Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Properties of Near-Earth Magnetic Reconnection from In-Situ Observations

  • 363 Accesses

  • 51 Citations

Abstract

Many properties of magnetic reconnection have been determined from in-situ spacecraft observations in the Earth’s magnetosphere. Recent studies have focused on ion scale lengths and have largely confirmed theoretical predictions. In addition, some interesting features of reconnection regions on electron scale lengths have been identified. These recent studies have demonstrated the need for combined plasma and field measurements on electron scale lengths in the reconnection diffusion regions at the magnetopause and in the magnetotail. They have also indicated that measurements, such as those that will be made by the Magnetospheric Multiscale mission in the near future, will have a significant impact on understanding magnetic reconnection as a fundamental plasma process.

This is a preview of subscription content, log in to check access.

References

  1. M. André et al., Thin electron-scale layers at the magnetopause. Geophys. Res. Lett. 31 (2004). doi:10.1029/2003GL018137

  2. S.V. Badman, S.W.H. Cowley, Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres and their identification on closed equatorial field lines. Ann. Geophys. (2007). doi:10.5194/angeo-25-941-2007

  3. A. Balogh et al., The cluster magnetic field investigation: scientific objectives and instrumentation, ESA SP-1159, 95 (1993)

  4. W. Baumjohann, The near Earth plasma sheet—an AMPTE/IRM perspective. Space Sci. Rev. 64, 141 (1993)

  5. A.L. Borg et al., Cluster encounter of a magnetic reconnection diffusion region in the near-Earth magnetotail on September 19, 2003. Geophys. Res. Lett. (2005). doi:10.1029/2005GL023794

  6. J.L. Burch, J.F. Drake, Reconnecting magnetic fields. Am. Sci. 97, 392 (2009)

  7. P.A. Cassak, M.A. Shay, Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Phys. Plasmas 14, 102114 (2007)

  8. P.A. Cassak, M.A. Shay, Scaling of asymmetric Hall magnetic reconnection. Geophys. Res. Lett. (2008). doi:10.1029/2008GL035268

  9. C. Cattell et al., Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. (2005). doi:10.1029/2004JA010519

  10. L.-J. Chen, Multispacecraft observations of the electron current sheet, neighboring magnetic islands, and electron acceleration during magnetotail reconnection. Phys. Plasmas (2009). doi:10.1063/1.3112744

  11. W. Daughton, J. Scudder, H. Karimabadi, Fully kinetic simulations of undriven magnetic reconnection with open boundary conditions. Phys. Plasmas (2006). doi:10.1063/1.2218817

  12. F. deHoffmann, E. Teller, Magneto-hydrodynamic shocks. Phys. Rev. 80, 692 (1950)

  13. X.H. Deng et al., Geotail encounter with reconnection diffusion region in the Earth’s magnetotial: Evidence of multiple X lines collisionless reconnection? J. Geophys. Res. (2004). doi:10.1029/2003JA010031

  14. J.F. Drake et al., Formation of electron holes and particle energization during magnetic reconnection. Science 299, 873 (2003)

  15. J.F. Drake, M. Swisdak, K.M. Schoeffler, B.N. Rogers, S. Kobayashi, Formation of secondary islands during magnetic reconnection. Geophys. Res. Lett. (2006). doi:10.1029/2006GL025957

  16. J.F. Drake, M.A. Shay, M. Swisdak, The Hall fields and fast magnetic reconnection. Phys. Plasmas 15 (2008). doi:10.1063/1.2900194

  17. J.F. Drake et al., Ion heating resulting from pickup in magnetic reconnection exhausts. J. Geophys. Res. (2009). doi:10.1029/2008JA013701

  18. J.W. Dungey, Conditions for the occurrence of electrical discharges in astrophysical systems. Philos. Mag. 44, 725 (1953)

  19. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

  20. J.P. Eastwood et al., Multi-point observations of the Hall electromagnetic field and secondary island formation during magnetic reconnection. J. Geophys. Res. (2007). doi:10.1029/2006JA012158

  21. J.P. Eastwood, T.D. Phan, M. Øieroset, M.A. Shay, Average properties of the magnetic ion diffusion region in the Earth’s magnetotail: The 2001–2005 Cluster observations and comparison with simulations. J. Geophys. Res. (2010). doi:10.1029/2009JA014962

  22. L.A. Frank, K.L. Ackerson, R.P. Lepping, Hot tenuous plasmas, fireballs, and boundary layers in the Earth’s magnetotail. J. Geophys. Res. (1976). doi:10.1029/JA081i034p05859

  23. M. Fujimoto et al., Observations of earthward streaming electrons at the trailing boundary of a plasmoid. Geophys. Res. Lett. 24, 2893 (1997)

  24. S.A. Fuselier, H.U. Frey, K.J. Trattner, S.B. Mende, J.L. Burch, Cusp aurora dependence on interplanetary magnetic field B z . J. Geophys. Res. (2002). doi:10.1029/2001JA900165

  25. S.A. Fuselier, K.J. Trattner, S.M. Petrinec, C.J. Owen, H. Rème, Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J. Geophys. Res. (2005). doi:10.1029/2004JA010805

  26. S.A. Fuselier, S.M. Petrinec, K.J. Trattner, Anti-parallel magnetic reconnection rates at the Earth’s magnetopause. J. Geophys. Res. (2010). doi:10.1029/2010JA015302

  27. J.T. Gosling, R.M. Skoug, D.J. McComas, C.W. Smith, Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. (2005). doi:10.1029/2004JA010809

  28. J.T. Gosling, S. Eriksson, R.M. Skoug, D.J. McComas, R.J. Forsyth, Petschek-type magnetic reconnection exhausts in the solar wind well beyond 1 AU: Ulysses. Astrophys. J. (2006a). doi:10.1086/503544

  29. J.T. Gosling, S. Eriksson, R. Schwenn, Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios. J. Geophys. Res. (2006b). doi:10.1029/2006JA011863

  30. S.T. Griffiths et al., A probability assessment of encountering dayside magnetopause diffusion regions. J. Geophys. Res. (2011). doi:10.1029/2010JA015136

  31. G. Gustafsson et al., The spherical probe electric field and wave experiment for Cluster, ESA SP-1159, 17 (1993)

  32. S.E. Haaland et al., Four-spacecraft determination of magnetopause orientation, motion, and thickness: comparison with results from single-spacecraft methods. Ann. Geophys. 22, 1347 (2004)

  33. M. Hesse, Dissipation in magnetic reconnection with a guide magnetic field. Phys. Plasmas 13, 1220107 (2006)

  34. M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: Electron processes and transport modeling. J. Geophys. Res. 196, 3721 (2001)

  35. M. Hesse, M. Kuznetsova, J. Birn, The role of electron heat flux in guide-field magnetic reconnection. Phys. Plasmas 11, 125387 (2004)

  36. E.W. Hones Jr., Observations in the Earth’s magnetotail relating to magnetic merging. Sol. Phys. (1976). doi:10.1007/BF00152248

  37. E. Hones (ed.), Magnetic Reconnection in Space and Laboratory Plasmas. Geophysical Monograph, vol. 30 (American Geophysical Union, Washington DC, 1984)

  38. B. Hultqvist, M. Øieroset (eds.), Transport Across the Boundaries of the Magnetosphere (Kluwer, Dordrecht, 1997). Reprinted from Space Science Reviews, vol. 80, nos. 1–2 (1997)

  39. B. Hultqvist et al. (eds.), Magnetospheric Plasma Sources and Losses (Kluwer Academic, Dordrecht, 1999). Reprinted from Space Sci. Rev., vol. 88, nos. 1–2 (1999)

  40. C.M. Jackman et al., A multi-instrument view of tail reconnection at Saturn. J. Geophys. Res. (2008). doi:10.1029/2008JA013592

  41. H. Karimabadi, W. Daughton, J. Scudder, Multi-scale structure of the electron diffusion region. Geophys. Res. Lett. (2007). doi:10.1029/2007GL030306

  42. M.G. Kivelson, D.J. Southwood, Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. J. Geophys. Res. (2005). doi:10.1029/2005JA011176

  43. A. Klimas, M. Hesse, S. Zenitani, Particle-in-cell simulations of collisionless reconnection with open outflow boundaries. Phys. Plasmas (2008). doi:10.1063/1.2965826

  44. E.A. Kronberg, J. Woch, N. Krupp, A. Lagg, K.K. Khurana, K.-H. Glassmeier, Mass release at Jupiter: Substorm-like processes in the Jovian magnetotail. J. Geophys. Res. (2005). doi:10.1029/2004JA010777

  45. R.H. Levy, H.E. Petschek, G.L. Siscoe, Aerodynamic aspects of the magnetospheric flow. AIAA J. 2, 2065 (1964)

  46. M. Lockwood, M.F. Smith, The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. J. Geophys. Res. 97, 14841 (1992)

  47. M. Manapat et al., Field-aligned electrons at the lobe/plasma sheet boundary in the mid-to-distant magnetotail and their association with reconnection. Geophys. Res. Lett. (2006). doi:10.1029/2005GL024971

  48. H.J. McAndrews et al., Evidence of reconnection at Saturn’s magnetosphere. J. Geophys. Res. (2008). doi:10.1029/2007JA012581

  49. F.S. Mozer, Criteria for and statistics of electron diffusion regions associated with subsolar magnetic field reconnection. J. Geophys. Res. (2005). doi:10.1029/2005JA011258

  50. F.S. Mozer, A. Hull, Scaling the energy conversion rate from magnetic field reconnection to different bodies. Phys. Plasmas 17, 102906 (2010)

  51. F.S. Mozer, P.L. Pritchett, Electron physics of asymmetric magnetic field reconnection. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9681-8

  52. F.S. Mozer, A. Retinò, Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements. J. Geophys. Res. (2007). doi:10.1029/2007JA012406

  53. F.S. Mozer, S.D. Bale, T.D. Phan, Observations of ion and electron diffusion regions at a sub-solar magnetopause reconnection event. Phys. Rev. Lett. 89, 015002 (2002)

  54. F.S. Mozer, S.D. Bale, T.D. Phan, J.A. Osborne, Observations of electron diffusion regions at the subsolar magnetopause. Phys. Rev. Lett. (2003). doi:10.1103/PhysRevLett.91.245002 015002

  55. F.S. Mozer, V. Angelopoulos, J. Bonnell, K.H. Glassmeier, J.P. McFadden, THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection. Geophys. Res. Lett. (2008a). doi:10.1029/2007GL033033

  56. F.S. Mozer, P.L. Pritchett, J. Bonnell, D. Sundkvist, M.T. Chang, Observations and simulations of asymmetric magnetic field reconnection. J. Geophys. Res. (2008b). doi:10.1029/2008JA013535

  57. T. Nagai, Location of magnetic reconnection in the magnetotail. Space Sci. Rev. (2006). doi:10.1107/s11214-006-6216-4

  58. T. Nagai et al., Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. 106, 25929 (2001)

  59. T. Nagai et al., Structure of the Hall current system in the vicinity of the magnetic reconnection site. J. Geophys. Res. (2003). doi:10.1029/2003JA009900

  60. T. Nagai et al., Construction of magnetic reconnection in the near-Earth magnetotail with Geotail. J. Geophys. Res. (2010). doi:10.1029/2010JA016283

  61. R. Nakamura et al., Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. (2008). doi:10.1029/2007JA012760

  62. M. Øieroset et al., In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 412, 414 (2001)

  63. T.G. Onsager, M.F. Thomsen, R.C. Elphic, J.T. Gosling, Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. 96, 20999 (1991)

  64. T.G. Onsager et al., Low-altitude observations and modeling of quasi-steady magnetopause reconnection. J. Geophys. Res. 100, 11831 (1995)

  65. C.J. Owen et al., Cluster observations of “crater” flux transfer events at the dayside high-latitude magnetopause. J. Geophys. Res. (2008). doi:10.1029/2007JA012701

  66. E.N. Parker, The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astron. Astrophys. Suppl. Ser. 8, 177 (1963)

  67. G. Paschmann, Recent in situ observations of magnetic reconnection in near-Earth space. Geophys. Res. Lett. (2008). doi:10.1029/2008GL035297

  68. G. Paschmann et al., Plasma acceleration at the Earth’s magnetopause: Evidence for reconnection. Nature (1979). doi:10.1038/282243a0

  69. S.M. Petrinec, S.A. Fuselier, On continuous versus discontinuous neutral lines at the dayside magnetopause for southward interplanetary magnetic field. Geophys. Res. Lett. 1519 (2003). doi:10.1029/2002GL016565

  70. H.E. Petschek, Magnetic field annihilation, in The Physics of Solar Flares, ed. by W.N. Hess (NASA, Washington DC, 1964), p. 425

  71. T.-D. Phan, G. Paschmann, Low-latitude dayside magnetopause and boundary layer for high magnetic shear 1. Structure and motion. J. Geophys. Res. 101, 7801 (1996)

  72. T.-D. Phan et al., Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848 (2000)

  73. T.-D. Phan, B.U.Ö. Sonnerup, R.P. Lin, Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations. J. Geophys. Res. 106, 25489 (2001)

  74. T.-D. Phan et al., Simultaenous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys. Res. Lett. (2003). doi:10.1029/2003GL016885

  75. T.D. Phan et al., Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions. Ann. Geophys. 22, 2355 (2004)

  76. T.D. Phan et al., A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind. Nature (2006). doi:10.1038/nature04393

  77. T.-D. Phan et al., Evidence for an elongated (>60 ion skin depths) electron diffusion region during fast magnetic reconnection. Phys. Rev. Lett. (2007). doi:10.1103/PhysRevLett.99255002

  78. P.L. Pritchett, Geospace environment modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code. J. Geophys. Res. 106, 3793 (2001)

  79. A. Retinò et al., Cluster multispacecraft observations at the high-latitude duskside magnetopause: implications for continuous and component magnetic reconnection. Ann. Geophys. 23, 461 (2005)

  80. A. Runov et al., Current sheet structure near magnetic X-line observed by Cluster. Geophys. Res. Lett. (2003). doi:10.1029/2002GL016730

  81. C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Rev. 22, 681 (1978)

  82. C.T. Russell, R.C. Elphic, ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 6, 33 (1979)

  83. C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067 (1985) (1985)

  84. C.T. Russell, K.K. Khurana, D.E. Huddleston, M.G. Kivelson, Localized reconnection in the near Jovian magnetotail. Science (1988). doi:10.1126/science.280.5366.1061

  85. M. Scholer, Magnetic flux transfer at the magnetopause based on single X-line bursty reconnection. Geophys. Res. Lett. 15, 291 (1988)

  86. J.D. Scudder, F.S. Mozer, N.C. Maynard, C.T. Russell, Fingerprints of collisionless reconnection at the separator. I. Ambipolar Hall signatures. J. Geophys. Res. (2002). doi:10.1029/2001JA000126

  87. M.A. Shay, J.F. Drake, B.N. Rogers, R.E. Denton, The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. (1999). doi:10.1029/1999GL900481

  88. M.A. Shay, J.F. Drake, M. Swisdak, Two-scale structure of the electron dissipation region during collisionless magnetic reconnection. Phys. Rev. Lett. (2007). doi:10.1103/PhysRevLett.99.155002

  89. J.A. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science (2009). doi:10.1126/science.1172011

  90. P. Song, B.U.Ö. Sonnerup, M.F. Thomsen (eds.), Physics of the Magnetopause, Geophysical Monograph, vol.  90 (American Geophysical Union, Washington DC, 1995)

  91. B.U.Ö. Sonnerup, Magnetic field reconnection, in Solar System Plasma Physics III, ed. by L.T. Lanzertotti, C.F. Kennel, E.N. Parker (North-Holland, New York, 1979), p. 45

  92. B.U.Ö. Sonnerup, L.J. Cahill Jr., Magnetopause stricter and attitude from Explorer 12 observations. J. Geophys. Res. 72, 171 (1967)

  93. B.U.Ö. Sonnerup et al., Evidence for magnetic field reconnection at the Earth’s magnetopause. J. Geophys. Res. 86, 10049 (1981)

  94. D.J. Southwood, C.J. Farrugia, M.A. Saunders, What are flux transfer events? Planet. Space Sci. 36, 503 (1988)

  95. P.A. Sweet, The neutral point theory of solar flares, in Electromagnetic Phenomena in Cosmical Physics, ed. by B. Lehnert (Cambridge University Press, London, 1958), p. 123

  96. M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (2003). doi:10.1029/2002JA009726

  97. W.-L. Teh et al., THEMIS observations of a secondary magnetic island within the Hall electromagnetic field region at the magnetopause. Geophys. Res. Lett. (2010). doi:10.1029/2010GL045056

  98. K.J. Trattner et al., Temporal versus spatial interpretation of cusp ion structures observed by two spacecraft. J. Geophys. Res. (2002a). doi:10.1029/2001JA000181

  99. K.J. Trattner, S.A. Fuselier, W.K. Peterson, C.W. Carlson, Spatial features observed in the cusp under steady solar wind conditions. J. Geophys. Res. (2002b). doi:10.1029/2001JA000262

  100. K.J. Trattner et al., Cusp structures combining multi-spacecraft observations with ground-based observations. Ann. Geophys. 21, 2031 (2003)

  101. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Location of the reconnection line at the magnetopause during southward IMF conditions. Geophys. Res. Lett. (2007a). doi:10.1029/2006GL028397

  102. K.J. Trattner, J.S. Mulcock, S.M. Petrinec, S.A. Fuselier, Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J. Geophys. Res. (2007b). doi:10.1029/2007012270JA

  103. K.J. Trattner, S.M. Petrinec, S.A. Fuselier, W.K. Petersen, R. Friedel, Cusp energetic ions as tracers for particle transport into the magnetosphere. J. Geophys. Res. (2010). doi:10.1029/2009JA014919

  104. L. Trenchi et al., Occurrence of reconnection jets at the dayside magnetopause, Double Star observations. J. Geophys. Res. (2008). doi:10.1029/2007JA012774

  105. A. Vaivads, A. Retinò, M. André, Microphysics of magnetic reconnection. Space Sci. Rev. (2006). doi:10.1007/s11214-006-7019-3

  106. A. Vaivads et al., Structure of the magnetic reconnection diffusion region from four-spacecraft observations. Phys. Rev. Lett. (2004). doi:10.1103/PhysRevLett.93.105001

  107. V.M. Vasyliunas, Theoretical models of magnetic field line merging. Rev. Geophys. (1975). doi:10.1029/RG013i001p00303

  108. M.F. Vogt et al., Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations. J. Geophys. Res. (2010). doi:10.1029/2009JA015098

  109. H. Zhang et al., Cluster observations of collisionless Hall reconnection at high-latitude magnetopause. J. Geophys. Res. (2008). doi:10.1029/2007JA012789

Download references

Author information

Correspondence to S. A. Fuselier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuselier, S.A., Lewis, W.S. Properties of Near-Earth Magnetic Reconnection from In-Situ Observations. Space Sci Rev 160, 95 (2011). https://doi.org/10.1007/s11214-011-9820-x

Download citation

Keywords

  • Magnetic reconnection
  • Magnetosphere
  • Magnetospheric multiscale
  • Plasma physics