Space Science Reviews

, Volume 168, Issue 1–4, pp 463–473 | Cite as

Generation of Atmospheric Gravity Waves in the Polar Thermosphere in Response to Auroral Activity

  • S. OyamaEmail author
  • B. J. Watkins


Atmospheric gravity wave (AGW) is a typical phenomenon in the upper atmosphere. At mid/low latitudes, climatological sources such as unstable barometric activity in the troposphere play an important role to generate AGWs in the thermosphere. While these sources are also important at high latitudes, energy input from the magnetosphere has additional large contributions to AGW generation. This paper reviews previous studies of AGWs associated with auroral activity at high latitudes. Theoretical studies have indicated that Joule/particle heating and the Lorentz force are major processes for generating AGWs in the thermosphere. Many observations show that AGWs can propagate horizontally for thousands of km from the source region. The paper summarizes equations regarding AGW generation by Joule/particle heating and the Lorentz force, and discusses the relative importance of these two processes.


Atmospheric gravity wave Aurora High latitude Thermosphere Ionosphere 



This research has been supported by a Grant-in-Aid for Scientific Research (22403010) from MEXT, Japan. We are indebted to the director and staff of EISCAT for operating the facility and supplying the data. EISCAT is an international association supported by research organizations in China (CRIPR), Finland (SA), Germany (DFG), Japan (STEL and NIPR), Norway (NFR), Sweden (VR), and the United Kingdom (STFC).


  1. A.L. Aruliah, E.M. Griffin, Evidence of meso-scale structure in the high-latitude thermosphere. Ann. Geophys. 19, 36–46 (2001) ADSCrossRefGoogle Scholar
  2. A.L. Aruliah, E.M. Griffin, A.D. Aylward, E.A.K. Ford, M.J. Kosch, C.J. Davis, V.S.C. Howells, S.E. Pryse, H.R. Middleton, J. Jussila, First direct evidence of meso-scale variability on ion-neutral dynamics using co-located tristatic FPIs and EISCAT radar in Northern Scandinavia. Ann. Geophys. 23, 147–162 (2005) ADSCrossRefGoogle Scholar
  3. R.L. Balthazor, R.J. Moffett, G.H. Millward, A study of the Joule and Lorentz inputs in the production of atmospheric gravity waves in the upper thermosphere. Ann. Geophys. 15, 779–785 (1997) ADSCrossRefGoogle Scholar
  4. P.M. Banks, Observations of Joule and particle heating in the auroral zone. J. Atmos. Terr. Phys. 39, 179–193 (1977) ADSCrossRefGoogle Scholar
  5. A. Brekke, On the relative importance of Joule heating and the Lorentz force in generating atmospheric gravity waves and infrasound waves in the auroral electrojets. J. Atmos. Terr. Phys. 41, 475–479 (1979) ADSCrossRefGoogle Scholar
  6. A. Brekke, C.L. Rino, High-resolution altitude profiles of the auroral zone energy dissipation due to ionospheric currents. J. Geophys. Res. 83(A6), 2517–2524 (1978) ADSCrossRefGoogle Scholar
  7. W.A. Bristow, R.A. Greenwald, Multiradar observations of medium-scale acoustic gravity waves using the Super Dual Auroral Radar Network. J. Geophys. Res. 101(A11), 24,499–24,511 (1996) ADSCrossRefGoogle Scholar
  8. W.A. Bristow, R.A. Greenwald, J.C. Samson, Identification of high-latitude acoustic gravity wave sources using the Goose Bay HF radar. J. Geophys. Res. 99(A1), 319–331 (1994) ADSCrossRefGoogle Scholar
  9. W.A. Bristow, R.A. Greenwald, J.P. Villain, On the seasonal dependence of medium-scale atmospheric gravity waves in the upper atmosphere at high latitudes. J. Geophys. Res. 101(A7), 15,685–15,699 (1996) ADSCrossRefGoogle Scholar
  10. G. Chimonas, C.O. Hines, Atmospheric gravity waves launched by auroral currents. Planet. Space Sci. 18, 565–582 (1970) ADSCrossRefGoogle Scholar
  11. M. Conde, R.W. Smith, Spatial structure in the thermospheric horizontal wind above Poker Flat, Alaska, during solar minimum. J. Geophys. Res. 103(A5), 9449–9471 (1998) ADSCrossRefGoogle Scholar
  12. S.H. Francis, A theory of medium-scale travelling ionospheric disturbances. J. Geophys. Res. 79, 5245–5260 (1974) ADSCrossRefGoogle Scholar
  13. R. Fujii, S. Nozawa, N. Matuura, A. Brekke, Study on neutral wind contribution to the electrodynamics in the polar ionosphere using EISCAT CP-1 data. J. Geophys. Res. 103(A7), 14,731–14,739 (1998) ADSCrossRefGoogle Scholar
  14. H. Fujiwara, S. Maeda, H. Fukunishi, T.J. Fuller-Rowell, D.S. Evans, Global variations of thermospheric winds and temperatures caused by substorm energy injection. J. Geophys. Res. 101, 225–239 (1996) ADSCrossRefGoogle Scholar
  15. T.J. Fuller-Rowell, M.V. Codrescu, H. Rishbeth, R.J. Moffett, S. Quegan, On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 101(A2), 2343–2353 (1996) ADSCrossRefGoogle Scholar
  16. L.A. Hajkowicz, A global study of large scale travelling ionospheric disturbances (TIDs) following a step-like onset of auroral substorms in both hemispheres. Planet. Space Sci. 38, 913–923 (1990) ADSCrossRefGoogle Scholar
  17. L.A. Hajkowicz, Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planet. Space Sci. 39, 1189–1196 (1991) ADSCrossRefGoogle Scholar
  18. L.A. Hajkowicz, Monitoring ionospheric response to auroral electrojet activity from sub-auroral to equatorial latitudes in the East Asian-Australian longitudinal sector over a solar cycle (1978–1986). J. Atmos. Sol.-Terr. Phys. 61, 857–866 (1999) ADSCrossRefGoogle Scholar
  19. L.A. Hajkowicz, R.D. Hunsucker, A simultaneous observation of large-scale periodic TIDs in both hemispheres following an onset of auroral disturbances. Planet. Space Sci. 35, 785–791 (1987) ADSCrossRefGoogle Scholar
  20. C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481 (1960) ADSCrossRefGoogle Scholar
  21. C.M. Ho, A.J. Mannucci, U.J. Lindqwister, X. Pi, B.T. Tsurutani, Global ionosphere perturbations monitored by the Worldwide GPS Network. Geophys. Res. Lett. 23(22), 3219–3222 (1996) ADSCrossRefGoogle Scholar
  22. C.M. Ho, A.J. Mannucci, L. Sparks, X. Pi, U.J. Lindqwister, B.D. Wilson, B.A. Iijima, M.J. Reyes, Ionospheric total electron content perturbations monitored by the GPS global network during two northern hemisphere winter storms. J. Geophys. Res. 103(A11), 26,409–26,420 (1998) ADSCrossRefGoogle Scholar
  23. K. Hocke, K. Schlegel, A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. 14, 917–940 (1996) ADSGoogle Scholar
  24. R.D. Hunsucker, Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev. Geophys. 20, 293–315 (1982) ADSCrossRefGoogle Scholar
  25. M. Ishii, M. Conde, R.W. Smith, M. Krynicki, E. Sagawa, S. Watari, Vertical wind observations with two Fabry-Perot interferometers at Poker Flat, Alaska. J. Geophys. Res. 106, 10,537–10,551 (2001) ADSCrossRefGoogle Scholar
  26. M. Ishii, M. Kubota, M. Conde, R.W. Smith, M. Krynicki, Vertical wind distribution in the polar thermosphere during Horizontal E Region Experiment (HEX) campaign. J. Geophys. Res. 109, A12311 (2004). doi: 10.1029/2004JA010657 ADSCrossRefGoogle Scholar
  27. J. Jing, R.D. Hunsucker, A theoretical investigation of sources of large and medium scale atmospheric gravity waves in the auroral oval. J. Atmos. Terr. Phys. 55, 1667–1679 (1993) CrossRefGoogle Scholar
  28. S. Kato, T. Kawakami, D. St. John, Theory of gravity wave emission from moving sources in the upper atmosphere. J. Atmos. Terr. Phys. 39, 581–588 (1977) ADSCrossRefGoogle Scholar
  29. G. Kirchengast, K. Hocke, K. Schlegel, The gravity wave-TID relationship: insight via theoretical model-EISCAT data comparison. J. Atmos. Terr. Phys. 58(1–4), 233–243 (1996) ADSCrossRefGoogle Scholar
  30. J. Kurihara, S. Oyama, S. Nozawa, T.T. Tsuda, R. Fujii, Y. Ogawa, H. Miyaoka, N. Iwagami, T. Abe, K.-I. Oyama, M.J. Kosch, A. Aruliah, E. Griffin, K. Kauristie, Temperature enhancements and vertical winds in the lower thermosphere associated with auroral heating during the DELTA campaign. J. Geophys. Res. 114, A12306 (2009). doi: 10.1029/2009JA014392 ADSCrossRefGoogle Scholar
  31. R.S. Lindzen, Reconsideration of diurnal velocity oscillation in the thermosphere. J. Geophys. Res. 72(5), 1591–1598 (1967) ADSCrossRefGoogle Scholar
  32. G. Lu, A.D. Richmond, B.A. Emery, R.G. Roble, Magnetosphere-ionosphere-thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J. Geophys. Res. 100(A10), 19,643–19,659 (1995) ADSCrossRefGoogle Scholar
  33. S. Maeda, S. Handa, Transmission of large-scale TIDs in the ionospheric F2-region. J. Atmos. Terr. Phys. 42, 853–859 (1980) ADSCrossRefGoogle Scholar
  34. G.H. Millward, S. Quegan, R.J. Moffett, T.J. Fuller-Rowell, D. Rees, A modeling study of the coupled ionospheric and thermospheric response to an enhanced high-latitude electric field event. Planet. Space Sci. 41, 45–56 (1993) ADSCrossRefGoogle Scholar
  35. M.J. Nicolls, C.J. Heinselman, Three-dimensional measurements of travelling ionospheric disturbances with the Poker Flat incoherent scatter radar. Geophys. Res. Lett. 34, L21104 (2007). doi: 10.1029/2007GL031506 ADSCrossRefGoogle Scholar
  36. S. Oyama, M. Ishii, Y. Murayama, H. Shinagawa, S.C. Buchert, R. Fujii, W. Kofman, Generation of atmospheric gravity waves associated with auroral activity in the polar F region. J. Geophys. Res. 106(A9), 18,543–18,554 (2001) ADSCrossRefGoogle Scholar
  37. S. Oyama, K. Shiokawa, J. Kurihara, T.T. Tsuda, S. Nozawa, Y. Ogawa, Y. Otsuka, B.J. Watkins, Lower-thermospheric wind fluctuations measured with an FPI during pulsating aurora at Tromsø, Norway. Ann. Geophys. 28, 1847–1857 (2010) ADSCrossRefGoogle Scholar
  38. S. Oyama, B.J. Watkins, S. Maeda, H. Shinagawa, S. Nozawa, Y. Ogawa, A. Brekke, C. Lathuillere, W. Kofman, Generation of the lower-thermospheric vertical wind estimated with the EISCAT KST radar at high latitudes during periods of moderate geomagnetic disturbance. Ann. Geophys. 26, 1491–1505 (2008) ADSCrossRefGoogle Scholar
  39. P.G. Richards, P.J. Wilkinson, The ionosphere and thermosphere at southern midlatitudes during the November 1993 ionospheric storm: a comparison of measurement and modeling. J. Geophys. Res. 103(A5), 9373–9389 (1998) ADSCrossRefGoogle Scholar
  40. A. Richmond, Gravity wave generation, propagation, and dissipation in the thermosphere. J. Geophys. Res. 83(A9), 4131–4145 (1978) ADSCrossRefGoogle Scholar
  41. J.C. Samson, R.A. Greenwald, J.M. Ruohoniemi, A. Frey, K.B. Baker, Goose Bay radar observations of earth-reflected, atmospheric gravity waves in the high-latitude ionosphere. J. Geophys. Res. 95(A6), 7693–7709 (1990) ADSCrossRefGoogle Scholar
  42. T. Shibata, K. Schlegel, Vertical structure of AGW associated ionospheric fluctuations in the E- and lower F-region observed with EISCAT—a case study. J. Atmos. Terr. Phys. 55(4/5), 739–749 (1993) ADSCrossRefGoogle Scholar
  43. H. Shinagawa, S. Oyama, A two-dimensional simulation of thermospheric vertical winds in the vicinity of an auroral arc. Earth Planets Space 58, 1173–1181 (2006) ADSGoogle Scholar
  44. R.W. Smith, The global-scale effect of small-scale thermospheric disturbances. J. Atmos. Sol.-Terr. Phys. 62, 1623–1628 (2000) ADSCrossRefGoogle Scholar
  45. Z.P. Sun, R.P. Turco, R.L. Walterscheid, S.V. Venkateswaran, P.W. Jones, Thermospheric response to morningside diffuse aurora: high-resolution three-dimensional simulations. J. Geophys. Res. 100, 23,779–23,793 (1995) ADSCrossRefGoogle Scholar
  46. J.P. Thayer, J.F. Vickrey, R.A. Heelis, J.B. Gary, Interpretation and modeling of the high-latitude electromagnetic energy flux. J. Geophys. Res. 100(A10), 19,715–19,728 (1995) ADSCrossRefGoogle Scholar
  47. T. Tsugawa, A. Saito, Y. Otsuka, A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J. Geophys. Res. 109, A06302 (2004). doi: 10.1029/2003JA010302 CrossRefGoogle Scholar
  48. T. Tsugawa, A. Saito, Y. Otsuka, M. Yamamoto, Damping of large-scale traveling ionospheric disturbances detected with GPS networks during the geomagnetic storm. J. Geophys. Res. 108(A3), 1127 (2003). doi: 10.1029/2002JA009433 CrossRefGoogle Scholar
  49. J. Vickrey, R. Vondrak, S. Matthews, Energy deposition by precipitating particles and Joule dissipation in the auroral ionosphere. J. Geophys. Res. 87(A7), 5184–5196 (1982) ADSCrossRefGoogle Scholar
  50. R.L. Walterscheid, L.R. Lyons, The neutral circulation in the vicinity of a stable auroral arc. J. Geophys. Res. 97, A12 (1992). doi: 10.1029/92JA01730 CrossRefGoogle Scholar
  51. R. Walterscheid, G. Schubert, D. Brinkman, Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection. J. Geophys. Res. 106(D23), 31825–31832 (2001) ADSCrossRefGoogle Scholar
  52. V.B. Wickwar, M.J. Baron, R.D. Sears, Auroral energy input from energetic electrons and Joule heating at Chatanika. J. Geophys. Eng. 80(31), 4364–4367 (1975) ADSCrossRefGoogle Scholar
  53. P.J.S. Williams, G. Crowley, K. Schlegel, T.S. Virdi, I. McCrea, G. Watkins, N. Wade, J.K. Hargreaves, T. Lachlan-Cope, H. Muller, J.E. Baldwin, P. Warner, A.P. van Eyken, M.A. Hapgood, A.S. Rodger, The generation and propagation of atmospheric gravity waves observed during the Worldwide Atmospheric Gravity-wave Study (WAGS). J. Atmos. Terr. Phys. 50(4/5), 323–338 (1988) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityFuro Chikusa, NagoyaJapan
  2. 2.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations