Skip to main content

Global Response of the Ionosphere to Atmospheric Tides Forced from Below: Recent Progress Based on Satellite Measurements

Global Tidal Response of the Ionosphere

Abstract

This paper provides an overview on the recent progress in studying the ionospheric response to atmospheric tides forced from below. The global spatial structure and temporal variability of the atmospheric temperature tides and their ionospheric responses are considered on the basis of modern satellite-board data (COSMIC and TIMED). The tidal waves from the two data sets have been extracted by one and the same data analysis method. The similarity between the lower thermospheric temperature tides and their ionospheric responses provides evidence for confirming the new paradigm of atmosphere-ionosphere coupling. This paper provides also new experimental results which give an explanation why the WN4 and partly WN3 longitude structures are so prominent pattern in the ionosphere. These results present evidence indicating that the WN4 (WN3) structure is not generated only by the DE3 (DE2) tide as it has been often assumed. The DE3 (DE2) tide remains the leading contributor, but the SPW4 and SE2 (SPW3, DW4 and SE1) waves have their effects as well in a way that the ionospheric response becomes almost double (1.5 time stronger). The paper presents also the global distribution and temporal variability of the sun-synchronous 24-h (DW1), 12-h (SW2) and 8-h (TW3) electron density oscillations. It has been shown that while the latitude and altitude structure of the ionospheric SW2 response is predominantly shaped by the migrating SW2 tide forced from below the DW1 response is mainly due to daily variability of the photo-ionization. The peculiar vertical structure of the ionospheric TW3 response, that shows downward/upward phase progression, calls for further study of the physical processes shaping this ionospheric response.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  • M. Angelats i Coll, J.M. Forbes, Nonlinear interactions in the upper atmosphere: the s=1 and s=3 nonmigrating semidiurnal tides. J. Geophys. Res. (2002). doi:10.1029/2001JA900179

    Google Scholar 

  • C. Arras, Ch. Jacobi, J. Wicker, Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at midlatitudes. Ann. Geophys. 27, 2555–2563 (2009)

    ADS  Article  Google Scholar 

  • F. Azpilicueta, C. Brunini, S.M. Radicella, Global ionospheric maps from GPS observations using modip latitude. Adv. Space Res. 38, 2324–2331 (2006)

    ADS  Article  Google Scholar 

  • L. Bankov, R. Heelis, M. Parrot, J.-J. Berthelier, P. Marinov, A. Vassileva, WN4 effect on longitudinal distribution of different ion species in the topside ionosphere at low latitudes by means of DEMETER, DMSP-F13 and DMSP-F15 data. Ann. Geophys. 27, 1–10 (2009)

    Article  Google Scholar 

  • N.P. Benkova, M.G. Deminov, A.T. Karpachev, N.A. Kochenova, Yu.V. Kusnerevsky, V.V. Migulin, S.A. Pulinets, M.D. Fligel, Longitude features shown by topside sounder data and their importance in ionospheric mapping. Adv. Space Res. 10, 857–866 (1990)

    Google Scholar 

  • P.S. Brahmanandam, Y.-H. Chu, K.-H. Wu, H.-P. Hsia, C.-L. Su, G. Uma, Vertical and longitudinal electron density structures of equatorial E- and F-regions. Ann. Geophys. 29, 81–89 (2011)

    ADS  Article  Google Scholar 

  • S. Chapman, R.S. Lindzen, Atmospheric Tides: Thermal and Gravitational (Gordon and Breach, New York, 1970), p. 200

    Google Scholar 

  • C.-Z. Cheng, Y.-H. Kuo, R.A. Anthes, L. Wu, Satellite constellation monitors global and space weather. Eos Trans. AGU 87, 166–167 (2006)

    ADS  Article  Google Scholar 

  • Y.-H. Chu, K.-H. Wu, C.-L. Su, Reply to comment by Lei et al. on “A new aspect of ionospheric E region electron density morphology”. J. Geophys. Res. 115, A07314 (2010). doi:10.1029/2010JA015334

    Article  Google Scholar 

  • S.L. England, T.J. Immel, E. Sagawa, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The effect of atmospheric tides on the morphology of the quiet-time post-sunset equatorial ionospheric anomaly. J. Geophys. Res. 111, A10S19 (2006a). doi:10.1029/2006JA011795

    Article  Google Scholar 

  • S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33, L21105 (2006b). doi:10.1029/2006GL027465

    ADS  Article  Google Scholar 

  • S.L. England, X. Zhang, T.J. Immel, J.M. Forbes, R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61, 493–503 (2009)

    ADS  Google Scholar 

  • S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. 115, A05308 (2010). doi:10.1029/2009JA014894

    Article  Google Scholar 

  • B.G. Fejer, J.W. Jensen, S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res. 113, A05304 (2008). doi:10.1029/2007JA012801

    Article  Google Scholar 

  • J.M. Forbes, R.G. Roble, C. Fesen, Accelerating, heating and compositional mixing of the thermosphere due to upward propagating tides. J. Geophys. Res. 98(A1), 311–321 (1993). doi:10.1029/1992JA00442

    ADS  Article  Google Scholar 

  • J.M. Forbes, J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C.J. Mertens, M.E. Hagan, Troposphere-thermosphere tidal coupling as measure by the SABER instrument on TIMED during July-September 2002. J. Geophys. Res. 111, A10S06 (2006). doi:10.1029/2005JA011492

    Article  Google Scholar 

  • J.M. Forbes, X. Zhang, S. Palo, J. Russell, C.J. Mertens, M. Mlynczak, Tidal variability in the ionospheric dynamo region. J. Geophys. Res. 113, A02310 (2008). doi:10.1029/2007JA012737

    Article  Google Scholar 

  • T.J. Fuller-Rowell, R.A. Akmaev, F. Wu et al., Impact of terrestrial weather on the upper atmosphere. Geophys. Res. Lett. 35, L09808 (2008). doi:10.1029/2007GL032911

    Article  Google Scholar 

  • M.E. Hagan, Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J. Geophys. Res. 101(D16), 21213–21222 (1996)

    ADS  Article  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 107, 4754 (2002). doi:10.1029/2001JD001236

    Article  Google Scholar 

  • M.E. Hagan, J.M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res. 108(A2), 1062 (2003). doi:10.1029/2002JA009466

    Article  Google Scholar 

  • M.E. Hagan, A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, S.L. England, Connections between deep tropical clouds and the Earth’s ionosphere. Geophys. Res. Lett. 34, L20109 (2007). doi:10.1029/2007GL030142

    ADS  Article  Google Scholar 

  • M.E. Hagan, A. Maute, R.G. Roble, Tropospheric tidal effects on the middle and upper atmosphere. J. Geophys. Res. 114, A01302 (2009). doi:10.1029/2008JA013637

    Article  Google Scholar 

  • C. Haldoupis, D. Pancheva, N.J. Mitchell, A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res. 109, A02302 (2004). doi:10.1029/2003JA010253

    Article  Google Scholar 

  • C. Haldoupis, C. Meek, N. Christakis, D. Pancheva, A. Bourdillon, Ionogram height-time-intensity observations of descending sporadic E layers. J. Atmos. Sol.-Terr. Phys. 68, 539–557 (2006)

    ADS  Article  Google Scholar 

  • C. Haldoupis, D. Pancheva, Terdiurnal tide-like variability in sporadic E layers. J. Geophys. Res. 111, A07303 (2006). doi:10.1029/2005JA011522

    Article  Google Scholar 

  • K. Hamilton, Latent heat release as a possible forcing mechanism for atmospheric tides. Mon. Weather Rev. 109, 3–17 (1981)

    ADS  Article  Google Scholar 

  • W.A. Hartman, R.A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112, A03305 (2007). doi:10.1029/2006JA011773

    Article  Google Scholar 

  • K. Häusler, H. Lühr, Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann. Geophys. 27, 2643–2652 (2009)

    ADS  Article  Google Scholar 

  • R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Sol.-Terr. Phys. 66, 825–838 (2004)

    ADS  Article  Google Scholar 

  • F.T. Huang, H.G. Mayr, C.A. Reber, T. Killeen, J.M. Russell, M. Mlynczak, W. Skinner, J.G. Mengel, Diurnal variations of temperature and winds inferred from TIMED and UARS measurements. J. Geophys. Res. 111, A10S04 (2006a). doi:10.1029/2005JA011426

    Article  Google Scholar 

  • F.T. Huang, H.G. Mayr, C.A. Reber, J.M. Russell, M. Mlynczak, J.G. Mengel, Stratospheric and mesospheric temperature variations for quasi-biennial and semiannual (QBO and SAO) oscillations based on measurements from SABER (TIMED) and MLS (UARS). Ann. Geophys. 24, 2131–2149 (2006b)

    ADS  Article  Google Scholar 

  • T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, L15108 (2006). doi:10.1029/2006GL026161

    ADS  Article  Google Scholar 

  • M.C. Jeruchim, P. Balaban, K.S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology and Techniques (Kluwer Academic Plenum Publishers, Dordrecht, 2000), pp. 397–399

    Google Scholar 

  • H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J. Geophys. Res. 113, A09307 (2008). doi:10.1029/2008JA013301

    Article  Google Scholar 

  • H. Jin, Y. Miyoshi, H. Fujiwara, H. Shinagawa, K. Terada, N. Terada, M. Ishii, Y. Otsuka, A. Saito, Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116, A01316 (2011). doi:10.1029/2010JA015925

    Article  Google Scholar 

  • A.T. Karpachev, Characteristics of the global longitudinal effect in the night-time equatorial anomaly. Geomagn. Aeron. 28(1), 46–49 (1988)

    ADS  Google Scholar 

  • M.C. Kelley, V.K. Wong, N. Aponte, C. Coker, A.J. Mannucci, A. Komjathy, Comparison of COSMIC occultation-based electron density profiles and TIP observations with Arecibo incoherent scatter radar data. Radio Sci. 44, RS4011 (2009). doi:10.1029/2008RS004087

    Article  Google Scholar 

  • H. Kil, R. DeMajistre, L.J. Paxton, Y. Zhang, Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. J. Atmos. Sol.-Terr. Phys. 68, 1672–1681 (2006)

    ADS  Article  Google Scholar 

  • H. Kil, S.-J. Oh, M. Kelley, L. Paxton, S. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, L14110 (2007). doi:10.1029/2007GL030018

    ADS  Article  Google Scholar 

  • H. Kil, E.R. Talaat, S.-J. Oh, L.J. Paxton, S.L. England, S.-Y. Su, The wave structures of the plasma density and vertical E × B drift in low-latitude F region. J. Geophys. Res. 113, A09312 (2008). doi:10.1029/2008JA013106

    Article  Google Scholar 

  • N.A. Kochenova, Longitudinal variations of the equatorial ionosphere according to Intercosmos-19 data. Geomagn. Aeron. 21(1), 142–144 (1987)

    ADS  Google Scholar 

  • N.A. Kochenova, Longitudinal variations of N(h) profiles at the magnetic equator. Geomagn. Aeron. 28(1), 144–146 (1988)

    ADS  Google Scholar 

  • A.K.H. Kong, P.A. Charles, E. Kuulkers, Long-term X-ray variability in GX 354-0. New Astron. 3(5), 301–307 (1998)

    ADS  Article  Google Scholar 

  • Y.-H. Kuo, T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, R.A. Anthes, Inversion and error estimation of GPS radio occultation data. J. Meteorol. Soc. Jpn. 82(1B), 507–531 (2004)

    Article  Google Scholar 

  • J. Lei, S. Syndergaard, A.G. Burns et al., Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results. J. Geophys. Res. 112, A07308 (2007). doi:10.1029/2006JA012240

    Article  Google Scholar 

  • J. Lei, J.P. Thayer, J.M. Forbes, Q. Wu, C. She, W. Wan, W. Wang, Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 35, L19105 (2008). doi:10.1029/2008GL035208

    ADS  Article  Google Scholar 

  • C.H. Lin, W. Wang, M.E. Hagan, C.C. Hsiao, T.J. Immel, M.L. Hsu, J.Y. Liu, L.J. Paxton, T.W. Fang, C.H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys. Res. Lett. 34, L11112 (2007a). doi:10.1029/2007GL029265

    ADS  Article  Google Scholar 

  • C.H. Lin, C.C. Hsiao, J.Y. Liu, C.H. Liu, Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J. Geophys. Res. 112, A12305 (2007b). doi:10.1029/2007JA012455

    ADS  Article  Google Scholar 

  • H. Liu, M. Yamamoto, H. Lühr, Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys. Res. Lett. 36, L18104 (2009). doi:10.1029/2009GL039865

    ADS  Article  Google Scholar 

  • J.Y. Liu, C.Y. Lin, C.H. Lin, H.F. Tsai, S.C. Solomon, Y.Y. Sun, T. Lee, W.S. Schreiner, Y.H. Kuo, Artificial plasma caves in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. J. Geophys. Res. (2010). doi:10.1029/2009JA015079

    Google Scholar 

  • H. Lühr, K. Häusler, C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 34, L16102 (2007). doi:10.1029/2007GL030639

    ADS  Article  Google Scholar 

  • H. Lühr, M. Rother, K. Häusler, P. Alken, S. Maus, Influence of nonmigrating tides on the longitudinal variations of the equatorial electrojet. J. Geophys. Res. 113, A08313 (2008). doi:10.1029/2008JA013064

    ADS  Article  Google Scholar 

  • J.D. Mathews, E. Sporadic, Current views and recent progress. J. Atmos. Sol.-Terr. Phys. 60, 413–435 (1998)

    ADS  Article  Google Scholar 

  • C. McLandress, W.E. Ward, Tidal/gravity wave interactions and their influence on the large scale dynamics of the middle atmosphere: model results. J. Geophys. Res. 99, 8139–8156 (1994)

    ADS  Article  Google Scholar 

  • C.J. Mertens et al., Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 μm earth limb emission under non-LTE conditions. Geophys. Res. Lett. 28, 1391–1394 (2001)

    ADS  Article  Google Scholar 

  • C.J. Mertens et al., SABER observations of mesospheric temperature and comparisons with falling sphere measurements taken during the 2002 summer MaCWINE campaign. Geophys. Res. Lett. 31, J03105 (2004). doi:10.1029/2003GL018605

    Article  Google Scholar 

  • P. Mukhtarov, D. Pancheva, B. Andonov, Global structure, seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res. 114, A02309 (2009). doi:10.1029/2008JA013759

    Article  Google Scholar 

  • P. Mukhtarov, D. Pancheva, Global ionospheric response to nonmigrating DE3 and DE2 tides forced from below. J. Geophys. Res. (2011). doi:10.1029/2010JA016099

    Google Scholar 

  • J. Oberheide, M.E. Hagan, R.G. Roble, D. Offermann, Sources of nonmigrating tides in the tropical middle atmosphere. J. Geophys. Res. 107, 4567 (2002). doi:10.1029/2002JD002220

    Article  Google Scholar 

  • J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations. J. Geophys. Res. 111, A10S03 (2006). doi:10.1029/2005JA011491

    Article  Google Scholar 

  • J. Oberheide, Q. Wu, T.L. Killeen, M.E. Hagan, R.G. Roble, A climatology of nonmigrating semidiurnal tides from TIMED Doppler Interferometer (TIDI) wind data. J. Atmos. Sol.-Terr. Phys. 69, 2203–2218 (2007)

    ADS  Article  Google Scholar 

  • J. Oberheide, J.M. Forbes, Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys. Res. Lett. 35, L04816 (2008). doi:10.1029/2007GL032397

    Article  Google Scholar 

  • J. Oberheide, J.M. Forbes, K. Haüsler, Q. Wu, S.L. Bruinsma, Tropospheric tides from 80–400 km: propagation, inter-annual variability and solar cycle effects. J. Geophys. Res. 114, D00I05 (2009). doi:10.1029/2009JD012388

    Article  Google Scholar 

  • J. Oberheide, J.M. Forbes, X. Zhang, S.L. Bruinsma, Wave-driven variability in the ionosphere-thermosphere-mesosphere system from TIMED observations: what contributes to the “wave4”? J. Geophys. Res. 116, A01306 (2011). doi:10.1029/2009JA015911

    Article  Google Scholar 

  • D. Pancheva, C. Haldoupis, C. Meek, A. Manson, N. Mitchell, Evidence for a role of modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J. Geophys. Res. 108(A5), 1176 (2003). doi:10.1029/2002JA009788

    Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, Nonmigrating tidal activity related to the sudden stratospheric warming in the Arctic winter of 2003/2004. Ann. Geophys. 27, 975–987 (2009a)

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007). Ann. Geophys. 27, 687–703 (2009b)

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, N.J. Mitchell, J.M. Forbes, Planetary waves observed by TIMED/SABER in coupling the stratosphere-mesosphere-lower thermosphere during the winter of 2003/2004: Part 1, Comparison with the UKMO temperature results. J. Atmos. Sol.-Terr. Phys. 71, 61–74 (2009c)

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, Reply to Manson et al.’s comment on “Global structure, seasonal and interannual variability of the migrating semidiurnal tide seen in the SABER/TIMED temperatures (2002–2007)”. Ann. Geophys. 28, 677–685 (2010a)

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, B. Andonov, Global distribution, seasonal and interannual variability of the eastward propagating tides seen in the SABER/TIMED temperatures (2002–2007). Adv. Space Res. 46, 257–274 (2010b). doi:10.1016/j.asr.2010.03.026

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, Strong evidence for the tidal control on the longitudinal structure of the ionospheric F-region. Geophys. Res. Lett. 37, L14105 (2010). doi:10.1029/2010GL044039

    ADS  Article  Google Scholar 

  • D. Pancheva, P. Mukhtarov, Atmospheric tides and planetary waves: recent progress based on SABER/TIMED, in IAGA Special Sopron Book Series 2, Aeronomy of the Earth’s Atmosphere and Ionosphere, ed. by M. Abdu, D. Pancheva (Springer, Berlin, 2011), pp. 19–56, doi:10.1007/978-94-007-0326-1

    Chapter  Google Scholar 

  • N.M. Pedatella, J.M. Forbes, J. Oberheide, Intra-annual variability of the low-latitude ionosphere due to nonmigrating tides. Geophys. Res. Lett. 35, L18104 (2008). doi:10.1029/2008GL035332

    ADS  Article  Google Scholar 

  • L. Perrone, A.V. Mikhailov, L.P. Korsunova, FORMOSAT-3/COSMIC E region observations and daytime f o E at middle latitudes. J. Geophys. Res. 116, A06307 (2011). doi:10.1029/2010JA016411

    Article  Google Scholar 

  • S.M. Radicella, R. Leitinger, The evolution of the DGR approach to model electron density profiles. Adv. Space Res. 27(1), 35–40 (2001)

    ADS  Article  Google Scholar 

  • K. Rawer, in Meteorological and Astronomical Influences on Radio Wave Propagation, ed. by B. Landmark (Oxford, Pergamon Press, 1963), pp. 221–250

    Google Scholar 

  • K. Rawer (ed.), Encyclopedia of Physics, Geophysics III, Part VII (Springer, Berlin, 1984), pp. 389–391

    Google Scholar 

  • E.E. Remsberg, B.T. Marshall, M. García-Comas, D. Krueger, G.S. Lingenfelser, J. Martin-Torres, M.G. Mlynczak, J.M. Russell, A.K. Smith, Y. Zhao, C. Brown, L.L. Gordley, M.J. Lopez-Gonzales, M. Lopez-Puertas, C.-Y. She, M.J. Taylor, R.E. Thompson, Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. 113, D17101 (2008). doi:10.1029/2008JD0100113

    ADS  Article  Google Scholar 

  • Z. Ren, W. Wan, L. Liu, B. Zhao, Y. Wei, X. Yue, R.A. Heelis, Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys. Res. Lett. 35, L05108 (2008). doi:10.1029/2007GL032998

    Article  Google Scholar 

  • Z. Ren, W. Wan, L. Liu, J. Xiong, Intra-annual variation of wavenumber-4 structure of vertical E×B drifts in the equatorial ionosphere seen from ROCSAT-1. J. Geophys. Res. (2009). doi:10.1029/2009JA014060

    Google Scholar 

  • Z. Ren, W. Wan, J. Xiong, L. Liu, Simulated wavenumber 4 structure in the equatorial F region vertical plasma drifts. J. Geophys. Res. 115, A05301 (2010). doi:10.1029/2009JA014746

    Article  Google Scholar 

  • Z. Ren, W. Wan, L. Liu, Y. Cheng, H. Le, Equinoctial asymmetry of ionospheric vertical plasma drifts and its effect on F-region plasma density. J. Geophys. Res. 116, A02308 (2011). doi:10.1029/2010JA016081

    Article  Google Scholar 

  • A.D. Richmond, The ionospheric wind dynamo: effects of its coupling with different atmospheric regions, in The Upper Mesosphere and Lower Thermosphere: A Review of Experiments and Theory, ed. by R.M. Johnson, T.L. Killeen. Geophys. Monogr. Ser., vol. 87 (AGU, Washington, 1995), pp. 49–65

    Chapter  Google Scholar 

  • H. Rishbeth, I.C.F. Müller-Wodarg, L. Zou, T.J. Fuller-Rowell, G.H. Millward, R.J. Moffett, D.W. Idenden, A.D. Aylward, Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann. Geophys. 18, 945–956 (2000)

    ADS  Article  Google Scholar 

  • R.G. Roble, The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model, in STEP Handbook on Ionospheric Models, ed. by R.W. Schunk (Utah State Univ., Logan, 1996), pp. 207–216

    Google Scholar 

  • R.G. Roble, On the feasibility of developing a global atmospheric model extending from the ground to the exosphere, in Atmospheric Science Across the Stratopause, ed. by D.E. Siskind, S.D. Eckermann, M.E. Summers. Geophys. Monogr. Ser., vol. 123 (AGU, Washington, 2000), pp. 53–67

    Chapter  Google Scholar 

  • E. Sagawa, T.J. Immel, H.U. Frey, S.B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 110, A11302 (2005). doi:10.1029/2004JA010848

    ADS  Article  Google Scholar 

  • W.S. Schreiner, S.V. Sokolovskiy, C. Rocken, D.C. Hunt, Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Sci. 34(4), 949–966 (1999)

    ADS  Article  Google Scholar 

  • S.M. Stankov, N. Jakowski, S. Heise, P. Muhtarov, I. Kutiev, R. Warnant, A new method for reconstruction of the vertical electron density distribution in the upper ionosphere and plasmosphere. J. Geophys. Res. 108(A5), 1164 (2003). doi:10.1029/2002JA009570

    Article  Google Scholar 

  • G. Thuillier, J.R.H. Wiens, G.G. Shepherd, R.G. Roble, Photochemistry and dynamics in 566 thermospheric intertropical arcs measure by the WIND imaging interferometer on board UARS: 567 A comparison with TIE-GCM simulations. J. Atmos. Sol.-Terr. Phys. 64, 405–415 (2002)

    ADS  Article  Google Scholar 

  • W. Wan, L. Liu, X. Pi, M.-L. Zhang, B. Ning, J. Xiong, F. Ding, Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys. Res. Lett. 35, L12104 (2008). doi:10.1029/2008GL033755

    ADS  Article  Google Scholar 

  • K.H. West, R.A. Heelis, Longitude variations in ion composition in the morning and evening 574 topside equatorial ionosphere near solar minimum. J. Geophys. Res. 101, 7951–7960 (1996)

    ADS  Article  Google Scholar 

  • C.R. Williams, S.K. Avery, Diurnal nonmigrating tidal oscillations forced by deep convective clouds. J. Geophys. Res. 101, 4079–4091 (1996)

    ADS  Article  Google Scholar 

  • J. Xu, A.K. Smith, H.-L. Liu, W. Yuan, Q. Wu, G. Jiang, M.G. Mlynczak, J.M. Russell III, S.J. Franke, Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res. 114, D13107 (2009). doi:10.1029/2007JD011298

    ADS  Article  Google Scholar 

  • X. Zhang, J.M. Forbes, M.E. Hagan, J.M. Russell III, S.E. Palo, C.J. Mertens, M.G. Mlynczak, Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res. 111, A10S08 (2006). doi:10.1029/2005JA011504

    Article  Google Scholar 

  • X. Zhang, J.M. Forbes, M.E. Hagan, Longitudinal variation of tides in the MLT region: 2. Relative effects of solar radiative and latent heating. J. Geophys. Res. 115, A06317 (2010). doi:10.1029/2009JA014898

    Article  Google Scholar 

  • X. Yue, W.S. Schreiner, J. Lei, S.V. Sokolovsky, C. Rocken, D.C. Hunt, Y.-H. Kuo, Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann. Geophys. 28, 217–222 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the COSMIC and SABER teams for the access to the data respectively on http://cosmic-io.cosmic.ucar.edu/cdaac/ and http://saber.gats-inc.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Pancheva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pancheva, D., Mukhtarov, P. Global Response of the Ionosphere to Atmospheric Tides Forced from Below: Recent Progress Based on Satellite Measurements. Space Sci Rev 168, 175–209 (2012). https://doi.org/10.1007/s11214-011-9837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9837-1

Keywords

  • Nonmigrating tides
  • Ionospheric response
  • Modulated vertical plasma drift
  • “Fountain effect”