Space Science Reviews

, Volume 158, Issue 2–4, pp 267–288 | Cite as

Propagating MHD Waves in Coronal Holes



Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun’s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.


Sun Coronal holes MHD waves Oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.W. Armstrong, R. Woo, Solar wind motion within 30 R solar masses—Spacecraft radio scintillation observations. Astron. Astrophys. 103, 415–421 (1981) ADSGoogle Scholar
  2. R.G. Athay, O.R. White, Chromospheric oscillations observed with OSO 8. IV—Power and phase spectra for C IV. Astrophys. J. 229, 1147–1162 (1979). doi:10.1086/157050 ADSCrossRefGoogle Scholar
  3. D. Banerjee, L. Teriaca, J.G. Doyle, K. Wilhelm, Broadening of SI viii lines observed in the solar polar coronal holes. Astron. Astrophys. 339, 208–214 (1998) ADSGoogle Scholar
  4. D. Banerjee, E. O’Shea, J.G. Doyle, Long-period oscillations in polar plumes as observed by CDS on Soho. Sol. Phys. 196, 63–78 (2000a) ADSCrossRefGoogle Scholar
  5. D. Banerjee, L. Teriaca, J.G. Doyle, P. Lemaire, Polar plumes and inter-plume regions as observed by SUMER on SOHO. Sol. Phys. 194, 43–58 (2000b) ADSCrossRefGoogle Scholar
  6. D. Banerjee, E. O’Shea, J.G. Doyle, M. Goossens, Long period oscillations in the inter-plume regions of the Sun. Astron. Astrophys. 377, 691–700 (2001a). doi:10.1051/0004-6361:20011153 ADSCrossRefGoogle Scholar
  7. D. Banerjee, E. O’Shea, J.G. Doyle, M. Goossens, Signatures of very long period waves in the polar coronal holes. Astron. Astrophys. 380, 39–42 (2001b). doi:10.1051/0004-6361:20011548 ADSCrossRefGoogle Scholar
  8. D. Banerjee, R. Erdélyi, R. Oliver, E. O’Shea, Present and future observing trends in atmospheric magnetoseismology. Sol. Phys. 246, 3–29 (2007). doi:10.1007/s11207-007-9029-z ADSCrossRefGoogle Scholar
  9. D. Banerjee, L. Teriaca, G.R. Gupta, S. Imada, G. Stenborg, S.K. Solanki, Propagating waves in polar coronal holes as seen by SUMER and EIS. Astron. Astrophys. 499, 29–32 (2009a). doi:10.1051/0004-6361/200912059 ADSCrossRefGoogle Scholar
  10. D. Banerjee, D. Pérez-Suárez, J.G. Doyle, Signatures of Alfvén waves in the polar coronal holes as seen by EIS/Hinode. Astron. Astrophys. 501, 15–18 (2009b). doi:10.1051/0004-6361/200912242 ADSCrossRefGoogle Scholar
  11. A. Bemporad, W.H. Matthaeus, G. Poletto, Low-frequency Lyα power spectra observed by UVCS in a polar coronal hole. Astrophys. J. Lett. 677, 137–140 (2008). doi:10.1086/588093 ADSCrossRefGoogle Scholar
  12. G.C. Boynton, U. Torkelsson, Dissipation of non-linear Alfven waves. Astron. Astrophys. 308, 299–308 (1996) ADSGoogle Scholar
  13. G.E. Brueckner, R.A. Howard, M.J. Koomen, C.M. Korendyke, D.J. Michels, J.D. Moses, D.G. Socker, K.P. Dere, P.L. Lamy, A. Llebaria, M.V. Bout, R. Schwenn, G.M. Simnett, D.K. Bedford, C.J. Eyles, The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995). doi:10.1007/BF00733434 ADSCrossRefGoogle Scholar
  14. S. Casalbuoni, L. Del Zanna, S.R. Habbal, M. Velli, Coronal plumes and the expansion of pressure-balanced structures in the fast solar wind. J. Geophys. Res. 104, 9947–9962 (1999). doi:10.1029/1999JA900047 ADSCrossRefGoogle Scholar
  15. S.R. Cranmer, Coronal holes. Living Rev. Sol. Phys. 6, 3 (2009) ADSGoogle Scholar
  16. S.R. Cranmer, A.A. van Ballegooijen, On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Suppl. 156, 265–293 (2005). doi:10.1086/426507 ADSCrossRefGoogle Scholar
  17. J.L. Culhane, L.K. Harra, A.M. James, K. Al-Janabi, L.J. Bradley, R.A. Chaudry, K. Rees, J.A. Tandy, P. Thomas, M.C.R. Whillock, B. Winter, G.A. Doschek, C.M. Korendyke, C.M. Brown, S. Myers, J. Mariska, J. Seely, J. Lang, B.J. Kent, B.M. Shaughnessy, P.R. Young, G.M. Simnett, C.M. Castelli, S. Mahmoud, H. Mapson-Menard, B.J. Probyn, R.J. Thomas, J. Davila, K. Dere, D. Windt, J. Shea, R. Hagood, R. Moye, H. Hara, T. Watanabe, K. Matsuzaki, T. Kosugi, V. Hansteen, Ø. Wikstol, The EUV Imaging Spectrometer for Hinode. Sol. Phys. 243, 19–61 (2007). doi:10.1007/s01007-007-0293-1 ADSCrossRefGoogle Scholar
  18. M. Cuntz, S.T. Suess, Shock formation of slow magnetosonic waves in coronal plumes. Astrophys. J. Lett. 549, 143–146 (2001). doi:10.1086/319147 ADSCrossRefGoogle Scholar
  19. B. De Pontieu, R. Erdélyi, The nature of moss and lower atmospheric seismology. R. Soc. Lond. Philos. Trans. Ser. A 364, 383–394 (2006) ADSCrossRefGoogle Scholar
  20. B. De Pontieu, R. Erdélyi, S.P. James, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430, 536–539 (2004). doi:10.1038/nature02749 ADSCrossRefGoogle Scholar
  21. B. De Pontieu, S.W. McIntosh, V.H. Hansteen, C.J. Schrijver, Observing the roots of solar coronal heating in the chromosphere. Astrophys. J. Lett. 701, 1–6 (2009). doi:10.1088/0004-637X/701/1/L1 ADSCrossRefGoogle Scholar
  22. C.E. DeForest, J.B. Gurman, Observation of quasi-periodic compressive waves in solar polar plumes. Astrophys. J. Lett. 501, 217 (1998). doi:10.1086/311460 ADSCrossRefGoogle Scholar
  23. C.E. DeForest, S.P. Plunkett, Polar plumes observed at extreme coronal altitudes, in American Astronomical Society Meeting Abstracts, vol. 194 (1999), p. 108.01 Google Scholar
  24. C.E. DeForest, J.T. Hoeksema, J.B. Gurman, B.J. Thompson, S.P. Plunkett, R. Howard, R.C. Harrison, D.M. Hassler, Polar plume anatomy: results of a coordinated observation. Sol. Phys. 175, 393–410 (1997). doi:10.1023/A:1004955223306 ADSCrossRefGoogle Scholar
  25. J. Delaboudinière, G.E. Artzner, J. Brunaud, A.H. Gabriel, J.F. Hochedez, F. Millier, X.Y. Song, B. Au, K.P. Dere, R.A. Howard, R. Kreplin, D.J. Michels, J.D. Moses, J.M. Defise, C. Jamar, P. Rochus, J.P. Chauvineau, J.P. Marioge, R.C. Catura, J.R. Lemen, L. Shing, R.A. Stern, J.B. Gurman, W.M. Neupert, A. Maucherat, F. Clette, P. Cugnon, E.L. van Dessel, EIT: extreme-ultraviolet imaging telescope for the SOHO mission. Sol. Phys. 162, 291–312 (1995). doi:10.1007/BF00733432 ADSCrossRefGoogle Scholar
  26. L. Dolla, J. Solomon, Solar off-limb line widths: Alfvén waves, ion-cyclotron waves, and preferential heating. Astron. Astrophys. 483, 271–283 (2008). doi:10.1051/0004-6361:20077903 ADSCrossRefGoogle Scholar
  27. V. Domingo, B. Fleck, A.I. Poland, The SOHO mission: an overview. Sol. Phys. 162, 1–37 (1995). doi:10.1007/BF00733425 ADSCrossRefGoogle Scholar
  28. G.A. Doschek, U. Feldman, The coronal temperature and nonthermal motions in a coronal hole compared with other solar regions. Astrophys. J. Lett. 212, 143–146 (1977). doi:10.1086/182394 ADSCrossRefGoogle Scholar
  29. J.G. Doyle, D. Banerjee, M.E. Perez, Coronal line-width variations. Sol. Phys. 181, 91–101 (1998) ADSCrossRefGoogle Scholar
  30. J.G. Doyle, E. O’Shea, R. Erdelyi, K.P. Dere, D.G. Socker, F.P. Keenan, Nonthermal velocities in the solar transition zone and corona. Sol. Phys. 173, 243–258 (1997) ADSCrossRefGoogle Scholar
  31. J.G. Doyle, J. Giannikakis, L.D. Xia, M.S. Madjarska, Line broadening of EUV lines across the solar limb: a spicule contribution? Astron. Astrophys. 431, 17–20 (2005). doi:10.1051/0004-6361:200400137 ADSCrossRefGoogle Scholar
  32. R. Erdélyi, V. Fedun, Are there Alfvén waves in the solar atmosphere? Science 318, 1572 (2007). doi:10.1126/science.1153006 ADSCrossRefGoogle Scholar
  33. R. Erdélyi, J.G. Doyle, M.E. Perez, K. Wilhelm, Center-to-limb line width measurements of solar chromospheric, transition region and coronal lines. Astron. Astrophys. 337, 287–293 (1998) ADSGoogle Scholar
  34. R. Erdélyi, C. Malins, G. Tóth, B. de Pontieu, Leakage of photospheric acoustic waves into non-magnetic solar atmosphere. Astron. Astrophys. 467, 1299–1311 (2007). doi:10.1051/0004-6361:20066857 ADSCrossRefGoogle Scholar
  35. V. Fedun, R. Erdélyi, S. Shelyag, Oscillatory response of the 3D solar atmosphere to the leakage of photospheric motion. Sol. Phys. 258, 219–241 (2009). doi:10.1007/s11207-009-9407-9 ADSCrossRefGoogle Scholar
  36. A.H. Gabriel, F. Bely-Dubau, P. Lemaire, The contribution of polar plumes to the fast solar Wind. Astrophys. J. 589, 623–634 (2003). doi:10.1086/374416 ADSCrossRefGoogle Scholar
  37. A.H. Gabriel, L. Abbo, F. Bely-Dubau, A. Llebaria, E. Antonucci, Solar wind outflow in polar plumes from 1.05 to 2.4 R. Astrophys. J. Lett. 635, 185–188 (2005). doi:10.1086/499521 ADSCrossRefGoogle Scholar
  38. S. Giordano, E. Antonucci, G. Noci, M. Romoli, J.L. Kohl, Identification of the coronal sources of the fast solar wind. Astrophys. J. Lett. 531, 79–82 (2000). doi:10.1086/312525 ADSCrossRefGoogle Scholar
  39. B.E. Goldstein, E.J. Smith, A. Balogh, T.S. Horbury, M.L. Goldstein, D.A. Roberts, Properties of magnetohydrodynamic turbulence in the solar wind as observed by Ulysses at high heliographic latitudes. Geophys. Res. Lett. 22, 3393–3396 (1995a). doi:10.1029/95GL03183 ADSCrossRefGoogle Scholar
  40. M.L. Goldstein, D.A. Roberts, W.H. Matthaeus, Magnetohydrodynamic turbulence in the solar wind. Annu. Rev. Astron. Astrophys. 33, 283–326 (1995b). doi:10.1146/annurev.aa.33.090195.001435 ADSCrossRefGoogle Scholar
  41. G.R. Gupta, E. O’Shea, D. Banerjee, M. Popescu, J.G. Doyle, On the statistical detection of propagating waves in polar coronal holes. Astron. Astrophys. 493, 251–257 (2009). doi:10.1051/0004-6361:200810602 ADSCrossRefGoogle Scholar
  42. G.R. Gupta, D. Banerjee, L. Teriaca, S. Imada, S. Solanki, Accelerating waves in polar coronal holes as seen by EIS and SUMER. Astrophys. J. 718, 11–22 (2010). doi:10.1088/0004-637X/718/1/11 ADSCrossRefGoogle Scholar
  43. R.A. Harrison, E.C. Sawyer, M.K. Carter, A.M. Cruise, R.M. Cutler, A. Fludra, R.W. Hayes, B.J. Kent, J. Lang, D.J. Parker, J. Payne, C.D. Pike, S.C. Peskett, A.G. Richards, J.L. Gulhane, K. Norman, A.A. Breeveld, E.R. Breeveld, K.F. Al Janabi, A.J. McCalden, J.H. Parkinson, D.G. Self, P.D. Thomas, A.I. Poland, R.J. Thomas, W.T. Thompson, O. Kjeldseth-Moe, P. Brekke, J. Karud, P. Maltby, B. Aschenbach, H. Bräuninger, M. Kühne, J. Hollandt, O.H.W. Siegmund, M.C.E. Huber, A.H. Gabriel, H.E. Mason, B.J.I. Bromage, The coronal diagnostic spectrometer for the solar and heliospheric observatory. Sol. Phys. 162, 233–290 (1995). doi:10.1007/BF00733431 ADSCrossRefGoogle Scholar
  44. D.M. Hassler, T.G. Moran, Broadening of the Fe X (6374 Å) profiles above the limb in a coronal hole. Space Sci. Rev. 70, 373–377 (1994). doi:10.1007/BF00777895 ADSCrossRefGoogle Scholar
  45. D.M. Hassler, G.J. Rottman, E.C. Shoub, T.E. Holzer, Line broadening of MG X 609 and 625 A coronal emission lines observed above the solar limb. Astrophys. J. Lett. 348, 77–80 (1990). doi:10.1086/185635 ADSCrossRefGoogle Scholar
  46. D.B. Jess, M. Mathioudakis, R. Erdélyi, P.J. Crockett, F.P. Keenan, D.J. Christian, Alfvén waves in the lower solar atmosphere. Science 323, 1582 (2009). doi:10.1126/science.1168680 ADSCrossRefGoogle Scholar
  47. J.L. Kohl, R. Esser, L.D. Gardner, S. Habbal, P.S. Daigneau, E.F. Dennis, G.U. Nystrom, A. Panasyuk, J.C. Raymond, P.L. Smith, L. Strachan, A.A. van Ballegooijen, G. Noci, S. Fineschi, M. Romoli, A. Ciaravella, A. Modigliani, M.C.E. Huber, E. Antonucci, C. Benna, S. Giordano, G. Tondello, P. Nicolosi, G. Naletto, C. Pernechele, D. Spadaro, G. Poletto, S. Livi, O. von der Lühe, J. Geiss, J.G. Timothy, G. Gloeckler, A. Allegra, G. Basile, R. Brusa, B. Wood, O.H.W. Siegmund, W. Fowler, R. Fisher, M. Jhabvala, The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory. Sol. Phys. 162, 313–356 (1995). doi:10.1007/BF00733433 ADSCrossRefGoogle Scholar
  48. T. Kosugi, K. Matsuzaki, T. Sakao, T. Shimizu, Y. Sone, S. Tachikawa, T. Hashimoto, K. Minesugi, A. Ohnishi, T. Yamada, S. Tsuneta, H. Hara, K. Ichimoto, Y. Suematsu, M. Shimojo, T. Watanabe, S. Shimada, J.M. Davis, L.D. Hill, J.K. Owens, A.M. Title, J.L. Culhane, L.K. Harra, G.A. Doschek, L. Golub, The Hinode (Solar-B) mission: an overview. Sol. Phys. 243, 3–17 (2007). doi:10.1007/s11207-007-9014-6 ADSCrossRefGoogle Scholar
  49. Y. Lau, E. Siregar, Nonlinear Alfven wave propagation in the solar wind. Astrophys. J. 465, 451 (1996). doi:10.1086/177432 ADSCrossRefGoogle Scholar
  50. Y. Lou, Damping of low-frequency Alfvén waves in fast polar coronal winds from the rotating sun. Astrophys. J. Lett. 571, 187–190 (2002). doi:10.1086/341330 ADSCrossRefGoogle Scholar
  51. C. Malins, R. Erdélyi, Direct propagation of photospheric acoustic p modes into nonmagnetic solar atmosphere. Sol. Phys. 246, 41–52 (2007). doi:10.1007/s11207-007-9073-8 ADSCrossRefGoogle Scholar
  52. M.S. Marsh, R.W. Walsh, B.J.I. Bromage, A wavelet analysis of quasi-periodic variability across a solar coronal hole region. Astron. Astrophys. 393, 649–659 (2002). doi:10.1051/0004-6361:20021057 ADSCrossRefGoogle Scholar
  53. D.J. McComas, B.L. Barraclough, H.O. Funsten, J.T. Gosling, E. Santiago-Muñoz, R.M. Skoug, B.E. Goldstein, M. Neugebauer, P. Riley, A. Balogh, Solar wind observations over Ulysses’ first full polar orbit. J. Geophys. Res. 105, 10419–10434 (2000). doi:10.1029/1999JA000383 ADSCrossRefGoogle Scholar
  54. S.W. McIntosh, B. De Pontieu, High-speed transition region and coronal upflows in the quiet Sun. Astrophys. J. 707, 524–538 (2009). doi:10.1088/0004-637X/707/1/524 ADSCrossRefGoogle Scholar
  55. S.W. McIntosh, D.E. Innes, B. de Pontieu, R.J. Leamon, STEREO observations of quasi-periodically driven high velocity outflows in polar plumes. Astron. Astrophys. 510, 2 (2010). doi:10.1051/0004-6361/200913699 ADSCrossRefGoogle Scholar
  56. T.G. Moran, Interpretation of coronal off-limb spectral line width measurements. Astron. Astrophys. 374, 9–11 (2001). doi:10.1051/0004-6361:20010643 ADSCrossRefGoogle Scholar
  57. R. Muller, T. Roudier, J. Vigneau, H. Auffret, The proper motion of network bright points and the heating of the solar corona. Astron. Astrophys. 283, 232–240 (1994) ADSGoogle Scholar
  58. R.H. Munro, G.L. Withbroe, Properties of a coronal “hole” derived from extreme-ultraviolet observations. Astrophys. J. 176, 511 (1972). doi:10.1086/151653 ADSCrossRefGoogle Scholar
  59. V.M. Nakariakov, L. Ofman, T.D. Arber, Nonlinear dissipative spherical Alfvén waves in solar coronal holes. Astron. Astrophys. 353, 741–748 (2000) ADSGoogle Scholar
  60. G. Newkirk Jr., J. Harvey, Coronal polar plumes. Sol. Phys. 3, 321–343 (1968). doi:10.1007/BF00155166 ADSCrossRefGoogle Scholar
  61. P. Nisenson, A.A. van Ballegooijen, A.G. de Wijn, P. Sütterlin, Motions of isolated G-band bright points in the solar photosphere. Astrophys. J. 587, 458–463 (2003). doi:10.1086/368067 ADSCrossRefGoogle Scholar
  62. G. Noci, J.L. Kohl, E. Antonucci, G. Tondello, M.C.E. Huber, S. Fineschi, L.D. Gardner, G. Naletto, P. Nicolosi, J.C. Raymond, M. Romoli, D. Spadaro, O.H.W. Siegmund, C. Benna, A. Ciaravella, S. Giordano, J. Michels, A. Modigliani, A. Panasyuk, C. Pernechele, G. Poletto, P.L. Smith, L. Strachan, First results from UVCS/SOHO. Adv. Space Res. 20, 2219–2230 (1997). doi:10.1016/S0273-1177(97)00895-8 ADSCrossRefGoogle Scholar
  63. L. Ofman, Three-fluid model of the heating and acceleration of the fast solar wind. J. Geophys. Res. (Space Phys.) 109(A18), 7102 (2004). doi:10.1029/2003JA010221 CrossRefGoogle Scholar
  64. L. Ofman, MHD waves and heating in coronal holes. Space Sci. Rev. 120, 67–94 (2005). doi:10.1007/s11214-005-5098-1 ADSCrossRefGoogle Scholar
  65. L. Ofman, J.M. Davila, Alfvén wave heating of coronal holes and the relation to the high-speed solar wind. J. Geophys. Res. 100, 23413–23426 (1995). doi:10.1029/95JA02222 ADSCrossRefGoogle Scholar
  66. L. Ofman, J.M. Davila, Do first results from SOHO UVCS indicate that the solar wind is accelerated by solitary waves? Astrophys. J. Lett. 476, 51 (1997). doi:10.1086/310491 ADSCrossRefGoogle Scholar
  67. L. Ofman, J.M. Davila, Three-fluid 2.5-dimensional magnetohydrodynamic model of the effective temperature in coronal holes. Astrophys. J. 553, 935–940 (2001). doi:10.1086/320960 ADSCrossRefGoogle Scholar
  68. L. Ofman, M. Romoli, G. Poletto, G. Noci, J.L. Kohl, Ultraviolet coronagraph spectrometer observations of density fluctuations in the solar wind. Astrophys. J. Lett. 491, 111 (1997). doi:10.1086/311067 ADSCrossRefGoogle Scholar
  69. L. Ofman, V.M. Nakariakov, C.E. DeForest, Slow magnetosonic waves in coronal plumes. Astrophys. J. 514, 441–447 (1999). doi:10.1086/306944 ADSCrossRefGoogle Scholar
  70. L. Ofman, V.M. Nakariakov, N. Sehgal, Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071–1083 (2000a). doi:10.1086/308691 ADSCrossRefGoogle Scholar
  71. L. Ofman, M. Romoli, G. Poletto, G. Noci, J.L. Kohl, UVCS WLC observations of compressional waves in the south polar coronal hole. Astrophys. J. 529, 592–598 (2000b). doi:10.1086/308252 ADSCrossRefGoogle Scholar
  72. E. O’Shea, D. Banerjee, J.G. Doyle, Magnetoacoustic wave propagation in off-limb polar regions. Astron. Astrophys. 452, 1059–1068 (2006). doi:10.1051/0004-6361:20053687 ADSCrossRefGoogle Scholar
  73. E. O’Shea, D. Banerjee, J.G. Doyle, A statistical study of wave propagation in coronal holes. Astron. Astrophys. 463, 713–725 (2007). doi:10.1051/0004-6361:20065592 ADSCrossRefGoogle Scholar
  74. S. Patsourakos, J.C. Vial, Outflow velocity of interplume regions at the base of polar coronal holes. Astron. Astrophys. 359, 1–4 (2000) ADSGoogle Scholar
  75. M.D. Popescu, D. Banerjee, E. O’Shea, J.G. Doyle, L.D. Xia, Very long period activity at the base of solar wind streams. Astron. Astrophys. 442, 1087–1090 (2005). doi:10.1051/0004-6361:20053714 ADSCrossRefGoogle Scholar
  76. N. Raouafi, J.W. Harvey, S.K. Solanki, Properties of solar polar coronal plumes constrained by ultraviolet coronagraph spectrometer data. Astrophys. J. 658, 643–656 (2007). doi:10.1086/510286 ADSCrossRefGoogle Scholar
  77. T. Saito, T. Kudoh, K. Shibata, What determines the height of spicules? I. Alfvén-wave model and slow-wave model. Astrophys. J. 554, 1151–1158 (2001). doi:10.1086/323146 ADSCrossRefGoogle Scholar
  78. S.R. Spangler, The amplitude of magnetohydrodynamic turbulence in the inner solar wind. Astrophys. J. 576, 997–1004 (2002). doi:10.1086/341889 ADSCrossRefGoogle Scholar
  79. B.A. Stark, Wave resonances and induced flow due to nonlinear Alfvén waves in a stratified atmosphere. J. Geophys. Res. 101, 15615–15628 (1996). doi:10.1029/96JA00610 ADSCrossRefGoogle Scholar
  80. T.K. Suzuki, Coronal heating and acceleration of the high/low-speed solar wind by fast/slow MHD shock trains. Mon. Not. R. Astron. Soc. 349, 1227–1239 (2004). doi:10.1111/j.1365-2966.2004.07570.x ADSCrossRefGoogle Scholar
  81. L. Teriaca (2010, in preparation) Google Scholar
  82. L. Teriaca, G. Poletto, M. Romoli, D.A. Biesecker, The nascent solar wind: origin and acceleration. Astrophys. J. 588, 566–577 (2003). doi:10.1086/368409 ADSCrossRefGoogle Scholar
  83. H. Tian, L. Xia, Network oscillations at the boundary of an equatorial coronal hole. Astron. Astrophys. 488, 331–337 (2008). doi:10.1051/0004-6361:200810124 ADSCrossRefGoogle Scholar
  84. S. Tsuneta, K. Ichimoto, Y. Katsukawa, B.W. Lites, K. Matsuzaki, S. Nagata, D. Orozco Suárez, T. Shimizu, M. Shimojo, R.A. Shine, Y. Suematsu, T.K. Suzuki, T.D. Tarbell, A.M. Title, The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374–1381 (2008). doi:10.1086/592226 ADSCrossRefGoogle Scholar
  85. B.T. Tsurutani, C.M. Ho, J.K. Arballo, B.E. Goldstein, A. Balogh, Large amplitude IMF fluctuations in corotating interaction regions: Ulysses at midlatitudes. Geophys. Res. Lett. 22, 3397–3400 (1995). doi:10.1029/95GL03179 ADSCrossRefGoogle Scholar
  86. C. Tu, E. Marsch, On the nature of compressive fluctuations in the solar wind. J. Geophys. Res. 99, 21481 (1994). doi:10.1029/94JA00843 ADSCrossRefGoogle Scholar
  87. C. Tu, E. Marsch, MHD structures, waves and turbulence in the solar wind: Observations and theories. Space Sci. Rev. 73, 1–210 (1995). doi:10.1007/BF00748891 ADSCrossRefGoogle Scholar
  88. C. Tu, E. Marsch, K. Wilhelm, W. Curdt, Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO. Astrophys. J. 503, 475 (1998). doi:10.1086/305982 ADSCrossRefGoogle Scholar
  89. C.Y. Tu, C. Zhou, E. Marsch, L.D. Xia, L. Zhao, J.X. Wang, K. Wilhelm, Solar wind origin in coronal funnels. Science 308, 519–523 (2005). doi:10.1126/science.1109447 ADSCrossRefGoogle Scholar
  90. E. Verwichte, V.M. Nakariakov, F.C. Cooper, Transverse waves in a post-flare supra-arcade. Astron. Astrophys. 430, 65–68 (2005). doi:10.1051/0004-6361:200400133 ADSCrossRefGoogle Scholar
  91. K. Wilhelm, Solar coronal-hole plasma densities and temperatures. Astron. Astrophys. 455, 697–708 (2006). doi:10.1051/0004-6361:20054693 ADSCrossRefGoogle Scholar
  92. K. Wilhelm, W. Curdt, E. Marsch, U. Schühle, P. Lemaire, A. Gabriel, J.C. Vial, M. Grewing, M.C.E. Huber, S.D. Jordan, A.I. Poland, R.J. Thomas, M. Kühne, J.G. Timothy, D.M. Hassler, O.H.W. Siegmund, SUMER—solar ultraviolet measurements of emitted radiation. Sol. Phys. 162, 189–231 (1995). doi:10.1007/BF00733430 ADSCrossRefGoogle Scholar
  93. K. Wilhelm, E. Marsch, B.N. Dwivedi, D.M. Hassler, P. Lemaire, A.H. Gabriel, M.C.E. Huber, The solar corona above polar coronal holes as seen by SUMER on SOHO. Astrophys. J. 500, 1023 (1998). doi:10.1086/305756 ADSCrossRefGoogle Scholar
  94. K. Wilhelm, I.E. Dammasch, E. Marsch, D.M. Hassler, On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749–756 (2000) ADSGoogle Scholar
  95. K. Wilhelm, B.N. Dwivedi, L. Teriaca, On the widths of the Mg X lines near 60 nm in the corona. Astron. Astrophys. 415, 1133–1139 (2004). doi:10.1051/0004-6361:20034234 ADSCrossRefGoogle Scholar
  96. K. Wilhelm, A. Fludra, L. Teriaca, R.A. Harrison, B.N. Dwivedi, C.D. Pike, The widths of vacuum-ultraviolet spectral lines in the equatorial solar corona observed with CDS and SUMER. Astron. Astrophys. 435, 733–741 (2005). doi:10.1051/0004-6361:20042460 ADSCrossRefGoogle Scholar
  97. G.L. Withbroe, Evidence for temporal variations in polar plumes. Sol. Phys. 89, 77–88 (1983). doi:10.1007/BF00211954 ADSCrossRefGoogle Scholar
  98. J. Woch, W.I. Axford, U. Mall, B. Wilken, S. Livi, J. Geiss, G. Gloeckler, R.J. Forsyth, SWICS/Ulysses observations: The three-dimensional structure of the heliosphere in the declining/minimum phase of the solar cycle. Geophys. Res. Lett. 24, 2885–2888 (1997). doi:10.1029/97GL01605 ADSCrossRefGoogle Scholar
  99. Y. Yamauchi, S.T. Suess, T. Sakurai, Relation between pressure balance structures and polar plumes from Ulysses high latitude observations. Geophys. Res. Lett. 29(10), 100000-1 (2002). doi:10.1029/2001GL013820 CrossRefGoogle Scholar
  100. J. Zhang, J. Woch, S.K. Solanki, R. von Steiger, R. Forsyth, Interplanetary and solar surface properties of coronal holes observed during solar maximum. J. Geophys. Res. (Space Phys.) 108, 1144 (2003). doi:10.1029/2002JA009538 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Indian Institute of AstrophysicsBangaloreIndia
  2. 2.Joint Astronomy ProgrammeIndian Institute of ScienceBangaloreIndia
  3. 3.Max-Planck-Institut für Sonnensystemforschung (MPS)Katlenburg-LindauGermany

Personalised recommendations