Advertisement

Space Science Reviews

, Volume 153, Issue 1–4, pp 317–348 | Cite as

Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites

  • Hauke HussmannEmail author
  • Gaël Choblet
  • Valéry Lainey
  • Dennis L. Matson
  • Christophe Sotin
  • Gabriel Tobie
  • Tim Van Hoolst
Article

Abstract

Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.

Keywords

Satellites Energy sources Rotation Tides Orbital dynamics Heat transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Aksnes, F.A. Franklin, Astron. J. 122, 2734–2739 (2001) ADSGoogle Scholar
  2. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 624, 1–124 (1997) ADSGoogle Scholar
  3. V.A. Avdyushev, Sol. Syst. Res. 38, 238–240 (2004) ADSGoogle Scholar
  4. A.C. Barr, R.T. Pappalardo, J. Geophys. Res. 110, E12 (2005). CiteID E12005 Google Scholar
  5. R.H. Brown, T.V. Johnson, R.L. Kirk, L.A. Soderblom, Science 250, 431–435 (1990) ADSGoogle Scholar
  6. J.C. Castillo-Rogez, D.L. Matson, C. Sotin, T.V. Johnson, J.I. Lunine, P.C. Thomas, Icarus 190, 179–202 (2007) ADSGoogle Scholar
  7. A. Cayley, Mem. R. Astron. Soc. 29, 191–306 (1861) Google Scholar
  8. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics (Clarendon, Oxford, 1961) zbMATHGoogle Scholar
  9. G. Choblet, E.M. Parmentier, Phys. Earth Planet. Inter. 173, 290–296 (2009) ADSGoogle Scholar
  10. D.M. Cole, Philos. Mag. A 72, 231–248 (1995) ADSGoogle Scholar
  11. D.M. Cole, R.A. Johnson, G.D. Durell, J. Geophys. Res. 103(C10), 21751–21758 (1998) ADSGoogle Scholar
  12. R.L. Comstock, B.G. Bills, J. Geophys. Res. 108(E9), 5100 (2003). doi: 10.1029/2003JE00210 Google Scholar
  13. W. De Sitter, Leiden Ann. 16(2), 1–92 (1928) Google Scholar
  14. F. Deschamps, C. Sotin, J. Geophys. Res. 106, 5107–5121 (2001) ADSGoogle Scholar
  15. G. Dourneau, Thesis, Bordeaux, 1987 Google Scholar
  16. W.B. Durham, O. Prieto-Ballesteros, D.L. Goldsby, J.S. Kargel, Space Sci. Rev. (2010, this issue). doi: 10.1007/s11214-009-9619-1
  17. D.H. Eckhardt, Moon Planets 25, 3–49 (1981) zbMATHADSGoogle Scholar
  18. J. Eluszkiewicz, Icarus 84, 215–225 (1990) ADSGoogle Scholar
  19. S. Ferraz-Mello, A. Rodriguez, H. Hussmann, Celest. Mech. Dyn. Astron. 101, 171–201 (2008) zbMATHMathSciNetADSGoogle Scholar
  20. P.E. Geissler, Annu. Rev. Earth Planet. Sci. 31, 175–211 (2003) ADSGoogle Scholar
  21. P. Goldreich, Mon. Not. R. Astron. Soc. 126, 257–268 (1963) zbMATHADSGoogle Scholar
  22. P. Goldreich, S.J. Peale, Astron. J. 71, 425–437 (1966) ADSGoogle Scholar
  23. P. Goldreich, S. Soter, Icarus 5, 375–389 (1966) ADSGoogle Scholar
  24. O. Grasset, E.M. Parmentier, J. Geophys. Res. 103, 18171–18181 (1998) ADSGoogle Scholar
  25. O. Grasset, C. Sotin, F. Deschamps, Planet. Space Sci. 48, 617–636 (2000) ADSGoogle Scholar
  26. R. Greenberg, S.J. Weidenschilling, Icarus 58, 186–196 (1984) ADSGoogle Scholar
  27. J. Hillier, S.W. Squyres, J. Geophys. Res. 96, 15665–15674 (1991) ADSGoogle Scholar
  28. G.V. Hoppa, B.R. Tufts, R. Greenberg, T.A. Hurford, D.P. O’Brien, P.E. Geissler, Icarus 153, 208–213 (2001) ADSGoogle Scholar
  29. L.N. Howard, in Proceedings of the Eleventh International Congress of Applied Mechanics, vol. 153, ed. by H. Gortler (Springer, New York, 1964), pp. 1109–1115 Google Scholar
  30. W.B. Hubbard, Planetary Interiors (Van Nostrand Reinhold, New York, 1984) Google Scholar
  31. H. Hussmann, T. Spohn, K. Wieczerkowski, Icarus 156, 143–151 (2002) ADSGoogle Scholar
  32. H. Jeffreys, The Earth. Its Origin, History and Physical Constitution (Cambridge University Press, Cambridge, 1952) Google Scholar
  33. Ö. Karatekin, T. Van Hoolst, T. Tokano, Geophys. Res. Lett. 35, L16202 (2008). doi: 10.1029/2008GL034744 ADSGoogle Scholar
  34. R.L. Kirk, D.J. Stevenson, Icarus 69, 91–134 (1987) ADSGoogle Scholar
  35. M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, C. Zimmer, Science 289, 1340–1343 (2000) ADSGoogle Scholar
  36. M.G. Kivelson, K.K. Khurana, M. Volwerk, Icarus 157, 507–522 (2002) ADSGoogle Scholar
  37. Y. Kozai, Ann. Tokyo Astron. Obs. 73, 1 (1957) Google Scholar
  38. V. Lainey, L. Duriez, A. Vienne, Astron. Astrophys. 420, 1171–1183 (2004) ADSGoogle Scholar
  39. V. Lainey, L. Duriez, A. Vienne, Astron. Astrophys. 456, 783–788 (2006) ADSGoogle Scholar
  40. V. Lainey, J.E. Arlot, O. Karatekin, T. Van Hoolst, Nature 459, 957–959 (2009) ADSGoogle Scholar
  41. J. Leliwa-Kopystyński, K.J. Kossacki, Planet. Space Sci. 48, 727–745 (2000) ADSGoogle Scholar
  42. J.H. Lieske, Astron. Astrophys. 176, 146–158 (1987) ADSGoogle Scholar
  43. J.H. Lieske, Astron. Astrophys. 56, 333–352 (1977) zbMATHADSGoogle Scholar
  44. K. Lodders, B. Fegley Jr., The Planetary Scientists Companion (Oxford Univ. Press, New York, 1998) Google Scholar
  45. G.J.F. MacDonald, Rev. Geophys. Space Phys. 2, 467–541 (1964) ADSGoogle Scholar
  46. F. Marchis et al., Icarus 176, 96–122 (2005) ADSGoogle Scholar
  47. A.S. McEwen, L.P. Keszthelyi, R. Lopes, P.M. Schenk, J.R. Spencer, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 307–328 Google Scholar
  48. W.B. McKinnon, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 525 Google Scholar
  49. W.B. McKinnon, Geophys. Res. Lett. 26, 951–954 (1999) ADSGoogle Scholar
  50. G. Mitri, A.P. Showman, Icarus 195, 757–764 (2005) Google Scholar
  51. W.B. Moore, J. Geophys. Res. 108, E8 (2003). doi: 10.1029/2002JE001943 Google Scholar
  52. W.B. Moore, J. Geophys. Res. 113, B11407 (2008). doi: 10.1029/2006JB004778 ADSGoogle Scholar
  53. W.B. Moore, H. Hussmann, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 369–380 Google Scholar
  54. H. Moritz, The Figure of the Earth (Herbert Wichmann, Karlsruhe, 1990) zbMATHGoogle Scholar
  55. K. Multhaup, T. Spohn, Icarus 186, 420–435 (2007) ADSGoogle Scholar
  56. C.D. Murray, S.F. Dermott, Solar System Dynamics (Cambridge University Press, Cambridge, 1999) zbMATHGoogle Scholar
  57. K. Nagel, D. Breuer, T. Spohn, Icarus 169, 402–412 (2004) ADSGoogle Scholar
  58. D.B. Nash, M.H. Carr, J. Gradie, D.M. Hunten, C.F. Yoder, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 629–688, Google Scholar
  59. F. Nimmo, E. Gaidos, J. Geophys. Res. 107, E4 (2002). doi: 10.1029/2000JE001476 Google Scholar
  60. F. Nimmo, J.R. Spencer, R.T. Pappalardo, M.E. Mullen, Nature 447, 289–291 (2007) ADSGoogle Scholar
  61. B. Noyelles, Celest. Mech. Dyn. Astron. 101, 13–30 (2008) zbMATHMathSciNetADSGoogle Scholar
  62. G.W. Ojakangas, D.J. Stevenson, Icarus 81, 220–241 (1989a) ADSGoogle Scholar
  63. G.W. Ojakangas, D.J. Stevenson, Icarus 81, 242–270 (1989b) ADSGoogle Scholar
  64. J. Palguta, G. Schubert, K. Zhang, J.D. Anderson, Icarus 201, 615–625 (2009) ADSGoogle Scholar
  65. S.J. Peale, in Planetary Satellites, ed. by J.A. Burns (Univ. of Arizona Press, Tucson, 1977), pp. 87–111 Google Scholar
  66. S.J. Peale, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 159–223 Google Scholar
  67. S.J. Peale, Annu. Rev. Astron. Astrophys. 37, 533–602 (1999) ADSGoogle Scholar
  68. S.J. Peale, M.H. Lee, Science 298, 593–597 (2002) ADSGoogle Scholar
  69. S.J. Peale, P. Cassen, R.T. Reynolds, Science 203, 892–894 (1979) ADSGoogle Scholar
  70. C.C. Porco et al., Science 311, 1393–1401 (2006) ADSGoogle Scholar
  71. B. Preblich, R. Greenberg, J. Riley, D. O’Brien, Planet. Space Sci. 55, 1225–1245 (2007) ADSGoogle Scholar
  72. O. Prieto-Ballesteros, J.S. Kargel, M. Fernández-Sampedro, F. Selsis, E.S. Martínez, D.L. Hogenboom, Icarus 177, 491–505 (2005) ADSGoogle Scholar
  73. L. Prockter, F. Nimmo, R.T. Pappalardo, Geophys. Res. Lett. 32, 14 (2005). CiteID L14202 Google Scholar
  74. N. Reeh, E. Lintz Christensen, C. Mayer, O. Olesen, Ann. Glaciol. 37, 83–89 (2003) ADSGoogle Scholar
  75. R.G. Ross, J.S. Kargel, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), p. 33 Google Scholar
  76. R.A. Sampson, Mem. R. Astron. Soc. 63, 1–270 (1921) ADSGoogle Scholar
  77. G. Schubert, P. Cassen, R.E. Young, Icarus 38, 192–211 (1979) ADSGoogle Scholar
  78. G. Schubert, T. Spohn, R.T. Reynolds, in Satellites, ed. by J.A. Burns, M.S. Matthews (Univ. of Arizona Press, Tucson, 1986), pp. 224–292 Google Scholar
  79. G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, in Jupiter: The Planet, Satellites, and Magnetosphere, ed. by F. Bagenal, T. Dowling, W.B. McKinnon (Cambridge Univ. Press, Cambridge, 2004), pp. 281–306 Google Scholar
  80. G. Schubert, H. Hussmann, V. Lainey, D. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Space Sci. Rev. (2010, this issue) Google Scholar
  81. M. Segatz, T. Spohn, M.N. Ross, G. Schubert, Icarus 75, 187–206 (1988) ADSGoogle Scholar
  82. B.A. Smith et al., Science 204, 951–957 (1979) ADSGoogle Scholar
  83. B. Smith-Konter, R.T. Pappalardo, Icarus 198, 435–451 (2008) ADSGoogle Scholar
  84. L.A. Soderblom, T.L. Becker, S.W. Kieffer, R.H. Brown, C.J. Hansen, T.V. Johnson, Science 250, 410–415 (1990) ADSGoogle Scholar
  85. F. Sohl, W.D. Sears, R.D. Lorenz, Icarus 115, 278–294 (1995) ADSGoogle Scholar
  86. F. Sohl, H. Hussmann, B. Schwentker, T. Spohn, R.D. Lorenz, J. Geophys. Res. 108, 5130 (2003) Google Scholar
  87. F. Sohl, M. Choukroun, J. Kargel, J. Kimura, R.T. Pappalardo, S. Vance, M. Zolotov, Space Sci. Rev. (2010, this issue) Google Scholar
  88. V.S. Solomatov, Phys. Fluids 7, 266–274 (1995) zbMATHADSGoogle Scholar
  89. V.S. Solomatov, A.C. Barr, Phys. Earth Planet. Inter. 155, 140–145 (2006) ADSGoogle Scholar
  90. C. Sotin, S. Labrosse, Phys. Earth Planet. Inter. 112, 171–190 (1999) ADSGoogle Scholar
  91. C. Sotin, O. Grasset, S. Beauchesne, in Solar System Ices, ed. by B. Schmitt, C. de Bergh, M. Festou (Kluwer, Dordrecht, 1998), pp. 79–96 Google Scholar
  92. C. Sotin, G. Tobie, J. Wahr, W.B. McKinnon, in Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (University of Arizona Press, Tucson, 2009), pp. 85–118 Google Scholar
  93. J.R. Spencer, J.C. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L.J. Spilker, R.M.C. Lopes, Science 311, 1401–1405 (2006) ADSGoogle Scholar
  94. J.R. Spencer et al., Science 318, 240 (2007) ADSGoogle Scholar
  95. T. Spohn, in Bergmann, Schaefer: Lehrbuch der Experimentalphysik, Band 7: Erde und Planeten, ed. by W. Raith (1997), pp. 427–525 Google Scholar
  96. T. Spohn, G. Schubert, Icarus 161, 456–467 (2003) ADSGoogle Scholar
  97. K.C. Stengel, D.C. Oliver, J.R. Booker, J. Fluid Mech. 120, 411–431 (1982) zbMATHADSGoogle Scholar
  98. B.W. Stiles, et al., Astron. J. 135(5), 1669–1680 (2008). doi: 10.1088/0004-6256/135/5/1669 ADSGoogle Scholar
  99. B.W. Stiles et al. (the Cassini Radar Team), Astron. J. 139, 311 (2010) ADSGoogle Scholar
  100. J.W. Strutt, Philos. Mag. 32, 529–546 (1916) Google Scholar
  101. J. Tatibouet, J. Perez, R. Vassoille, J. Phys. 47, 51–60 (1986) Google Scholar
  102. P.C. Thomas et al., Icarus 190, 573–584 (2007) ADSGoogle Scholar
  103. G. Tobie, G. Choblet, C. Sotin, J. Geophys. Res. 108, E11 (2003). doi: 10.1029/2003JE002099 Google Scholar
  104. G. Tobie, A. Mocquet, C. Sotin, Icarus 177, 534–549 (2005a) ADSGoogle Scholar
  105. G. Tobie, O. Grasset, J.I. Lunine, A. Mocquet, C. Sotin, Icarus 175, 496–502 (2005b) ADSGoogle Scholar
  106. G. Tobie, J.I. Lunine, C. Sotin, Nature 440, 61–64 (2006) ADSGoogle Scholar
  107. G. Tobie, O. Čadek, C. Sotin, Icarus 196, 642–652 (2008) ADSGoogle Scholar
  108. T. Tokano, F.M. Neubauer, Geophys. Res. Lett. 32, L24203 (2005) ADSGoogle Scholar
  109. R. Tyler, Nature 456, 770–772 (2008) ADSGoogle Scholar
  110. T. Van Hoolst, N. Rambaux, Ö. Karatekin, V. Dehant, A. Rivoldini, Icarus 195, 386–399 (2008). doi: 10.1016/j.icarus.2007.12.011 ADSGoogle Scholar
  111. T. Van Hoolst, Ö. Karatekin, in European Planetary Science Congress 2008. Extended abstract, 2008 Google Scholar
  112. T. Van Hoolst, N. Rambaux, Ö. Karatekin, Icarus 200, 256–264 (2009). doi: 10.1016/j.icarus.2008.11.009 ADSGoogle Scholar
  113. S. Vance, J. Harnmeijer, J. Kimura, H. Hussmann, B. DeMartin, J.M. Brown, Astrobiology 7, 987–1005 (2007) ADSGoogle Scholar
  114. R. Vasundhara, J.-E. Arlot, P. Descamps, in Dynamics, Ephemerides, and Astrometry of the Solar System: Proceedings of the 172nd Symposium of the International Astronomical Union, Held in Paris, France, 38 July 1995, ed. by S. Ferraz-Mello, B. Morando, J.-E. Arlot (1996), p. 145 Google Scholar
  115. A. Vienne, J.M. Sarlat, L. Duriez, in Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System: Proceedings of the 152nd Symposium of the International Astronomical Union, ed. by S. Ferraz-Mello, Angra dos Reis, Brazil, 15–19 July 1991 (Kluwer Academic, Dordrecht, 1992), p. 219 Google Scholar
  116. J. Wisdom, Astron. J. 128, 484–491 (2004) ADSGoogle Scholar
  117. F.E. Witteborn, J.D. Bregman, J.B. Pollack, Science 203, 643–646 (1979) ADSGoogle Scholar
  118. C.F. Yoder, Nature 279, 767–770 (1979) ADSGoogle Scholar
  119. D.A. Yuen, L. Fleitout, G. Schubert, C. Froidevaux, Int. J. Geophys. 54, 93–119 (1978) Google Scholar
  120. C. Zimmer, K.K. Khurana, M.G. Kivelson, Icarus 147, 329–347 (2000) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hauke Hussmann
    • 1
    Email author
  • Gaël Choblet
    • 2
  • Valéry Lainey
    • 3
  • Dennis L. Matson
    • 4
  • Christophe Sotin
    • 4
  • Gabriel Tobie
    • 2
  • Tim Van Hoolst
    • 5
  1. 1.DLR Institute of Planetary ResearchBerlinGermany
  2. 2.Laboratoire de Planétologie et GéodynamiqueUniversité de NantesNantesFrance
  3. 3.Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE)Observatoire de Paris 77ParisFrance
  4. 4.Jet Propulsion Laboratory/California Institute of TechnologyPasadenaUSA
  5. 5.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations