Skip to main content

Advertisement

Log in

Trends in the Neutral and Ionized Upper Atmosphere

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This article reviews our knowledge of long-term changes and trends in the upper atmosphere and ionosphere. These changes are part of complex and comprehensive pattern of long-term trends in the Earth’s atmosphere. They also have practical impact. For example, decreasing thermospheric density causes the lifetime of orbiting space debris to increase, which is becoming a significant threat to important satellite technologies. Since the first paper on upper atmosphere trends was published in 1989, our knowledge has progressed considerably. Anthropogenic emissions of greenhouse gases affect the whole atmosphere, not only the troposphere. They cause warming in the troposphere but cooling in the upper atmosphere. Greenhouse gases such as carbon dioxide are not the only driver of long-term changes and trends in the upper atmosphere and ionosphere. Anthropogenic changes of stratospheric ozone, long-term changes of geomagnetic and solar activity, and other drivers play a role as well, although greenhouse gases appear to be the main driver of long-term trends. This makes the pattern of trends more complex and variable. A consistent, although incomplete, scenario of trends in the upper atmosphere and ionosphere is presented. Trends in F2-region ionosphere parameters, in mesosphere-lower thermosphere dynamics, and in noctilucent or polar mesospheric clouds, are discussed in more detail. Advances in observational and theoretical analysis have explained some previous discrepancies in this global trend scenario. An important role in trend investigations is played by model simulations, which facilitate understanding of the mechanisms behind the observed trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.C. Aikin, M.L. Chanin, J. Nash, D.J. Kendig, Temperature trends in the lower mesosphere. Geophys. Res. Lett. 18(3), 416–419 (1991)

    Article  ADS  Google Scholar 

  • R.A. Akmaev, Thermospheric resistance to “greenhouse cooling”: effect of the collisional excitation rate by atomic oxygen on the thermal response to CO2 forcing. J. Geophys. Res. 108(A7), 1292 (2003). doi:10.1029/2003JA009896

    Article  Google Scholar 

  • R.A. Akmaev, V.I. Fomichev, A model estimate of cooling in the mesosphere and lower thermosphere due to the CO2 increase over the last 3–4 decades. Geophys. Res. Lett. 27, 2113–2116 (2000)

    Article  ADS  Google Scholar 

  • R.A. Akmaev, V.I. Fomichev, X. Zhu, Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J. Atmos. Sol.-Terr. Phys. 68, 1879–1889 (2006). doi:10.1016/j.jastp.2006.03.008

    Article  ADS  Google Scholar 

  • L. Alfonsi, G. DeFranceschi, L. Perrone, Long term trends of the critical frequency of the F2 layer at northern and southern high latitude regions. Phys. Chem. Earth 27(6–8), 595–600 (2002)

    Google Scholar 

  • L. Alfonsi, G. DeFranceschi, G. De Santi, Geomagnetic and ionospheric data analysis over Antarctica: a contribution to the long term trends investigation. Ann. Geophys. 26, 1173–1179 (2008)

    Article  ADS  Google Scholar 

  • A.J.G. Baumgaertner, A.J. McDonald, G.J. Fraser, G.E. Plank, Long-term observations of mean winds and tides in the upper mesosphere and lower thermosphere above Scott Base, Antarctica. J. Atmos. Sol.-Terr. Phys. 67, 1480–1496 (2005)

    Article  ADS  Google Scholar 

  • G. Beig, The relative importance of solar activity and anthropogenic influences on the ion composition, temperature, and associated neutrals of the middle atmosphere. J. Geophys. Res. 105, 19841–19856 (2000)

    Article  ADS  Google Scholar 

  • G. Beig, Trends in the mesopause region temperature and our present understanding—an update. Phys. Chem. Earth 31(1), 3–9 (2006). doi:10.1016/j.pce.2005.03.007

    Article  Google Scholar 

  • G. Beig, Recent advances in long-term trends of MLT-region, in 6th IAGA/ICMA/ CAWSES workshop “Long-Term Changes and Trends in the Atmosphere”. HAO-NCAR, Boulder (Book of abstracts, p. 12) (2010)

    Google Scholar 

  • G. Beig, P. Keckhut, R.P. Lowe, R.G. Roble, M.G. Mlynczak, J. Scheer, V.I. Fomichev, D. Offermann, W.J.R. French, M.G. Shepherd, A.I. Semenov, E.E. Remsberg, C.-Y. She, F.-J. Lübken, J. Bremer, B.R. Clemesha, J. Stegman, F. Sigernes, S. Fadnavis, Review of mesospheric temperature trends. Rev. Geophys. 41(4), 1015 (2003). doi:10.1029/2002RG000121

    Article  ADS  Google Scholar 

  • P. Bencze, Geographical distribution of long-term changes in the height of the maximum electron density of the F region: a nonmigrating tidal effect? J. Geophys. Res. 111, A06304 (2009). doi:10.1029/2008JA013492

    Article  Google Scholar 

  • E. Blanc, Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann. Geophys. 3, 673–688 (1983)

    ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, Comparative terrestrial planet thermospheres. 1. Solar cycle variations of global mean temperatures. J. Geophys. Res. 96, 11045–11055 (1991)

    Article  ADS  Google Scholar 

  • J. Bremer, Trends in the ionospheric E- and F-regions over Europe. Ann. Geophys. 16, 986–996 (1998)

    Article  ADS  Google Scholar 

  • J. Bremer, Trends in the thermosphere derived from global ionosonde observations. Adv. Space Res. 28(7), 997–1006 (2001)

    Article  ADS  Google Scholar 

  • J. Bremer, Detection of long-term trends in the mesosphere-lower thermosphere from ground-based radio propagation measurements. Adv. Space Res. 35(8), 1398–1404 (2005)

    Article  ADS  Google Scholar 

  • J. Bremer, Long-term trends in the ionospheric E and F1 regions. Ann. Geophys. 26, 1189–1197 (2008)

    Article  ADS  Google Scholar 

  • J. Bremer, U. Berger, Mesospheric temperature trends derived from ground-based LF phase-height observations at middle latitudes: Comparison with model simulations. J. Atmos. Sol.-Terr. Phys. 64(7), 805–816 (2002)

    Article  ADS  Google Scholar 

  • J. Bremer, L. Alfonsi, P. Bencze, J. Laštovička, A.V. Mikhailov, N. Rogers, Long-term trends in the ionosphere and upper atmosphere parameters. Ann. Geophys. 47 (Supplement to Nos. 2–3), 1009–1029 (2004)

    Google Scholar 

  • J. Bremer, P. Hoffmann, J. Höffner, R. Latteck, W. Singer, M. Zecha, O. Zeller, Long-term changes of mesospheric summer echoes at polar and middle latitudes. J. Atmos. Sol.-Terr. Phys. 68(17), 1940–1951 (2006)

    Article  ADS  Google Scholar 

  • J. Bremer, P. Hoffmann, R. Latteck, W. Singer, M. Zecha, Long-term changes of (polar) mesosphere summer echoes. J. Atmos. Sol.-Terr. Phys. 71, 1571–1576 (2009b). doi:10.1016/j.jastp.2009.03.010

    Article  ADS  Google Scholar 

  • J. Bremer, J. Laštovička, A.V. Mikhailov, D. Altadill, P. Bencze, D. Burešová, G. De Franceschi, C. Jacobi, S. Kouris, L. Perrone, E. Turunen, Climate of the upper atmosphere. Ann. Geophys. 52(3/4), 273–299 (2009a)

    Google Scholar 

  • J. Bremer, D. Peters, Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere. J. Atmos. Sol.-Terr. Phys. 70(11-12), 1473–1481 (2008). doi:10.1016/j.jastp.2008.03.024

    Article  ADS  Google Scholar 

  • P.S. Cannon, N.C. Rogers, C.M. Hall, Trends in critical frequencies and layer heights over Tromso and their consequential impact for radio system modeling. Adv. Space Res. 34(9), 2085–2091 (2004)

    Article  ADS  Google Scholar 

  • H. Chandra, G.D. Vyas, S. Sharma, Long-term changes in ionospheric parameters over Ahmedabad. Adv. Space Res. 20, 2161–2164 (1997)

    Article  ADS  Google Scholar 

  • R.J. Cicerone, Greenhouse cooling up high. Nature 344, 104–105 (1990)

    Article  ADS  Google Scholar 

  • B.R. Clemesha, D.M. Simonich, P.P. Batista, A long term trend in the height of the atmospheric sodium layer: possible evidence for global change. Geophys. Res. Lett. 19, 457–460 (1992)

    Article  ADS  Google Scholar 

  • M.A. Clilverd, T.G.C. Clark, E. Clarke, H. Rishbeth, Increased magnetic storm activity from 1868 to 1995. J. Atmos. Sol.-Terr. Phys. 60, 1047–1056 (1998)

    Article  ADS  Google Scholar 

  • M.A. Clilverd, T. Ulich, J.M. Jarvis, Residual solar cycle influence on trends in ionospheric F2-layer peak height. J. Geophys. Res., 108(A12), 1450 (2003)

    Article  Google Scholar 

  • I. Cnossen, A.D. Richmond, Modeling the effect of changes in the Earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. J. Atmos. Sol.-Terr. Phys. 70(11–12), 1512–1524 (2008)

    Article  ADS  Google Scholar 

  • A.D. Danilov, Long-term changes of the mesosphere and lower thermosphere temperature and composition. Adv. Space Res. 20(11), 2137–2147 (1997)

    Article  ADS  Google Scholar 

  • A.D. Danilov, The method of determination of long-term trends in F2-region independent of geomagnetic activity. Ann. Geophys. 20, 1–11 (2002)

    Article  Google Scholar 

  • A.D. Danilov, Long-term trends in F2-layer parameters and their relation to other trends. Adv. Space Res. 35(8), 1405–1410 (2005)

    Article  ADS  Google Scholar 

  • A.D. Danilov, Time and spatial variations in the ratio of nighttime and daytime critical frequencies of the F2 layer. J. Atmos. Sol.-Terr. Phys. 70(8–9), 1201–1212 (2008a)

    Article  ADS  Google Scholar 

  • A.D. Danilov, Long-term trends in the relation between daytime and nighttime values of foF2. Ann. Geophys. 26(5), 1199–1206 (2008b)

    Article  MathSciNet  ADS  Google Scholar 

  • A.D. Danilov, Scatter of hmF2 values as an indicator of trends in thermospheric dynamics. J. Atmos. Sol.-Terr. Phys. 71, 1586–1591 (2009). doi:10.1016/j.jastp.2009.03.002

    Article  ADS  Google Scholar 

  • A.D. Danilov, L.B. Vanina-Dart, Parameters of the ionospheric F2 layer as a source of information on trends in thermospheric dynamics. Geomagn. Aeron. 50(2), 187–200 (2010)

    Article  ADS  Google Scholar 

  • M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, A quarter-century of satellite polar mesospheric cloud observations. J. Atmos. Sol.-Terr. Phys. 68, 9–29 (2006)

    Article  ADS  Google Scholar 

  • M.T. DeLand, E.P. Shettle, G.E. Thomas, J.J. Olivero, Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data. J. Geophys. Res. 112, D10315 (2007). doi:10.1029/2006JD007857

    Article  ADS  Google Scholar 

  • A.G. Elias, Trends in the F2 ionospheric layer due to long-term variations in the Earth’s magnetic field. J. Atmos. Sol.-Terr. Phys. 71, 1602–1609 (2009). doi:10.1016/j.jastp.2009.05.014

    Article  ADS  Google Scholar 

  • A.G. Elias, N. Ortiz de Adler, Earth magnetic field and geomagnetic activity effects on long-term trends in the F2 layer at mid-high latitudes. J. Atmos. Sol.-Terr. Phys. 68(17), 1871–1878 (2006)

    Article  ADS  Google Scholar 

  • J.T. Emmert, J.M. Picone, J.L. Lean, S.H. Knowles, Global change in the thermosphere: compelling evidence of a secular decrease in density. J. Geophys. Res. 109, A02301 (2004). doi:10.1029/2003JA010176

    Article  Google Scholar 

  • J.T. Emmert, J.M. Picone, R.R. Meier, Thermospheric global average density trends 1967-2007, derived from orbits of 5000 near-Earth objects. Geophys. Res. Lett. 35, L05101 (2008). doi:10.1029/2007GL032809

    Article  Google Scholar 

  • J.T. Emmert, J.L. Lean, J.M. Picone, Record low thermospheric density during the 2008 solar minimum. Geophys. Res. Lett. 37, L12102 (2010). doi:10.1029/2010GL043671

    Article  ADS  Google Scholar 

  • V.I. Fomichev, A.I. Jonsson, J. de Grandpré, S.R. Beagley, C. McLandress, K. Semeniuk, T.G. Shepherd, Response of the middle atmosphere to CO2 doubling: results from the Canadian Middle Atmosphere Model. J. Climate 20(7), 1255–1264 (2007)

    Article  Google Scholar 

  • A.J. Foppiano, L. Cid, V. Jara, Ionospheric long-term trends for South American mid-latitudes. J. Atmos. Sol.-Terr. Phys. 61, 717–723 (1999)

    Article  ADS  Google Scholar 

  • R.R. Garcia, D.R. Marsh, D.E. Kinnison, B.A. Boville, F. Sassi, Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. 112, D09301 (2007). doi:10.1029/2006JD007485

    Article  Google Scholar 

  • N.M. Gavrilov, S. Fukao, T. Nakamura, Ch. Jacobi, D. Kürschner, A.H. Manson, C.E. Meek, Comparative study of interannual changes of the mean winds and gravity wave activity in the middle atmosphere over Japan, Central Europe and Canada. J. Atmos. Sol.-Terr. Phys. 64, 1003–1010 (2002)

    Article  ADS  Google Scholar 

  • G.S. Golitsyn, A.I. Semenov, N.N. Shefov, Seasonal variations of the long-term temperature trend in the mesopause region. Geomagn. Aeron. 40(2), 198–200 (2000)

    Google Scholar 

  • P.F. Graigmile, P. Guttorp, D.B. Percival, Trend assessment in a long memory dependence model using the discrete wavelet transform. Environmetrics 15(4), 313–315 (2004)

    Article  Google Scholar 

  • A.N. Gruzdev, G.P. Brasseur, Long-term changes in the mesosphere calculated by a two-dimensional model. J. Geophys. Res. 110, D03304 (2005). doi:10.1029/2003JD004410

    Article  Google Scholar 

  • C.M. Hall, A. Brekke, P.S. Cannon, Climatic trends in E-region critical frequency and virtual height above Tromso (70°N, 19°E). Ann. Geophys. 25, 2351–2357 (2007a)

    Article  ADS  Google Scholar 

  • C.M. Hall, A. Brekke, A.H. Manson, C.E. Meek, S. Nozawa, Trends in mesospheric turbulence at 70°N. Atmos. Sci. Lett. 8, 80–84 (2007b)

    Article  ADS  Google Scholar 

  • N.R.P. Harris, E. Kyrö, J. Staehelin et al., Ozone trends at northern mid and high latitudes—a European perspective. Ann. Geophys. 26(5), 1207–1220 (2008)

    Article  ADS  Google Scholar 

  • P. Hoffmann, E. Becker, M. Rapp, J. Bremer, W. Singer, M. Placke, Seasonal and interannual variation of mesospheric waves at middle and high latitudes, in 6th IAGA/ICMA/ CAWSES Workshop “Long-Term Changes and Trends in the Atmosphere”, HAO-NCAR, Boulder (Book of abstracts, p. 16) (2010)

    Google Scholar 

  • J.M. Holt, S.-R. Zhang, Long-term temperature trends in the ionosphere above Millstone Hill. Geophys. Res. Lett. 35, L05813 (2008). doi:10.1029/2007GL031148

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), in Climate Change 2007: The Physical Science Basis, ed. by S. Solomon (Cambridge Univ. Press, Cambridge, 2007)

    Google Scholar 

  • C. Jacobi, Y.I. Portnyagin, E.G. Merzlyakov, T.V. Solovjova, N.A. Makarov, D. Kürschner, A long-term comparison of mesopause region wind measurements over Eastern and Central Europe. J. Atmos. Sol.-Terr. Phys. 67, 227–240 (2005)

    Article  ADS  Google Scholar 

  • C. Jacobi, N.M. Gavrilov, D. Kürschner, K. Fröhlich, Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1°N, 13.2°E). J. Atmos. Sol.-Terr. Phys. 68, 1913–1923 (2006)

    Article  ADS  Google Scholar 

  • C. Jacobi, P. Hoffmann, D. Kürschner, Trends in MLT region winds and planetary waves, Collm (52°N, 15°E). Ann. Geophys. 26, 1221–1232 (2008)

    Article  ADS  Google Scholar 

  • C. Jacobi, P. Hoffmann, R.Q. Liu, P. Križan, J. Laštovička, E.G. Merzlyakov, T.V. Solovjova, Yu.I. Portnyagin, Midlatitude mesopause region winds and waves and comparison with stratospheric variability. J. Atmos. Sol.-Terr. Phys. 71, 1540–1546 (2009)

    Article  ADS  Google Scholar 

  • M.J. Jarvis, Planetary wave trends in the lower thermosphere—evidence for 22-year solar modulation of the quasi 5-day wave. J. Atmos. Sol.-Terr. Phys. 68(17), 1902–1912 (2006)

    Article  ADS  Google Scholar 

  • M.J. Jarvis, B. Jenkins, G.A. Rodgers, Southern hemisphere observations of a long-term decrease in F-region altitude and thermospheric wind providing possible evidence for global thermospheric cooling. J. Geophys. Res. 103(A9), 20,774–20,787 (1998)

    Article  Google Scholar 

  • M.J. Jarvis, M.A. Clilverd, Th. Ulich, Methodological influences on F-region peak height trend analysis. Phys. Chem. Earth 27, 589–594 (2002)

    Article  Google Scholar 

  • G.M. Keating, R.H. Tolson, M.S. Bradford, Evidence of long term global decline in the Earth’s thermospheric densities apparently related to anthropogenic effects. Geophys. Res. Lett. 27, 1523–1526 (2000)

    Article  ADS  Google Scholar 

  • Y.A. Kalgin, Dynamical aspect of long-term trend of the neutral atmosphere composition at turbopause region, in Proc. Int. Workshop “Cooling and Sinking of the Middle and Upper Atmosphere”, Moscow (1998), pp. 26–27

    Google Scholar 

  • M. Kendall, Time Series (Charles Griffin, London, 1973)

    Google Scholar 

  • D. Keuer, P. Hoffmann, W. Singer, J. Bremer, Long-term variations of the mesospheric wind field at mid-latitudes. Ann. Geophys. 25, 1779–1790 (2007)

    Article  ADS  Google Scholar 

  • S. Kirkwood, P. Dalin, A. Réchou, Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Ann. Geophys. 26, 1243–1254 (2008)

    Article  ADS  Google Scholar 

  • V.M. Krasnov, Y.V. Drobzheva, J. Laštovička, Recent advances and difficulties of infrasonic wave investigation in the ionosphere. Surv. Geophys. 27(2), 169–209 (2006)

    Article  ADS  Google Scholar 

  • P. Križan, J. Laštovička, Trends in positive and negative ozone laminae in the Northern Hemisphere. J. Geophys. Res. 110, D10107 (2005). doi:10.1029/2004JD005477

    Article  ADS  Google Scholar 

  • A. Kubicky, P. Keckhut, M.-L. Chanin, G.S. Golitsyn, E. Lysenko, Temperature trends in the middle atmosphere as seen by historical Russian rocket launches. Part II. Heiss Island (80.6°N, 58°E). J. Atmos. Sol.-Terr. Phys. 70(1), 145–155 (2008)

    Article  ADS  Google Scholar 

  • J. Laštovička, Long-term changes and trends in the lower ionosphere. Phys. Chem. Earth 27, 497–507 (2002)

    Article  Google Scholar 

  • J. Laštovička, On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system. J. Atmos. Sol.-Terr. Phys. 67(1–2), 83–92 (2005)

    Article  ADS  Google Scholar 

  • J. Laštovička, Global pattern of trends in the upper atmosphere and ionosphere: recent progress. J. Atmos. Sol.-Terr. Phys. 71, 1514–1528 (2009). doi:10.1016/j.jastp.2009.01.010

    Article  ADS  Google Scholar 

  • J. Laštovička, J. Bremer, An overview of long-term trends in the lower ionosphere below 120 km. Surv. Geophys. 25, 69–99 (2004)

    Article  Google Scholar 

  • J. Laštovička, D. Pancheva, Changes in characteristics of planetary waves at 80–100 km over Central and Southern Europe since 1980. Adv. Space Res. 11(3), 31–34 (1991)

    Article  ADS  Google Scholar 

  • J. Laštovička, V. Fišer, D. Pancheva, Long-term trends in planetary wave activity (2–15 days) at 80–100 km inferred from radio wave absorption. J. Atmos. Sol.-Terr. Phys. 56, 893–899 (1994)

    Article  ADS  Google Scholar 

  • J. Laštovička, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, Global change in the upper atmosphere. Science 314(5803), 1253–1254 (2006a)

    Article  Google Scholar 

  • J. Laštovička, A.V. Mikhailov, Th. Ulich, J. Bremer, A.G. Elias, N. Ortiz de Adler, V. Jara, R. Abarca del Rio, A.J. Foppiano, E. Ovalle, A.D. Danilov, Long-term trends in foF2: a comparison of various methods. J. Atmos. Sol.-Terr. Phys. 68(17), 1854–1870 (2006b)

    Article  ADS  Google Scholar 

  • J. Laštovička, R.A. Akmaev, G. Beig, J. Bremer, J.T. Emmert, C. Jacobi, M.J. Jarvis, G. Nedoluha, Y.I. Portnyagin, T. Ulich, Emerging pattern of global change in the upper atmosphere and ionosphere. Ann. Geophys. 26(5), 1255–1268 (2008a)

    Article  ADS  Google Scholar 

  • J. Laštovička, X. Yue, W. Wan, Long-term trends in foF2: their estimating and origin. Ann. Geophys. 26, 593–598 (2008b)

    Article  ADS  Google Scholar 

  • J. Laštovička, P. Križan, M. Kozubek, Long-term trends in the middle atmosphere dynamics at northern middle latitudes—one regime or two different regimes? Atmos. Chem. Phys. Discuss. 10, 2631–2668 (2010)

    Article  Google Scholar 

  • F.-J. Lübken, Nearly zero temperature trend in the polar summer mesosphere. Geophys. Res. Lett. 27(21), 3603–3606 (2000)

    Article  ADS  Google Scholar 

  • F.-J. Lübken, No long term change of the thermal structure in the mesosphere at high latitudes during summer. Adv. Space Res. 28(7), 947–953 (2001)

    Article  ADS  Google Scholar 

  • F.-J. Lübken, U. Berger, G. Baumgartner, Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds. J. Geophys. Res. 114(21), D00106 (2009). doi:10.1029/2009JD012377

    Google Scholar 

  • F.-J. Lübken, U. Berger, J. Fiedler, G. Baumgartner, M. Gerding, Trends and solar cycle effects in mesospheric ice clouds, in 38th Sci. Ass. COSPAR, Symp. C2.1, Bremen (2010)

    Google Scholar 

  • F.A. Marcos, J.O. Wise, M.J. Kendra, N.J. Grossbard, B.R. Bowman, Detection of long-term decrease in thermospheric neutral density. Geophys. Res. Lett. 32, L04103 (2005). doi:10.1029/2004GL021269

    Article  Google Scholar 

  • D. Marsh, A. Smith, E. Woble, Mesospheric ozone response to changes in water vapor. J. Geophys. Res. 108(D3), 4109 (2003). doi:10.1029/2002JD002705

    Article  Google Scholar 

  • D. Martini, K. Mursula, Centennial geomagnetic activity studied by a new, reliable long-term index. J. Atmos. Sol.-Terr. Phys. 70(7), 1074–1087 (2008)

    Article  ADS  Google Scholar 

  • C. McLandress, V.I. Fomichev, Amplification of the mesospheric diurnal tide in a doubled CO2 atmosphere. Geophys. Res. Lett. 33, L06808 (2006). doi:10.1029/2005GL025345

    Article  Google Scholar 

  • L.F. McNamara, Accuracy of models of hmF2 used for long-term trend analyses. Radio Sci. 43, RS2002 (2008). doi:10.1029/2007RS003740

    Article  ADS  Google Scholar 

  • E. Merzlyakov, C. Jacobi, Y.I. Portnyagin, T.V. Solovjova, Structural changes in trend parameters of the MLT winds based on wind measurements at Obninsk (55°N, 37°E) and Collm (52°N, 15°E). J. Atmos. Solar-Terr. Phys. 71 (2009). doi:10.1016/j.jastp.2009.05.013

  • A.V. Mikhailov, The geomagnetic control concept of the F2-layer parameter long-term trends. Phys. Chem. Earth 27, 595–606 (2002)

    Article  Google Scholar 

  • A.V. Mikhailov, Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypothesis be reconciled? Ann. Geophys. 24(10), 2533–2541 (2006a)

    Article  ADS  Google Scholar 

  • A.V. Mikhailov, Trends in the ionospheric E-region. Phys. Chem. Earth 31, 22–23 (2006b)

    Article  Google Scholar 

  • A.V. Mikhailov, Ionospheric F1 layer long-term trends and the geomagnetic control concept. Ann. Geophys. 26, 3793–3803 (2008)

    Article  ADS  Google Scholar 

  • A.V. Mikhailov, B.A. de la Morena, Long-term trends of foE and geomagnetic activity variations. Ann. Geophys. 21, 751–760 (2003)

    Article  ADS  Google Scholar 

  • A.V. Mikhailov, D. Marin, Geomagnetic control of the foF2 long-term trends. Ann. Geophys. 18, 653–665 (2000)

    Article  ADS  Google Scholar 

  • A.V. Mikhailov, D. Marin, An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control concept. Ann. Geophys. 19, 733–748 (2001)

    Article  ADS  Google Scholar 

  • M. Mlynczak, L. Hunt, B.T. Marshall, F.J. Martin-Torres, C.J. Mertens, J.M. Russell III, E. Remsberg, M. Lopez-Puertas, R. Picard, J. Winick, P. Wintersteiner, R.E. Thompson, L.L. Gordley, Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 115, A03309 (2010). doi:10.1029/2009JA014713

    Article  Google Scholar 

  • K. Mursula, D. Martini, Centennial increase in geomagnetic activity: latitudinal difference and global estimates. J. Geophys. Res. 111, A08209 (2006). doi:10.1029/2005JA011549

    Article  Google Scholar 

  • G.E. Nedoluha, R.M. Bevilacqua, R.M. Gomez, B.C. Hicks, J.M. Russell III, B.J. Connor, An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. J. Geophys. Res. 108(D13), 4391 (2003). doi:10.1029/2002JD003332

    Article  Google Scholar 

  • D. Offermann, M. Donner, P. Knieling, B. Naujokat, Middle atmosphere temperature changes and the duration of summer. J. Atmos. Sol.-Terr. Phys. 66, 437–450 (2004)

    Article  ADS  Google Scholar 

  • D. Offermann, M. Jarisch, M. Donner, W. Steinbrecht, A.I. Semenov, OH temperature re-analysis forced by recent variance increases. J. Atmos. Sol.-Terr. Phys. 68(17), 1924–1933 (2006)

    Article  ADS  Google Scholar 

  • D. Offermann, P. Hoffmann, P. Knieling, R. Koppmann, J. Oberheide, W. Steinbrecht, Long-term-trends and solar cycle variations of mesospheric temperature and dynamics. J. Geophys. Res. 115, D18127 (2010). doi:10.1029/2009JD013363

    Article  ADS  Google Scholar 

  • N. Ortiz de Adler, A.G. Elias, T. Heredia, Long-term trend of the ionospheric F2-layer peak height at a southern low latitude station. Phys. Chem. Earth 27(6–8), 613–615 (2002)

    Google Scholar 

  • V.I. Perminov, A.I. Semenov, Model of latitudinal, seasonal and altitudinal changes of long-term temperature trends in the middle atmosphere. Geomagn. Aeron. 47(5), 685–691 (2007) (in Russian, abstract in English)

    Article  Google Scholar 

  • A.I. Pogorelcev, A.Yu. Kanukhina, E.V. Suvorova, E.N. Savenkova, Variability of planetary waves as a signature of possible climatic change. J. Atmos. Sol.-Terr. Phys. 71, 1529–1539 (2009)

    Article  ADS  Google Scholar 

  • Y.I. Portnyagin, E.G. Merzlyakov, T.V. Solovjova, Ch. Jacobi, D. Kürschner, A. Manson, C. Meek, Long-term trends and year-to-year variability of mid-latitude mesosphere/lower thermosphere winds. J. Atmos. Sol.-Terr. Phys. 68, 1890–1901 (2006). doi:10.1016/j.jastp.2006.04.004

    Article  ADS  Google Scholar 

  • L. Qian, R.G. Roble, S.C. Solomon, T.J. Kane, Calculated and observed climate change in the thermosphere, and a prediction for solar cycle 24. Geophys. Res. Lett. 33, L23705 (2006). doi:10.1029/2006GL027185

    Article  ADS  Google Scholar 

  • L. Qian, S.C. Solomon, R.G. Roble, T.J. Kane, Model simulations of global change in the ionosphere. Geophys. Res. Lett. 35, L07811 (2008). doi:10.1029/2007GL033156

    Article  Google Scholar 

  • L. Qian, A.G. Burns, S.C. Solomon, R.G. Roble, The effect of carbon dioxide cooling on trends in the F2-layer ionosphere. J. Atmos. Sol.-Terr. Phys. 71, 1592–1601 (2009). doi:10.1016/j.jastp.2009.03.006

    Article  ADS  Google Scholar 

  • L. Qian, J. Laštovička, S.C. Solomon, R.G. Roble, Progress in observations and simulations of global change in the upper atmosphere. J. Geophys. Res. 111(A4), A00H03, (2011) doi:10.1029/2010JA016317

    Article  Google Scholar 

  • G.C. Reinsel, A.J. Miller, E.C. Weatherhead, L.E. Flynn, R.M. Nagatani, G.C. Tiao, D.J. Wuebbles, Trend analysis of total ozone data for turnaround and dynamical contributions. J. Geophys. Res. 110, D16306 (2005). doi:10.1029/2004JD004662

    Article  ADS  Google Scholar 

  • E.E. Remsberg, A reanalysis for the seasonal and longer-period cycles and the trends in middle atmosphere temperature from the Halogen Occultation Experiment. J. Geophys. Res. 112, D09118 (2007). doi:10.1029/2006JD007489

    Article  Google Scholar 

  • E.E. Remsberg, Trends and solar cycle effects in temperatures versus altitude from the Halogen Occultation Experiment for the mesosphere and upper stratosphere. J. Geophys. Res. 114, D12303 (2009). doi:10.1029/2009JD011897

    Article  ADS  Google Scholar 

  • H. Rishbeth, A greenhouse effect in the ionosphere? Planet. Space Sci. 38, 945–948 (1990)

    Article  ADS  Google Scholar 

  • H. Rishbeth, Long-term changes in the ionosphere. Adv. Space Res. 20(11), 2149–2155 (1997)

    Article  ADS  Google Scholar 

  • H. Rishbeth, R.G. Roble, Cooling of the upper atmosphere by enhanced greenhouse gases—modeling of thermospheric and ionospheric effects. Planet. Space Sci. 40, 1011–1026 (1992)

    Article  ADS  Google Scholar 

  • R.G. Roble, R.E. Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys. Res. Lett. 16, 1441–1444 (1989)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, Thermosphere-ionospheremesosphere electrodynamics general circulation model (TIME-GCM): equinox solar min simulations, 30–500 km. Geophys. Res. Lett. 21, 417–420 (1994)

    Article  ADS  Google Scholar 

  • H. Schmidt, G.P. Brasseur, M. Charron, E. Manzini, M.A. Giorgetta, T. Diehl, V.I. Fomichev, D. Kinnison, D. Marsh, S. Walters, The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. J. Climate 19, 3903–3931 (2006)

    Article  ADS  Google Scholar 

  • A.I. Semenov, N.N. Shefov, E.V. Lysenko, G.V. Givishvili, A.V. Tikhonov, The seasonal peculiarities of behavior of the long-term temperature trends in the middle atmosphere at the mid-latitudes. Phys. Chem. Earth 27, 529–534 (2002)

    Article  Google Scholar 

  • S.S. Sharma, H. Chandra, G.D. Vyas, Long-term ionospheric trends over Ahmedabad. Geophys. Res. Lett. 26, 433–436 (1999)

    Article  ADS  Google Scholar 

  • P.E. Shettle, M.T. DeLand, G.E. Thomas, J.J. Olivero, Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys. Res. Lett. 36, L02803 (2009). doi:10.1029/2008GL036048

    Article  Google Scholar 

  • M. Smirnova, E. Belova, S. Kirkwood, N. Mitchell, Polar mesosphere summer echoes with ESRAD, Kiruna, Sweden: variations and trends over 1997–2008. J. Atmos. Solar-Terr. Phys. 72 (2010). doi:10.1016/j.jastp.2009.12.014

  • S. Solomon, K.H. Rosenlof, R.W. Portmann, J.S. Daniel, S.M. Davis, T.J. Sanford, G.-K. Plattner, Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223 (2010a)

    Article  ADS  Google Scholar 

  • S.C. Solomon, T.N. Woods, L.V. Didkovsky, J.T. Emmert, L. Qian, Anomalously low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum. Geophys. Res. Lett. 37, L16103 (2010b). doi:10.1029/2010GL044468

    Article  ADS  Google Scholar 

  • S.C. Solomon, L. Qian, L.V. Didkovsky, R.A. Viereck, T.N. Woods, Causes of low thermospheric density during the 2007–2009 solar minimum. J. Geophys. Res., submitted (2011), doi:10.1029/2011JA016508

  • S. Sridharan, T. Tsuda, S. Gurubaran, Long-term tendencies in the mesosphere/lower thermosphere mean winds and tides observed by medium frequency radar at Tirunaveli (8.7°N, 77.8°E). J. Geophys. Res. 115, D08109 (2010). doi:10.1029/2008JD011609

    Article  Google Scholar 

  • R. Stamper, M. Lockwood, M.N. Wild, T.D.G. Clark, Solar causes of the long-term increase in geomagnetic activity. J. Geophys. Res. 104, 28325–28342 (1999)

    Article  ADS  Google Scholar 

  • T. Ulich, E. Turunen, Evidence for long-term cooling of the upper atmosphere in ionosonde data. Geophys. Res. Lett. 24, 1103–1106 (1997)

    Article  ADS  Google Scholar 

  • T. Ulich, M.A. Clilverd, H. Rishbeth, On determining long-term change in the ionosphere. EOS Trans. 84(52), 581–585 (2003)

    Article  ADS  Google Scholar 

  • T. Ulich, M.A. Clilverd, M.J. Jarvis, H. Rishbeth, Unravelling signs of global change in the ionosphere, in Space Weather, ed. by J. Lilensten (Springer, Dordrecht, 2007), pp. 95–105

    Chapter  Google Scholar 

  • H.O. Upadhyay, E.E. Mahajan, Atmospheric greenhouse effect and ionospheric trends. Geophys. Res. Lett. 25, 3375–3378 (1998)

    Article  ADS  Google Scholar 

  • M. Venkat Ratnam, A.K. Patra, B.V. Krishna Murthy, Tropical mesopause: is it always close to 100 km? J. Geophys. Res. 115, D06106 (2010). doi:10.1029/2009JD012531

    Article  Google Scholar 

  • E.C. Weatherhead, G.C. Reinsel, G.C. Tiao et al., Detecting the recovery of total column ozone. J. Geophys. Res. 105, 22201–22210 (2000)

    Article  ADS  Google Scholar 

  • E.C. Weatherhead, A.J. Stevermer, B.E. Schwartz, Detecting environmental changes and trends. Phys. Chem. Earth 27, 399–403 (2002)

    Article  Google Scholar 

  • Z.-W. Xu, J. Wu, K. Igarashi, H. Kato, Z.-S. Wu, Long-term ionospheric trends based on ground-based ionosonde observations at Kokubunji, Japan. J. Geophys. Res. 109, A09307 (2004)

    Article  Google Scholar 

  • X. Yue, W. Wan, L. Liu, B. Ning, B. Zhao, Applying artificial neural network to derive long-term foF2 trends in Asia/Pacific sector from ionosonde observations. J. Geophys. Res. 111, D22307 (2006). doi:10.1029/2005JA011577

    Article  Google Scholar 

  • X. Yue, L. Liu, W. Wan, Y. Wei, Z. Ren, Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century. J. Geophys. Res. 113, A10301 (2008). doi:10.1029/2007JA012995

    Article  ADS  Google Scholar 

  • X. Yue, W.S. Schreiner, J. Lei, C. Rocken, D.G. Hunt, Y.-H. Kuo, W. Wan, Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. J. Geophys. Res. 115, A00G09 (2010). doi:10.1029/2010JA015466

    Article  Google Scholar 

  • S.-R. Zhang, J. Holt, J. Kurdzo, Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency. J. Geophys. Res. 116, A00H05 (2011). doi:10.1029/2010JA016414

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Laštovička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laštovička, J., Solomon, S.C. & Qian, L. Trends in the Neutral and Ionized Upper Atmosphere. Space Sci Rev 168, 113–145 (2012). https://doi.org/10.1007/s11214-011-9799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9799-3

Keywords

Navigation