Skip to main content
Log in

Cosmic Rays in Galactic and Extragalactic Magnetic Fields

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R.U. Abbasi, T. Abu-Zayyad, M. Al-Seady, M. Allen et al., Measurement of the flux of ultra high energy cosmic rays by the stereo technique. Astropart. Phys. 32, 53–60 (2009). arXiv:0904.4500

    ADS  Google Scholar 

  • R.U. Abbasi, T. Abu-Zayyad, M. Al-Seady, M. Allen et al., Indications of proton-dominated cosmic-ray composition above 1.6 EeV. Phys. Rev. Lett. 104(16), 161101 (2010). arXiv:0910.4184

    ADS  Google Scholar 

  • R.U. Abbasi, T. Abu-Zayyad, M. Allen, J.F. Amman et al., First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 100(10), 101101 (2008a). arXiv:astro-ph/0703099

    ADS  Google Scholar 

  • R.U. Abbasi, T. Abu-Zayyad, M. Allen, J.F. Amman et al., Search for correlations between HiRes stereo events and active galactic nuclei. Astropart. Phys. 30, 175–179 (2008b). arXiv:0804.0382

    ADS  Google Scholar 

  • J. Abraham, P. Abreu, M. Aglietta, C. Aguirre et al., Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938 (2007). arXiv:0711.2256

    ADS  Google Scholar 

  • J. Abraham, P. Abreu, M. Aglietta, C. Aguirre et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008). arXiv:0712.2843

    ADS  Google Scholar 

  • J. Abraham, P. Abreu, M. Aglietta, E.J. Ahn et al., Measurement of the depth of maximum of extensive air showers above 1018 eV. Phys. Rev. Lett. 104(9), 091101 (2010). arXiv:1002.0699

    ADS  Google Scholar 

  • J. Abraham, M. Aglietta, I.C. Aguirre, M. Albrow et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. A 523, 50–95 (2004)

    ADS  Google Scholar 

  • P. Abreu, M. Aglietta, E.J. Ahn, D. Allard et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. arXiv:1009.1855 (2010)

  • V.A. Acciari, E. Aliu, T. Arlen, T. Aune et al., A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature 462, 770–772 (2009). arXiv:0911.0873

    ADS  Google Scholar 

  • F. Acero, F. Aharonian, A.G. Akhperjanian, G. Anton et al., Detection of gamma rays from a Starburst Galaxy. Science 326, 1080 (2009). arXiv:0909.4651

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Detection of extended very-high-energy γ-ray emission towards the young stellar cluster Westerlund 2. Astron. Astrophys. 467, 1075–1080 (2007a). arXiv:astro-ph/0703427

    ADS  Google Scholar 

  • F. Aharonian, A.G. Akhperjanian, A.R. Bazer-Bachi, M. Beilicke et al., Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7-3946 with deep HESS observations. Astron. Astrophys. 464, 235–243 (2007a). arXiv:astro-ph/0611813

    ADS  Google Scholar 

  • F. Aharonian, J. Buckley, T. Kifune, G. Sinnis, High energy astrophysics with ground-based gamma ray detectors. Rep. Prog. Phys. 71(9), 096901 (2008)

    ADS  Google Scholar 

  • F.A. Aharonian, A.A. Belyanin, E.V. Derishev, V.V. Kocharovsky et al., Constraints on the extremely high-energy cosmic ray accelerators from classical electrodynamics. Phys. Rev. D 66(2), 023005 (2002). arXiv:astro-ph/0202229

    ADS  Google Scholar 

  • F.A. Aharonian, L.O. Drury, H.J. Voelk, GeV/TeV gamma-ray emission from dense molecular clouds overtaken by supernova shells. Astron. Astrophys. 285, 645–647 (1994)

    ADS  Google Scholar 

  • F.A. Aharonian, S.R. Kelner, A.Y. Prosekin, Angular, spectral, and time distributions of highest energy protons and associated secondary gamma rays and neutrinos propagating through extragalactic magnetic and radiation fields. Phys. Rev. D 82(4), 043002 (2010). arXiv:1006.1045

    ADS  Google Scholar 

  • H.S. Ahn, P.S. Allison, M.G. Bagliesi, J.J. Beatty et al., Measurements of cosmic-ray secondary nuclei at high energies with the first flight of the CREAM balloon-borne experiment. Astropart. Phys. 30, 133–141 (2008). arXiv:0808.1718

    ADS  Google Scholar 

  • D. Allard, M. Ave, N. Busca, M.A. Malkan et al., Cosmogenic neutrinos from the propagation of ultrahigh energy nuclei. J. Cosmol. Astropart. Phys. 9, 5 (2006). arXiv:astro-ph/0605327

    ADS  Google Scholar 

  • D. Allard, E. Parizot, A.V. Olinto, On the transition from galactic to extragalactic cosmic-rays: spectral and composition features from two opposite scenarios. Astropart. Phys. 27, 61–75 (2007). arXiv:astro-ph/0512345

    ADS  Google Scholar 

  • D. Allard, E. Parizot, A.V. Olinto, E. Khan et al., UHE nuclei propagation and the interpretation of the ankle in the cosmic-ray spectrum. Astron. Astrophys. 443, L29–L32 (2005). arXiv:astro-ph/0505566

    ADS  Google Scholar 

  • R. Aloisio, V. Berezinsky, P. Blasi, A. Gazizov et al., A dip in the UHECR spectrum and the transition from galactic to extragalactic cosmic rays. Astropart. Phys. 27, 76–91 (2007). arXiv:astro-ph/0608219

    ADS  Google Scholar 

  • R. Aloisio, V.S. Berezinsky, Anti-GZK effect in ultra-high-energy cosmic ray diffusive propagation. Astrophys. J. 625, 249–255 (2005). arXiv:astro-ph/0412578

    ADS  Google Scholar 

  • J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995)

    ADS  Google Scholar 

  • J. Aublin, E. Parizot, On the viability of holistic cosmic-ray source models. Astron. Astrophys. 452, L19–L22 (2006). arXiv:astro-ph/0605046

    ADS  Google Scholar 

  • W.I. Axford, The origins of high-energy cosmic rays. Astrophys. J. Suppl. Ser. 90, 937–944 (1994)

    ADS  Google Scholar 

  • A. Bamba, M. Ueno, H. Nakajima, K. Koyama, Thermal and nonthermal X-Rays from the large Magellanic cloud superbubble 30 Doradus C. Astrophys. J. 602, 257–263 (2004). arXiv:astro-ph/0310713

    ADS  Google Scholar 

  • H.M.J. Barbosa, F. Catalani, J.A. Chinellato, C. Dobrigkeit, Determination of the calorimetric energy in extensive air showers. Astropart. Phys. 22, 159–166 (2004). arXiv:astro-ph/0310234

    ADS  Google Scholar 

  • X. Barcons, D. Barret, M. Bautz, J. Bookbinder et al., International X-ray Observatory (IXO) assessment study report for the ESA cosmic vision 2015–2025 (2011). arXiv:1102.2845

  • R. Beck, Galactic and extragalactic magnetic fields, in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger, vol. 1085 (2008), pp. 83–96. arXiv:0810.2923

    Google Scholar 

  • A.R. Bell, The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 182, 147–156 (1978)

    ADS  Google Scholar 

  • A.R. Bell, Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 353, 550–558 (2004)

    ADS  Google Scholar 

  • V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg, V.S. Ptuskin, Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990)

    Google Scholar 

  • V.S. Berezinskii, S.I. Grigor’eva, A bump in the ultra-high energy cosmic ray spectrum. Astron. Astrophys. 199, 1–12 (1988)

    ADS  Google Scholar 

  • V. Berezinsky, Ultra high energy cosmic ray protons: signatures and observations. Nucl. Phys. B, Proc. Suppl. 188, 227–232 (2009). arXiv:0901.0254

    ADS  Google Scholar 

  • V. Berezinsky, A. Gazizov, S. Grigorieva, Propagation and signatures of ultra high energy cosmic rays. Nucl. Phys. B, Proc. Suppl. 136, 147–158 (2004). arXiv:astro-ph/0410650

    ADS  Google Scholar 

  • P. Bhattacharjee, G. Sigl, Origin and propagation of extremely high energy cosmic rays. Phys. Rep. 327, 109–247 (2000). arXiv:astro-ph/9811011

    ADS  Google Scholar 

  • W.R. Binns, M.E. Wiedenbeck, M. Arnould, A.C. Cummings et al., OB Associations, Wolf Rayet Stars, and the origin of galactic cosmic rays. Space Sci. Rev. 130, 439–449 (2007). arXiv:0707.4645

    ADS  Google Scholar 

  • R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1 (1987)

    ADS  Google Scholar 

  • P. Blasi, The origin of ultra high energy cosmic rays. J. Phys. Conf. Ser. 39, 372–378 (2006). arXiv:astro-ph/0512438

    ADS  Google Scholar 

  • P. Blasi, R.I. Epstein, A.V. Olinto, Ultra-high-energy cosmic rays from young neutron star winds. Astrophys. J. 533, L123–L126 (2000). arXiv:astro-ph/9912240

    ADS  Google Scholar 

  • J.B.G.M. Bloemen, V.A. Dogiel, V.L. Dorman, V.S. Ptuskin Galactic diffusion and wind models of cosmic-ray transport. I—Insight from CR composition studies and gamma-ray observations. Astron. Astrophys. 267, 372–387 (1993)

    ADS  Google Scholar 

  • G.R. Blumenthal, Energy loss of high-energy cosmic rays in pair-producing collisions with ambient photons. Phys. Rev. D 1, 1596–1602 (1970)

    ADS  Google Scholar 

  • J. Blümer (The Pierre Auger Collaboration), The northern site of the Pierre Auger Observatory. New J. Phys. 12(3), 035001 (2010)

    ADS  Google Scholar 

  • J.H. Boyer, B.C. Knapp, E.J. Mannel, M. Seman, FADC-based DAQ for HiRes Fly’s eye. Nucl. Instrum. Methods Phys. Res. A 482, 457–474 (2002)

    ADS  Google Scholar 

  • D. Breitschwerdt, J.F. McKenzie, H.J. Voelk, Galactic winds. I—Cosmic ray and wave-driven winds from the Galaxy. Astron. Astrophys. 245, 79–98 (1991)

    ADS  Google Scholar 

  • A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001)

    ADS  Google Scholar 

  • A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008). arXiv:0801.0995

    ADS  Google Scholar 

  • A.M. Bykov, G.D. Fleishman, On non-thermal particle generation in superbubbles. Mon. Not. R. Astron. Soc. 255, 269–275 (1992)

    ADS  Google Scholar 

  • A.M. Bykov, S.M. Osipov, D.C. Ellison, Cosmic ray current driven turbulence in shocks with efficient particle acceleration: the oblique, long-wavelength mode instability. Mon. Not. R. Astron. Soc. 410, 39–52 (2011). arXiv:1010.0408

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Effect of shocks on interstellar turbulence and cosmic-ray dynamics. Astrophys. Space Sci. 138, 341–354 (1987)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36, 1020–1052 (1993)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, A model of particle acceleration to high energies by multiple supernova explosions in OB associations. Astron. Lett. 27, 625–633 (2001)

    ADS  Google Scholar 

  • A.M. Bykov, Y.A. Uvarov, J.B.G.M. Bloemen, J.W. den Herder et al., A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 399, 1119–1125 (2009). arXiv:0907.2521

    ADS  Google Scholar 

  • A. Calvez, A. Kusenko, S. Nagataki, Role of galactic sources and magnetic fields in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays. Phys. Rev. Lett. 105(9), 091101 (2010). arXiv:1004.2535

    ADS  Google Scholar 

  • F. Casse, M. Lemoine, G. Pelletier, Transport of cosmic rays in chaotic magnetic fields. Phys. Rev. D 65(2), 023002 (2002). arXiv:astro-ph/0109223

    ADS  Google Scholar 

  • M. Casse, J.A. Paul, On the stellar origin of the Ne-22 excess in cosmic rays. Astrophys. J. 258, 860–863 (1982)

    ADS  Google Scholar 

  • C.J. Cesarsky, Cosmic-ray confinement in the galaxy. Annu. Rev. Astron. Astrophys. 18, 289–319 (1980)

    ADS  Google Scholar 

  • C.J. Cesarsky, T.M. Montmerle, Cosmic rays from OB associations and supernovae—anti-protons and the origin of local cosmic rays, in International Cosmic Ray Conference, vol. 9 (1982), pp. 207–210

    Google Scholar 

  • J. Cho, A. Lazarian, Compressible sub-Alfvénic MHD turbulence in low-β plasmas. Phys. Rev. Lett. 88(24), 245001 (2002). arXiv:astro-ph/0205282

    ADS  Google Scholar 

  • A.J. Davis, R.A. Mewaldt, W.R. Binns, E.R. Christian et al., On the low energy decrease in galactic cosmic ray secondary/primary ratios, in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt, J.R. Jokipii, M.A. Lee, E. Möbius, T.H. Zurbuchen. American Institute of Physics Conference Series, vol. 528 (2000), pp. 421–424

    Google Scholar 

  • B.R. Dawson (for The Auger Collaboration), Hybrid performance of the Pierre Auger Observatory, in International Cosmic Ray Conference, vol. 4 (2008), pp. 425–428. arXiv:0706.1105

    Google Scholar 

  • O. Deligny, A. Letessier-Selvon, E. Parizot, Magnetic horizons of UHECR sources and the GZK feature. Astropart. Phys. 21, 609–615 (2004). arXiv:astro-ph/0303624

    ADS  Google Scholar 

  • K. Dolag, A.M. Bykov, A. Diaferio, Non-thermal processes in cosmological simulations. Space Sci. Rev. 134, 311–335 (2008). arXiv:0801.1048

    ADS  Google Scholar 

  • K. Dolag, D. Grasso, V. Springel, I. Tkachev, Constrained simulations of the magnetic field in the local Universe and the propagation of ultrahigh energy cosmic rays. J. Cosmol. Astropart. Phys. 1, 9 (2005) arXiv:astro-ph/0410419

    ADS  Google Scholar 

  • L.O. Drury, F.A. Aharonian, H.J. Voelk, The gamma-ray visibility of supernova remnants. A test of cosmic ray origin. Astron. Astrophys. 287, 959–971 (1994). arXiv:astro-ph/9305037

    ADS  Google Scholar 

  • L.O. Drury, D.E. Ellison, F.A. Aharonian, E. Berezhko et al., Test of galactic cosmic-ray source models—Working Group Report. Space Sci. Rev. 99, 329–352 (2001)

    ADS  Google Scholar 

  • N. Duric, S.M. Gordon, W.M. Goss, F. Viallefond et al., The relativistic ISM in M33: role of the supernova remnants. Astrophys. J. 445, 173–181 (1995)

    ADS  Google Scholar 

  • M.A. Duvernois, M. Garcia-Munoz, K.R. Pyle, J.A. Simpson et al., The isotopic composition of galactic cosmic-ray elements from carbon to silicon: the combined release and radiation effects satellite investigation. Astrophys. J. 466, 457 (1996a)

    ADS  Google Scholar 

  • M.A. Duvernois, J.A. Simpson, M.R. Thayer, Interstellar propagation of cosmic rays: analysis of the ULYSSES primary and secondary elemental abundances. Astron. Astrophys. 316, 555–563 (1996b)

    ADS  Google Scholar 

  • T. Ebisuzaki, Y. Takahashi, F. Kajino, H. Mase et al., The JEM-EUSO mission to explore the extreme universe, in American Institute of Physics Conference Series, ed. by H. Susa, M. Arnould, S. Gales, T. Motobayashi, C. Scheidenberger, H. Utsunomiya, vol. 1238 (2010), pp. 369–376

    Google Scholar 

  • D.C. Ellison, L.O. Drury, J. Meyer, Galactic cosmic rays from supernova remnants. II. Shock acceleration of gas and dust. Astrophys. J. 487, 197 (1997). arXiv:astro-ph/9704293

    ADS  Google Scholar 

  • D.C. Ellison, D.J. Patnaude, P. Slane, J. Raymond, Efficient cosmic ray acceleration, hydrodynamics, and self-consistent thermal X-ray emission applied to supernova remnant RX J1713.7-3946. Astrophys. J. 712, 287–293 (2010). arXiv:1001.1932

    ADS  Google Scholar 

  • B.G. Elmegreen, J. Scalo, Interstellar turbulence I: Observations and processes. Annu. Rev. Astron. Astrophys. 42, 211–273 (2004). arXiv:astro-ph/0404451

    ADS  Google Scholar 

  • J.J. Engelmann, P. Ferrando, A. Soutoul, P. Goret et al., Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI—results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990)

    ADS  Google Scholar 

  • J.E. Everett, E.G. Zweibel, R.A. Benjamin, D. McCammon et al., Does the Milky Way launch a large-scale wind? Astrophys. Space Sci. 311, 105–110 (2007)

    ADS  Google Scholar 

  • J.E. Everett, E.G. Zweibel, R.A. Benjamin, D. McCammon et al., The Milky Way’s kiloparsec-scale wind: a hybrid cosmic-ray and thermally driven outflow. Astrophys. J. 674, 258–270 (2008). arXiv:0710.3712

    ADS  Google Scholar 

  • A.J. Farmer, P. Goldreich Wave damping by magnetohydrodynamic turbulence and its effect on cosmic-ray propagation in the interstellar medium. Astrophys. J. 604, 671–674 (2004). arXiv:astro-ph/0311400

    ADS  Google Scholar 

  • C. Ferrari, F. Govoni, S. Schindler, A.M. Bykov et al., Observations of extended radio emission in clusters. Space Sci. Rev. 134, 93–118 (2008). arXiv:0801.0985

    ADS  Google Scholar 

  • K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001). arXiv:astro-ph/0106359

    ADS  Google Scholar 

  • S. Galtier, S.V. Nazarenko, A.C. Newell, A. Pouquet, A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447–488 (2000). arXiv:astro-ph/0008148

    ADS  Google Scholar 

  • V.L. Ginzburg, Cosmic Rays and Plasma Phenomena in the Galaxy and Metagalaxy. Sov. Astron. 9, 877 (1965)

    ADS  Google Scholar 

  • N. Globus, D. Allard, E. Parizot, Propagation of high-energy cosmic rays in extragalactic turbulent magnetic fields: resulting energy spectrum and composition. Astron. Astrophys. 479, 97–110 (2008). arXiv:0709.1541

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995)

    ADS  Google Scholar 

  • P. Goldreich, S. Sridhar, Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680 (1997). arXiv:astro-ph/9612243

    ADS  Google Scholar 

  • K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966)

    ADS  Google Scholar 

  • M. Hanasz, G. Kowal, K. Otmianowska-Mazur, H. Lesch, Amplification of galactic magnetic fields by the cosmic-ray-driven dynamo. Astrophys. J. 605, L33–L36 (2004). arXiv:astro-ph/0402662

    ADS  Google Scholar 

  • M. Hanasz, K. Otmianowska-Mazur, G. Kowal, H. Lesch, Cosmic ray driven dynamo in galactic disks: effects of resistivity, SN rate and spiral arms. Astron. Nachr. 327, 469 (2006)

    ADS  Google Scholar 

  • F.A. Harrison, S. Boggs, F. Christensen, W. Craig et al., The nuclear spectroscopic telescope array (NuSTAR), in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010). arXiv:1008.1362

    Google Scholar 

  • J.C. Higdon, R.E. Lingenfelter, R. Ramaty, Cosmic-ray acceleration from supernova ejecta in superbubbles. Astrophys. J. 509, L33–L36 (1998)

    ADS  Google Scholar 

  • A.M. Hillas, The origin of ultra-high-energy cosmic rays. Annu. Rev. Astron. Astrophys. 22, 425–444 (1984)

    ADS  Google Scholar 

  • A.M. Hillas, TOPICAL REVIEW: can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J. Phys. G, Nucl. Part. Phys. 31, 95 (2005)

    ADS  Google Scholar 

  • J.R. Hörandel, N.N. Kalmykov, A.V. Timokhin, Propagation of super-high-energy cosmic rays in the Galaxy. Astropart. Phys. 27, 119–126 (2007). arXiv:astro-ph/0609490

    ADS  Google Scholar 

  • F.M. Ipavich, Galactic winds driven by cosmic rays. Astrophys. J. 196, 107–120 (1975)

    ADS  Google Scholar 

  • P.S. Iroshnikov, Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566 (1964)

    MathSciNet  ADS  Google Scholar 

  • F.C. Jones, A. Lukasiak, V. Ptuskin, W. Webber, The modified weighted slab technique: models and results. Astrophys. J. 547, 264–271 (2001). arXiv:astro-ph/0007293

    ADS  Google Scholar 

  • T.J. Jones, L. Rudnick, T. DeLaney, J. Bowden, The identification of infrared synchrotron radiation from Cassiopeia A. Astrophys. J. 587, 227–234 (2003). arXiv:astro-ph/0212544

    ADS  Google Scholar 

  • H. Kang, D. Ryu, R. Cen, D. Song, Shock-heated gas in the large-scale structure of the universe. Astrophys. J. 620, 21–30 (2005). arXiv:astro-ph/0410477

    ADS  Google Scholar 

  • H. Kawai, T. Nunomura, N. Sakurai, S. Yoshida et al., Telescope array; progress of surface array, in International Cosmic Ray Conference, vol. 8 (2005), p. 181

    Google Scholar 

  • C.F. Kennel, F. Engelmann, Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids 9, 2377–2388 (1966)

    ADS  Google Scholar 

  • E. Khan, S. Goriely, D. Allard, E. Parizot et al., Photodisintegration of ultra-high-energy cosmic rays revisited. Astropart. Phys. 23, 191–201 (2005). arXiv:astro-ph/0412109

    ADS  Google Scholar 

  • K. Kotera, D. Allard, A.V. Olinto, Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. arXiv:1009.1382 (2010)

  • K. Kotera, M. Lemoine, Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum. Phys. Rev. D 77(2), 023005 (2008a). arXiv:0706.1891

    ADS  Google Scholar 

  • K. Kotera, M. Lemoine, Inhomogeneous extragalactic magnetic fields and the second knee in the cosmic ray spectrum. Phys. Rev. D 77(2), 023005 (2008b). arXiv:0706.1891

    ADS  Google Scholar 

  • K. Kotera, M. Lemoine, Optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure. Phys. Rev. D 77(12), 123003 (2008c). arXiv:0801.1450

    ADS  Google Scholar 

  • R.H. Kraichnan, Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 1385–1387 (1965)

    MathSciNet  ADS  Google Scholar 

  • R.M. Kulsrud, Plasma Physics for Astrophysics (Princeton University Press, Princeton, 2005)

    Google Scholar 

  • R.M. Kulsrud, E.G. Zweibel, On the origin of cosmic magnetic fields. Rep. Prog. Phys. 71(4), 046901 (2008). arXiv:0707.2783

    ADS  Google Scholar 

  • D. Kushnir, B. Katz, E. Waxman, Magnetic fields and cosmic rays in clusters of galaxies. J. Cosmol. Astropart. Phys. 9, 24 (2009). arXiv:0903.2275

    ADS  Google Scholar 

  • T. Kuwabara, K. Nakamura, C.M. Ko, Nonlinear Parker instability with the effect of cosmic-ray diffusion. Astrophys. J. 607, 828–839 (2004). arXiv:astro-ph/0402350

    ADS  Google Scholar 

  • M. Lemoine, Extragalactic magnetic fields and the second knee in the cosmic-ray spectrum. Phys. Rev. D 71(8), 083007 (2005). arXiv:astro-ph/0411173

    ADS  Google Scholar 

  • M. Lemoine, E. Waxman, Anisotropy vs chemical composition at ultra-high energies. J. Cosmol. Astropart. Phys. 11, 9 (2009). arXiv:0907.1354

    ADS  Google Scholar 

  • R.E. Lingenfelter, R. Ramaty, B. Kozlovsky, Supernova grains: the source of cosmic-ray metals. Astrophys. J. 500, L153 (1998)

    ADS  Google Scholar 

  • Y. Lithwick, P. Goldreich, Compressible magnetohydrodynamic turbulence in interstellar plasmas. Astrophys. J. 562, 279–296 (2001). arXiv:astro-ph/0106425

    ADS  Google Scholar 

  • M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  • T.A. Lozinskaya, Supernovae and Stellar Wind in the Interstellar Medium (American Institute of Physics, New York, 1992)

    Google Scholar 

  • A. Lukasiak, Voyager measurements of the charge and isotopic composition of cosmic ray Li, Be and B nuclei and implications for their production in the galaxy, in International Cosmic Ray Conference, vol. 3 (1999), p. 41

    Google Scholar 

  • M.A. Malkov, L. Drury, Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 64, 429–481 (2001)

    ADS  Google Scholar 

  • A. Marcowith, F. Casse, Postshock turbulence and diffusive shock acceleration in young supernova remnants. Astron. Astrophys. 515, A90 (2010). arXiv:1001.2111

    ADS  Google Scholar 

  • P. Mészáros, Gamma-ray bursts. Rep. Prog. Phys. 69, 2259–2321 (2006). arXiv:astro-ph/0605208

    Google Scholar 

  • R.A. Mewaldt, The time delay between nucleosynthesis and acceleration based on ACE measurements of primary electron-capture nuclides, in International Cosmic Ray Conference, vol. 3 (1999), p. 1

    Google Scholar 

  • J. Meyer, L.O. Drury, D.C. Ellison Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge ratio. Astrophys. J. 487, 182 (1997). arXiv:astro-ph/9704267

    ADS  Google Scholar 

  • M. Milgrom, V. Usov, Possible association of ultra-high-energy cosmic-ray events with strong gamma-ray bursts. Astrophys. J. 449, L37 (1995). arXiv:astro-ph/9505009

    ADS  Google Scholar 

  • G. Morlino, P. Blasi, E. Amato, Gamma rays and neutrinos from SNR RX J1713.7-3946. Astropart. Phys. 31, 376–382 (2009). arXiv:0903.4565

    ADS  Google Scholar 

  • M. Nagano, A.A. Watson, Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 72, 689–732 (2000)

    ADS  Google Scholar 

  • C.A. Norman, D.B. Melrose, A. Achterberg, The origin of cosmic rays above 10 18.5 eV. Astrophys. J. 454, 60 (1995)

    ADS  Google Scholar 

  • A.V. Olinto, J.H. Adams, C.D. Dermer, J.F. Krizmanic et al., White paper on ultra-high energy cosmic rays, in astro2010: The Astronomy and Astrophysics Decadal Survey. ArXiv Astrophysics e-prints, vol. 2010 (2009), p. 225. arXiv:0903.0205

    Google Scholar 

  • E. Parizot, GZK horizon and magnetic fields. Nucl. Phys. B, Proc. Suppl. 136, 169–178 (2004). arXiv:astro-ph/0409191

    ADS  Google Scholar 

  • E.N. Parker, The dynamical state of the interstellar gas and field. Astrophys. J. 145, 811 (1966)

    ADS  Google Scholar 

  • E.N. Parker, Fast dynamos, cosmic rays, and the galactic magnetic field. Astrophys. J. 401, 137–145 (1992)

    ADS  Google Scholar 

  • Pierre Auger Collaboration, J. Abraham, P. Abreu, M. Aglietta et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685, 239–246 (2010a). arXiv:1002.1975

    ADS  Google Scholar 

  • Pierre Auger Collaboration, J. Abraham, P. Abreu, M. Aglietta et al., Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory. Phys. Lett. B 685, 239–246 (2010b). arXiv:1002.1975

    ADS  Google Scholar 

  • S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: the role of known Pulsars (2008). arXiv:0812.4457

  • V. Ptuskin, V. Zirakashvili, E. Seo, Spectrum of galactic cosmic rays accelerated in supernova remnants. Astrophys. J. 718, 31–36 (2010). arXiv:1006.0034

    ADS  Google Scholar 

  • V.S. Ptuskin, I.V. Moskalenko, F.C. Jones, A.W. Strong et al., Dissipation of magnetohydrodynamic waves on energetic particles: impact on interstellar turbulence and cosmic-ray transport. Astrophys. J. 642, 902–916 (2006). arXiv:astro-ph/0510335

    ADS  Google Scholar 

  • V.S. Ptuskin, H.J. Voelk, V.N. Zirakashvili, D. Breitschwerdt, Transport of relativistic nucleons in a galactic wind driven by cosmic rays. Astron. Astrophys. 321, 434–443 (1997)

    ADS  Google Scholar 

  • V.S. Ptuskin, V.N. Zirakashvili, A.A. Plesser, Non-linear diffusion of cosmic rays. Adv. Space Res. 42, 486–490 (2008)

    ADS  Google Scholar 

  • J.L. Puget, F.W. Stecker, J.H. Bredekamp, Photonuclear interactions of ultrahigh energy cosmic rays and their astrophysical consequences. Astrophys. J. 205, 638–654 (1976)

    ADS  Google Scholar 

  • S.P. Reynolds, Supernova remnants at high energy. Annu. Rev. Astron. Astrophys. 46, 89–126 (2008)

    ADS  Google Scholar 

  • D. Ryu, J. Kim, S.S. Hong, T.W. Jones, The effect of cosmic-ray diffusion on the Parker instability. Astrophys. J. 589, 338–346 (2003). arXiv:astro-ph/0301625

    ADS  Google Scholar 

  • J. Scalo, B.G. Elmegreen, Interstellar turbulence II: Implications and effects. Annu. Rev. Astron. Astrophys. 42, 275–316 (2004). arXiv:astro-ph/0404452

    ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002)

    Google Scholar 

  • E.S. Seo, V.S. Ptuskin, Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J. 431, 705–714 (1994)

    ADS  Google Scholar 

  • G. Sigl, Time structure and multi-messenger signatures of ultra-high energy cosmic ray sources. New J. Phys. 11(6), 065014 (2009)

    ADS  Google Scholar 

  • M. Simon, W. Heinrich, K.D. Mathis, Propagation of injected cosmic rays under distributed reacceleration. Astrophys. J. 300, 32–40 (1986)

    ADS  Google Scholar 

  • J. Skilling, Cosmic ray streaming. I—Effect of Alfvén waves on particles. Mon. Not. R. Astron. Soc. Lett. 172, 557–566 (1975a)

    Google Scholar 

  • J. Skilling, Cosmic ray streaming. III—Self-consistent solutions. Mon. Not. R. Astron. Soc. Lett. 173, 255–269 (1975b)

    ADS  Google Scholar 

  • S.A. Stephens, R.E. Streitmatter, Cosmic-ray propagation in the galaxy: techniques and the mean matter traversal. Astrophys. J. 505, 266–277 (1998)

    ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J. 509, 212–228 (1998). arXiv:astro-ph/9807150

    ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007). arXiv:astro-ph/0701517

    ADS  Google Scholar 

  • T. Takahashi, K. Mitsuda, R. Kelley, F. Aharonian et al., The ASTRO-H mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010). arXiv:1010.4972

    Google Scholar 

  • A.M. Taylor, I. Vovk, A. Neronov, EGMF constraints from simultaneous GeV-TeV observations of Blazars (2011). arXiv:1101.0932

  • I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Reidel, Dordrecht, 1985)

    Google Scholar 

  • D.F. Torres, L.A. Anchordoqui, Astrophysical origins of ultrahigh energy cosmic rays. Rep. Prog. Phys. 67, 1663–1730 (2004). arXiv:astro-ph/0402371

    ADS  Google Scholar 

  • G. Vannoni, F.A. Aharonian, S. Gabici, S.R. Kelner et al., Acceleration and radiation of ultra-high energy protons in galaxy clusters (2009). arXiv:0910.5715

  • M. Véron-Cetty, P. Véron, A catalogue of quasars and active nuclei: 12th edition. Astron. Astrophys. 455, 773–777 (2006)

    ADS  Google Scholar 

  • M. Vietri, The acceleration of ultra-high-energy cosmic rays in gamma-ray bursts. Astrophys. J. 453, 883 (1995). arXiv:astro-ph/9506081

    ADS  Google Scholar 

  • J. Vink, Multiwavelength signatures of cosmic ray acceleration by young supernova remnants. in American Institute of Physics Conference Series, ed. by F.A. Aharonian, W. Hofmann, F. Rieger, vol. 1085 (2008), pp. 169–180

    Google Scholar 

  • F. Vissani, F. Aharonian, N. Sahakyan, On the detectability of high-energy galactic neutrino sources (2011). arXiv:1101.4842

  • E. Waxman, Cosmological gamma-ray bursts and the highest energy cosmic rays. Phys. Rev. Lett. 75, 386–389 (1995). arXiv:astro-ph/9505082

    ADS  Google Scholar 

  • E. Waxman, High-energy cosmic rays from gamma-ray burst sources: a stronger case. Astrophys. J. 606, 988–993 (2004). arXiv:astro-ph/0210638

    ADS  Google Scholar 

  • G.M. Webb, E.K. Kaghashvili, J.A. le Roux, A. Shalchi et al., Compound and perpendicular diffusion of cosmic rays and random walk of the field lines: II. Non-parallel particle transport and drifts. J. Phys. A, Math. Gen. 42(23), 235502 (2009)

    ADS  Google Scholar 

  • D.G. Wentzel, Cosmic-ray propagation in the Galaxy—collective effects. Annu. Rev. Astron. Astrophys. 12, 71–96 (1974)

    ADS  Google Scholar 

  • M.E. Wiedenbeck, N.E. Yanasak, A.C. Cummings, A.J. Davis et al., The origin of primary cosmic rays: constraints from ACE elemental and isotopic composition observations. Space Sci. Rev. 99, 15–26 (2001)

    ADS  Google Scholar 

  • N.E. Yanasak, M.E. Wiedenbeck, R.A. Mewaldt, A.J. Davis et al., Measurement of the secondary radionuclides and implications for the galactic cosmic-ray age. Astrophys. J. 563, 768–792 (2001)

    ADS  Google Scholar 

  • G.T. Zatsepin, V.A. Kuzmin, Upper limit of the spectrum of cosmic rays. JETP Lett. 4, 78–80 (1966)

    ADS  Google Scholar 

  • Y. Zhou, W.H. Matthaeus, P. Dmitruk, Colloquium: magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas. Rev. Mod. Phys. 76, 1015–1035 (2004)

    ADS  Google Scholar 

  • V.N. Zirakashvili, F.A. Aharonian, Nonthermal radiation of young supernova remnants: the case of RX J1713.7-3946. Astrophys. J. 708, 965–980 (2010). arXiv:0909.2285

    ADS  Google Scholar 

  • V.N. Zirakashvili, D. Breitschwerdt, V.S. Ptuskin, H.J. Voelk, Magnetohydrodynamic wind driven by cosmic rays in a rotating galaxy. Astron. Astrophys. 311, 113–126 (1996)

    ADS  Google Scholar 

  • V.N. Zirakashvili, D.N. Pochepkin, V.S. Ptuskin, S.I. Rogovaya, Propagation of ultra-high-energy cosmic rays in Galactic magnetic fields. Astron. Lett. 24, 139–143 (1998)

    ADS  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, Diffusive shock acceleration with magnetic amplification by nonresonant streaming instability in supernova remnants. Astrophys. J. 678, 939–949 (2008). arXiv:0801.4488

    ADS  Google Scholar 

  • E.G. Zweibel, Cosmic-ray history and its implications for galactic magnetic fields. Astrophys. J. 587, 625–637 (2003). arXiv:astro-ph/0212559

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Bykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aharonian, F., Bykov, A., Parizot, E. et al. Cosmic Rays in Galactic and Extragalactic Magnetic Fields. Space Sci Rev 166, 97–132 (2012). https://doi.org/10.1007/s11214-011-9770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-011-9770-3

Keywords

Navigation