholar
  6. A. Kiely, M. Klimesh, The ICER progressive wavelet image compressor, Jet Propulsion Laboratory IPN progress report, 42-155, 2003. http://ipnpr.jpl.nasa.gov/
  7. M. Klimesh, V. Stanton, D. Watola, Hardware implementation of a lossless image compression algorithm using a field programmable gate array, Jet Propulsion Laboratory TMO progress report 42-144 October–December 2000, pp. 1–11, February 15, 2001. http://tmo.jpl.nasa.gov/progress_report/42-144/144H.pdf
  8. S.K. LaVoie, W.B. Green, A.J. Runkle, D.A. Alexander, P.A. Andres, E.M. DeJong, E.D. Duxbury, D.J. Freda, Z. Gorjian, J.R. Hall, F.R. Hartman, S.R. Levoe, J.L. Lorre, J.M. McAuley, S. Suzuki, P.J. Woncik, J.R. Wright, Processing and analysis of Mars Pathfinder science data at the Jet Propulsion Laboratory’s Science Data Processing Systems Section. J. Geophys. Res. 104(E4), 8831 (1999) ADSCrossRefGoogle Scholar
  9. M. Lemmon, P. Smith, C. Shinohara, R. Tanner, P. Woida, A. Shaw, J. Hughes, R. Reynolds, R. Woida, J. Penegor, C. Oquest, S.F. Hviid, M. Madsen, M. Olsen, K. Leer, L. Drube, R.V. Morris, D. Britt, The Phoenix Surface Stereo Imager (SSI) investigation. Lunar Planet. Sci. XXXIX (2008). 2156.pdf Google Scholar
  10. J.N. Maki, J.F. Bell III, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliott, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, Mars Exploration Rover Engineering Cameras. J. Geophys. Res. 108(E12), 8071 (2003). doi:10.1029/2003JE002077 CrossRefGoogle Scholar
  11. G.H. Smith, E.C. Hagerott, L.M. Scherr, K.E. Herkenhoff, J.F. Bell III, Optical designs for the Mars ’03 Rover Cameras, in Current Developments in Lens Design and Optical Engineering II, ed. by R.E. Fischer, R.B. Johnson, W.J. Smith. Proc. SPIE, vol. 4441 (2001), p. 118 Google Scholar
  12. M.J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: a low complexity, context-based, lossless image compression algorithm, in Proc. 1996 IEEE Data Compression Conference (1996), pp. 140–149 CrossRefGoogle Scholar
  13. Y. Yakimovsky, R. Cunningham, A system for extracting three-dimensional measurements from a stereo pair of TV cameras, January 7, 1977. Comput. Graph. Image Process. 7, 195–210 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • J. Maki
    • 1
  • D. Thiessen
    • 1
  • A. Pourangi
    • 1
  • P. Kobzeff
    • 1
  • T. Litwin
    • 1
  • L. Scherr
    • 1
  • S. Elliott
    • 1
  • A. Dingizian
    • 1
  • M. Maimone
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations