Space Science Reviews

, Volume 156, Issue 1–4, pp 1–12 | Cite as

A Composition Analysis Tool for the Solar Wind Around Pluto (SWAP) Instrument on New Horizons

  • R. W. Ebert
  • D. J. McComas
  • B. Rodriguez
  • P. Valek
  • S. Weidner
Short Communication

Abstract

We describe the response of the Solar Wind Around Pluto (SWAP) instrument (McComas et al. in Space Sci. Rev. 140:261, 2008) to 1–40 amu ions in order to assess whether it can be used to determine plasma composition. Our goal is to enhance the scientific return on the SWAP plasma measurements obtained during the New Horizons traversal down Jupiter’s magnetotail in 2007. We present calibration data for the SWAP flight instrument and another largely flight-like SWAP sensor, dubbed “SWAP-II”. SWAP’s mass-dependent response was characterized by analyzing the count ratios from its two channel electron multipliers (CEMs). We observe significant differences in the instrument response between light (mass ≤ He) and heavy (mass > He) ions, especially for energies below ∼4 keV. We attribute these differences to the mass-dependent electron emission yield from SWAP’s ultra-thin (∼1 μg/cm2) carbon foil. Using these results, we develop a plasma composition analysis technique to statistically distinguish between light and heavy plasma ions measured by the instrument.

Keywords

New Horizons Solar Wind Around Pluto (SWAP) instrument Jovian magnetotail Plasma composition Secondary electron emission Thin carbon foil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Allegrini, R.F. Wimmer-Schweingruber, P. Wurz, P. Bochsler, Nucl. Instr. Methods B 211, 487 (2003). doi:10.1016/SO168-583X(03)01705-1 ADSCrossRefGoogle Scholar
  2. F. Allegrini, D.J. McComas, D.T. Young, J.-J. Berthelier, J. Covinhes, J.-M. Illiano, J.-F. Riou, H.O. Funsten, R.W. Harper, Rev. Sci. Instrum. 77, 044501 (2006). doi:10.1063/1.2185490 ADSCrossRefGoogle Scholar
  3. F. Allegrini, R.W. Ebert, J. Alquiza, T. Broiles, C. Dunn, D.J. McComas, I. Silva, P. Valek, J. Westlake, Rev. Sci. Instrum. 79(9), 096701 (2008). doi:10.1063/1.2987691 CrossRefGoogle Scholar
  4. F. Allegrini, M.I. Desai, S. Livi, R. Livi, D.J. McComas, B. Randol, Rev. Sci. Instrum. 80, 104502 (2009) ADSCrossRefGoogle Scholar
  5. J. Alquiza, J. Goldstein, M. Gruntman, D.J. McComas, J. Redfern, P.W. Valek, American Geophysical Union, Fall Meeting, #SM11A-1555 (2009) Google Scholar
  6. F. Bagenal, J. Atmos. Sol. Terr.-Phys. 69, 387 (2007). doi:10.1016/j.jastp/2006.08.012 ADSCrossRefGoogle Scholar
  7. K.H. Baines, A.A. Simon-Miller, G.S. Orten, H.A. Weaver, A. Lunsford, T.W. Momary, J. Spencer, A.F. Cheng, D.C. Reuter, D.E. Jennings, G.R. Gladstone, J. Moore, S.A. Stern, L.A. Young, H. Throop, P. Yanamandra-Fisher, B.M. Fisher, J. Hora, M.E. Ressler, Science 318, 226 (2007). doi:10.1126/science.1147393 ADSCrossRefGoogle Scholar
  8. R. Baragiola, Nucl. Instr. Methods B 78, 223–238 (1993) ADSCrossRefGoogle Scholar
  9. J.W. Belcher, in Physics of the Jovian Magnetosphere, ed. by A.J. Dessler (1983), pp. 68–105 Google Scholar
  10. A. Bürgi, M. Oetliker, P. Bochsler, J. Geiss, M.A. Coplan, J. Appl. Phys. 68, 2547 (1990) ADSCrossRefGoogle Scholar
  11. M. Delaunay, M. Fehringer, R. Geller, D. Hitz, P. Varga, H. Winter, Phys. Rev. B 35(9), 4232–4235 (1987) ADSCrossRefGoogle Scholar
  12. G.H. Fountain, D.Y. Kusnierkiewicz, C.B. Hersman, T.S. Herder, T.B. Coughlin, W.C. Gibson, D.A. Clancy, C.C. Debov, T.A. Hill, J.D. Kinnison, D.S. Mehoke, G.K. Ottman, G.D. Rogers, S.A. Stern, J.M. Stratton, S.R. Vernon, S.P. Williams, Space Sci. Rev. 140, 23 (2008). doi:10.1007/s11214-008-9374-8 ADSCrossRefGoogle Scholar
  13. J. Geiss, G. Gloeckler, H. Balsiger, L.A. Fisk, A.B. Galvin, F. Gliem, D.C. Hamilton, F.M. Ipavich, S. Livi, U. Mall, K.W. Ogilvie, R. von Steiger, B. Wilken, Science 257, 1535–1539 (1992). doi:10.1126/science.257.5076.1535 ADSCrossRefGoogle Scholar
  14. G.R. Gladstone, S.A. Stern, D.C. Slater, M. Versteeg, M.W. Davis, K.D. Retherford, L.A. Young, A.J. Steffl, H. Throop, J.W. Parker, H.A. Weaver, A.F. Cheng, G.S. Orton, J.T. Clarke, J.D. Nichols, Science 318(5848), 229 (2007). doi:10.1126/science.1147613 ADSCrossRefGoogle Scholar
  15. Y. Guo, R.W. Farquhar, Space Sci. Rev. 140, 49–74 (2008). doi:10.1007/s11214-007-9242-y ADSCrossRefGoogle Scholar
  16. P.H. Janzen, H.O. Funsten, R. Harper, American Geophysical Union, Fall Meeting, #SM13A-0345 (2006) Google Scholar
  17. R. Kallenbach, M. Gonin, A. Bürgi, P. Bochsler, Nucl. Instr. Methods B 83, 68 (1993) ADSCrossRefGoogle Scholar
  18. D.J. McComas, F. Allegrini, C.J. Pollock, H.O. Funsten, S. Ritzau, G. Gloeckler, Rev. Sci. Instrum. 75(11), 4863 (2004). doi:10.1063/1.1809265 ADSCrossRefGoogle Scholar
  19. D.J. McComas, F. Allegrini, F. Bagenal, F. Crary, R.W. Ebert, H. Elliott, A. Stern, P. Valek, Science 318, 217 (2007). doi:10.1126/science.1147393 ADSCrossRefGoogle Scholar
  20. D.J. McComas, F. Allegrini, F. Bagenal, P. Casey, P. Delamere, D. Demkee, G. Dunn, H. Elliott, J. Hanley, K. Johnson, J. Langle, G. Miller, S. Pope, M. Reno, B. Rodriguez, N. Schwadron, P. Valek, S. Weidner, Space Sci. Rev. 140, 261 (2008). doi:10.1007/s11214-007-9205-3 ADSCrossRefGoogle Scholar
  21. D.J. McComas, F. Allegrini, J. Baldonado, B. Blake, J. Burch, J. Clemmons, W. Crain, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Svijee, R. Skoug, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Vlikorpi, M. Young, J. Zoennchen, Space Sci. Rev. 142, 157 (2009). doi:10/1007/s11214-008-9467-4 ADSCrossRefGoogle Scholar
  22. R.J. McNutt Jr., D.K. Haggerty, M.E. Hill, S.M. Krimigis, S. Livi, G.C. Ho, R.S. Gurnee, B.H. Mauk, D.G. Mitchell, E.C. Roelof, D.J. McComas, F. Bagenal, H.A. Elliott, L.E. Brown, M. Kusterer, J. Vandergriff, S.A. Stern, H.A. Weaver, J.R. Spencer, J.M. Moore, Science 318, 220 (2007). doi:10.1126/science.1148025 ADSCrossRefGoogle Scholar
  23. K.D. Retherford, J.R. Spencer, S.A. Stern, J. Saur, D.F. Strobel, A.J. Steffl, G.R. Gladstone, H.A. Weaver, A.F. Cheng, J.W. Parker, D.C. Slater, M.H. Versteeg, M.W. Davis, F. Bagenal, H.B. Throop, R.M.C. Lopez, D.C. Reuter, A. Lunsford, S.J. Conard, L.A. Young, J.M. Moore, Science 318, 237 (2007). doi:10.1126/science.1147594 ADSCrossRefGoogle Scholar
  24. D.C. Reuter, A.A. Simon-Miller, A. Lunsford, K.H. Baines, A.F. Cheng, D.E. Jennings, C.B. Olkin, J.R. Spencer, S.A. Stern, H.A. Weaver, L.A. Young, Science 318, 223 (2007). doi:10.1126/science.1147618 ADSCrossRefGoogle Scholar
  25. S.M. Ritzau, R.A. Baragiola, Phys. Rev. B 58, 2529 (1998) ADSCrossRefGoogle Scholar
  26. J.R. Spencer, S.A. Stern, A.F. Cheng, H.A. Weaver, D.C. Reuter, K. Retherford, A. Lunsford, J.M. Moore, O. Abramov, R.M.C. Lopes, J.E. Perry, L. Kamp, M. Showalter, K.L. Jessup, F. Marchis, P.M. Schenk, C. Dumas, Science 318, 240 (2007). doi:10.1126/science.1147621 ADSCrossRefGoogle Scholar
  27. S.A. Stern, Space Sci. Rev. 140, 3 (2008). doi:10.1007/s11214-007-9295-y ADSCrossRefGoogle Scholar
  28. E.J. Sternglass, Phys. Rev. 108(1), 1–13 (1957) ADSCrossRefGoogle Scholar
  29. H.A. Weaver, H.A.W.C. Gibson, M.B. Tapley, L.A. Young, S.A. Stern, Space Sci. Rev. 140, 75 (2008). doi:10.1007/s11214-008-9376-6 ADSCrossRefGoogle Scholar
  30. D.T. Young, F.J. Crary, J.E. Nordholt, F. Bagenal, D. Boice, J.L. Burch, A. Eviatar, R. Goldstein, J.J. Hanley, D.J. Lawrence, D.J. McComas, R. Meier, D. Reisenfeld, K. Sauer, R.C. Wiens, Icarus 167, 80–88 (2004) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • R. W. Ebert
    • 1
    • 2
  • D. J. McComas
    • 1
    • 2
  • B. Rodriguez
    • 2
  • P. Valek
    • 1
    • 2
  • S. Weidner
    • 2
  1. 1.University of Texas at San AntonioSan AntonioUSA
  2. 2.Southwest Research InstituteSan AntonioUSA

Personalised recommendations