Space Science Reviews

, Volume 176, Issue 1–4, pp 351–363 | Cite as

The Galactic Cosmic Ray Intensity over the Past 106–109 Years as Recorded by Cosmogenic Nuclides in Meteorites and Terrestrial Samples

  • Rainer WielerEmail author
  • Jürg Beer
  • Ingo Leya


Concentrations of stable and radioactive nuclides produced by cosmic ray particles in meteorites allow us to track the long term average of the primary flux of galactic cosmic rays (GCR). During the past ∼10 Ma, the average GCR flux remained constant over timescales of hundreds of thousands to millions of years, and, if corrected for known variations in solar modulation, also during the past several years to hundreds of years. Because the cosmic ray concentrations in meteorites represent integral signals, it is difficult to assess the limits of uncertainty of this statement, but they are larger than the often quoted analytical and model uncertainties of some 30%. Time series of concentrations of the radionuclide 10Be in terrestrial samples strengthen the conclusions drawn from meteorite studies, indicating that the GCR intensity on a ∼0.5 million year scale has remained constant within some ±10% during the past ∼10 million years. The very long-lived radioactive nuclide 40K allows to assess the GCR flux over about the past one billion years. The flux over the past few million years has been the same as the longer-term average in the past 0.5–1 billion years within a factor of ∼1.5. However, newer data do not confirm a long-held belief that the flux in the past few million years has been higher by some 30–50% than the very long term average. Neither does our analysis confirm a hypothesis that the iron meteorite data indicate a ∼150 million year periodicity in the cosmic ray flux, possibly related to variations in the long-term terrestrial climate.


Galactic cosmic ray intensity Cosmogenic nuclides Meteorites Beryllium-10 in sediments Exposure ages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. K. Ammon, J. Masarik, I. Leya, New model calculations for the production rates of cosmogenic nuclides in iron meteorites. Meteorit. Planet. Sci. 44, 485–503 (2009) ADSCrossRefGoogle Scholar
  2. D. Aylmer, V. Bonanno, G.F. Herzog, H. Weber, J. Klein, R. Middleton, 26Al and 10Be production in iron meteorites. Earth Planet. Sci. Lett. 88, 107–118 (1988) ADSCrossRefGoogle Scholar
  3. J. Beer et al., Space Sci. Rev. (2011, this issue) Google Scholar
  4. F. Begemann, J. Geiss, D.C. Hess, Radiation age of a meteorite from cosmic-ray-produced He3 and H3. Phys. Rev. 107, 540–542 (1957) ADSCrossRefGoogle Scholar
  5. G. Bonino, G. Cini Castagnoli, N. Bhandari, P. Della Monica, C. Taricco, Galactic cosmic ray variations in the last two centuries recorded by cosmogenic 44Ti in meteorites. Adv. Space Res. 23, 607–610 (1999) ADSCrossRefGoogle Scholar
  6. D. Bourlès, G.M. Raisbeck, F. Yiou, 10Be and 9Be in marine sediments and their potential for dating. Geochim. Cosmochim. Acta 53, 443–452 (1989) ADSCrossRefGoogle Scholar
  7. T.H. Burbine, T.J. McCoy, A. Meibom, B. Gladman, K. Keil, Meteoritic parent bodies: their number and identification, in Asteroids III, ed. by W.F. Bottke et al. (Univ. Arizona Press, Tucson, 2002), pp. 653–667 Google Scholar
  8. M. Christl, A. Mangini, P.W. Kubik, Highly resolved Beryllium-10 record from ODP Site 1089—A global signal? Earth Planet. Sci. Lett. 257, 245–258 (2007) ADSCrossRefGoogle Scholar
  9. P.J. Cressy, D.D. Bogard, On the calculation of cosmic-ray exposure ages of stone meteorites. Geochim. Cosmochim. Acta 40, 749–762 (1976) ADSCrossRefGoogle Scholar
  10. O. Eugster, T. Michel, Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochim. Cosmochim. Acta 59, 177–199 (1995) ADSCrossRefGoogle Scholar
  11. M. Frank, Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev. Geophys. 40, 1001 (2002). doi: 10.1029/2000RG000094 ADSCrossRefGoogle Scholar
  12. M. Frank, J. Backman, M. Jakobsson, K. Moran, M. O’Regan, J. King, B.A. Haley, P.W. Kubik, D. Garbe-Schonberg, Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years: stratigraphic and paleoclimatic implications. Paleoceanography 23, PA1S02 (2008). doi: 10.1029/2007PA001478 CrossRefGoogle Scholar
  13. M. Frank, R.K. O’Nions, J.R. Hein, V.K. Banakar, 60 Myr records of major elements and Pb–Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleochemistry. Geochim. Cosmochim. Acta 63, 1689–1708 (1999) ADSCrossRefGoogle Scholar
  14. W. Hampel, O.A. Schaeffer, 26Al in iron meteorites and the constancy of cosmic ray intensity in the past. Earth Planet. Sci. Lett. 42, 348–358 (1979) ADSCrossRefGoogle Scholar
  15. G.F. Herzog, Exposure ages of stony and of stony-iron meteorites, in Treatise on Geochemistry, ed. by A.M. Davis, vol. 1 (Elsevier, Oxford, 2003), pp. 347–380 Google Scholar
  16. G.F. Herzog, E. Anders, Absolute scale for radiation ages of stony meteorites. Geochim. Cosmochim. Acta 35, 605–611 (1971) ADSCrossRefGoogle Scholar
  17. J.R. Jokipii, Variations of the cosmic-ray flux with time, in The Sun in Time, ed. by C.P. Sonnett, M.S. Giampapa, M.S. Matthews (Univ. Arizona Press, Tucson, 1991), pp. 205–220 Google Scholar
  18. K. Keil, H. Haack, E.R.D. Scott, Catastrophic fragmentation of asteroids: evidence from meteorites. Planet. Space Sci. 42, 1109–1122 (1994) ADSCrossRefGoogle Scholar
  19. T.L. Ku, M. Kusakabe, D.E. Nelson, J.R. Southon, R.G. Korteling, J. Vogel, I. Nowikow, Constancy of oceanic deposition of 10Be as recorded in manganese crusts. Nature 299, 240–242 (1982) ADSCrossRefGoogle Scholar
  20. B. Lavielle, K. Marti, J.P. Jeannot, K. Nishiizumi, M. Caffee, The 36Cl–36Ar–40K–41K records and cosmic ray production rates in iron meteorites. Earth Planet. Sci. Lett. 170, 93–104 (1999) ADSCrossRefGoogle Scholar
  21. I. Leya, H.-J. Lange, S. Neumann, R. Wieler, R. Michel, The production of cosmogenic nuclides in stony meteoroids by galactic cosmic-ray particles. Meteorit. Planet. Sci. 35, 259–286 (2000) ADSCrossRefGoogle Scholar
  22. I. Leya, J. Masarik, Cosmogenic nuclides in stony meteorites revisited. Meteorit. Planet. Sci. 44, 1061–1086 (2009) ADSCrossRefGoogle Scholar
  23. H.F. Ling, K.W. Burton, R.K. O’Nions, B.S. Kamber, F. von Blanckenburg, A.J. Gibb, J.R. Hein, Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts. Earth Planet. Sci. Lett. 146, 1–12 (1997) ADSCrossRefGoogle Scholar
  24. K. Marti, Mass-spectrometric detection of cosmic-ray-produced Kr81 in meteorites and the possibility of Kr–Kr dating. Phys. Rev. Lett. 18, 264–266 (1967) MathSciNetADSCrossRefGoogle Scholar
  25. K. Marti, T. Graf, Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992) ADSCrossRefGoogle Scholar
  26. R.K. Moniot, T.H. Kruse, C. Tuniz, W. Savin, G.S. Hall, T. Milazzo, D. Pal, G.F. Herzog, The 21Ne production rate in stony meteorites estimated from 10Be and other radionuclides. Geochim. Cosmochim. Acta 47, 1887–1895 (1983) ADSCrossRefGoogle Scholar
  27. O. Müller, W. Hampel, T. Kirsten, G.F. Herzog, Cosmic-ray constancy and cosmogenic production rates in short-lived chondrites. Geochim. Cosmochim. Acta 45, 447–460 (1981) ADSCrossRefGoogle Scholar
  28. K. Nishiizumi, S. Regnier, K. Marti, Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth Planet. Sci. Lett. 50, 156–170 (1980) ADSCrossRefGoogle Scholar
  29. K. Scherer, H. Fichtner, T. Borrmann, J. Beer, L. Desorgher, E. Flükiger, H.J. Fahr, S.E.S. Ferreira, U.W. Langner, M.S. Potgieter, B. Heber, J. Masarik, N.J. Shaviv, J. Veizer, Interstellar-terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate. Space Sci. Rev. 127, 327–465 (2006) ADSCrossRefGoogle Scholar
  30. B. Schmitz, B. Peucker-Ehrenbrink, M. Lindström, M. Tassinari, Accretion rates of meteorites and cosmic dust in the early ordovician. Science 278, 88–90 (1997) ADSCrossRefGoogle Scholar
  31. N.J. Shaviv, Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection (vol. 89, art. no. 051102, 2002). Phys. Rev. Lett. 89, art. no.-089901 (2002). doi: 10.1103/PhysRevLett.89.051102
  32. N.J. Shaviv, The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron. 8, 39–77 (2003) ADSCrossRefGoogle Scholar
  33. N.J. Shaviv, J. Veizer, Celestial driver of phanerozoic climate? GSA today July 2003, 4 Google Scholar
  34. S.K. Vogt, D. Aylmer, G.F. Herzog, R. Wieler, P. Signer, P. Pellas, C. Fiéni, C. Tuniz, A.J.T. Jull, D. Fink, J. Klein, R. Middleton, On the Bur Gheluai H5 chondrite and other meteorites with complex exposure histories. Meteoritics 28, 71–85 (1993) ADSCrossRefGoogle Scholar
  35. H. Voshage, Investigations on cosmic-ray-produced nuclides in iron meteorites, 2. New results on 41K/40K–4He/21Ne exposure ages and the interpretations of age distributions. Earth Planet. Sci. Lett. 40, 83–90 (1978) ADSCrossRefGoogle Scholar
  36. H. Voshage, Investigations of cosmic-ray-produced nuclides in iron meteorites, 6. The Signer-Nier model and the history of the cosmic radiation. Earth Planet. Sci. Lett. 71, 181–194 (1984) ADSCrossRefGoogle Scholar
  37. H. Voshage, H. Hintenberger, Massenspektrometrische Isotopenhäufigkeitsmessungen an Kalium aus Eisenmeteoriten und das Problem der Bestimmung der 41K–40K-Strahlungsalter. Z. Naturforsch. 16a, 1042–1053 (1961) ADSGoogle Scholar
  38. H. Voshage, D.C. Hess, Strahlungsalter einiger Eisenmeteorite. Z. Naturforsch. 19a, 341–346 (1964) ADSGoogle Scholar
  39. H. Voshage, H. Feldmann, Investigations on cosmic-ray-produced nuclides in iron meteorites, 3. Exposure ages, meteoroid sizes and sample depths determined by mass spectrometric analyses of potassium and rare gases. Earth Planet. Sci. Lett. 45, 293–308 (1979) ADSCrossRefGoogle Scholar
  40. R. Wieler, Cosmic-ray-produced noble gases in meteorites. Rev. Mineral. Geochem. 47, 125–170 (2002) CrossRefGoogle Scholar
  41. J.K. Willenbring, F. von Blanckenburg, Long-term stability of global erosion rates and weathering during late-Cenozoic cooling. Nature 465, 211–214 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Geochemistry and PetrologyETH ZürichZürichSwitzerland
  2. 2.Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  3. 3.Physikalisches InstitutUniversität BernBernSwitzerland

Personalised recommendations