Skip to main content
Log in

Rheological and Thermal Properties of Icy Materials

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Laboratory measurements of physical properties of planetary ices generate information for dynamical models of tectonically active icy bodies in the outer solar system. We review the methods for measuring both flow properties and thermal properties of icy planetary materials in the laboratory, and describe physical theories that are essential for intelligent extrapolation of data from laboratory to planetary conditions. This review is structured with a separate and independent section for each of the two sets of physical properties, rheological and thermal. The rheological behaviors of planetary ices are as diverse as the icy moons themselves. High-pressure water ice phases show respective viscosities that vary over four orders of magnitude. Ices of CO2, NH3, as well as clathrate hydrates of CH4 and other gases vary in viscosity by nearly ten orders of magnitude. Heat capacity and thermal conductivity of detected/inferred compositions in outer solar system bodies have been revised. Some low-temperature phases of minerals and condensates have a deviant thermal behavior related to paramount water ice. Hydrated salts have low values of thermal conductivity and an inverse dependence of conductivity on temperature, similar to clathrate hydrates or glassy solids. This striking behavior may suit the dynamics of icy satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • N. Ahmad, W.A. Phillips, Thermal-conductivity of ice and ice clathrate. Solid State Commun. 63(2), 167–171 (1987)

    Article  ADS  Google Scholar 

  • R.B. Alley, Flow-law hypotheses for ice-sheet modeling. J. Glaciol. 38, 245–256 (1992)

    ADS  Google Scholar 

  • P. Andersson, R.G. Ross, Effect of guest molecule size on thermal conductivity and heat capacity of clathrate hydrates. J. Phys. C. Solid State Phys. 16, 1423–1432 (1983)

    Article  ADS  Google Scholar 

  • O. Andersson, H. Suga, Thermal conductivity of low density amorphous ice. Solid State Comm. 91(12), 985–988 (1994)

    Article  ADS  Google Scholar 

  • M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149–163 (1973)

    Article  Google Scholar 

  • N.J. Austin, B. Evans, Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology 35(4), 343–346 (2007)

    Article  ADS  Google Scholar 

  • A. Ball, M.M. Hutchinson, Superplasticity in the aluminum-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)

    Article  Google Scholar 

  • S. Bhattacharyya, S.N. Bhattacharyya, Heat-capacity and enthalpy of the ternary-system ferrous sulfate heptahydrate, sulfuric-acid, and water. J. Chem. Eng. Data 24(2), 93–96 (1979)

    Article  Google Scholar 

  • J.P. Bloomfield, S.J. Covey-Crump, Correlating mechanical data with microstructural observations in deformation experiments on synthetic 2-phase aggregates. J. Struct. Geol. 15(8), 1007–1019 (1993)

    Article  ADS  Google Scholar 

  • G.E. Brodale, W.F. Giauque, Heat of hydration of sodium sulfate. Low-temperature heat capacity and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 80, 2042–2024 (1958)

    Article  Google Scholar 

  • W.F. Budd, T.H. Jacka, A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol. 16, 107–144 (1989)

    Article  Google Scholar 

  • B. Burton, Diffusional Creep of Polycrystalline Materials (Trans. Tech. Publications, Germany, 1977), 119 pp.

    Google Scholar 

  • R.W. Carlson, R.E. Johnson, M.S. Anderson, Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999)

    Article  ADS  Google Scholar 

  • R.W. Carlson, J.S. Kargel, S. Doute, L.A. Soderblom, J.B. Dalton, Io’s surface composition, in Io after Galileo, ed. by R.M.C. Lopes, J.R. Spencer (Springer, Berlin, 2006)

    Google Scholar 

  • M. Choukroun, O. Grasset, G. Tobie, C. Sotin, Stability of methane clathrate hydrates under pressure: Influence on Titan’s cryovolcanism and atmospheric methane replenishment. Icarus (2009). doi:10.1016/j.icarus.2009.08.011

    Google Scholar 

  • R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)

    Article  ADS  Google Scholar 

  • W.P. Cox, E.W. Hornung, W.F. Giauque, The spontaneous transformation from macrocrystalline to microcrystalline phases at low temperatures. The heat capacity of MgSO4⋅6H2O. J. Am. Chem. Soc. 77(15), 3935–3938 (1955)

    Article  Google Scholar 

  • S.K. Croft, J.I. Lunine, J. Kargel, Equation of state- of ammonia-water liquid—Derivation and planetological applications. Icarus 73, 279–293 (1988)

    Article  ADS  Google Scholar 

  • J.B. Dalton et al., Space Sci. Rev. (2010, this issue)

  • J.B. Dalton, O. Prieto-Ballesteros, J.S. Kargel et al., Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177, 472–490 (2005)

    Article  ADS  Google Scholar 

  • J.H.P. De Bresser, C.J. Peach, J.P.J. Reijs, C.J. Spiers, On dynamic recrystallization during solid state flow: Effects of stress and temperature. Geophys. Res. Lett. 25, 3457–3460 (1998)

    Article  ADS  Google Scholar 

  • J.H.P. De Bresser, J.H. Ter Heege, C.J. Spiers, Grain size reduction by dynamic recrystallization: Can it result in major rheological weakening? Int. J. Earth Sci. 90(1), 28–45 (2001)

    Article  Google Scholar 

  • M.W.C. Dharma-Wardana, F. Perrot, G.C. Aers, Effective proton-proton potential in hydrogen plasmas. Phys. Rev. A 28, 344–349 (1983)

    Article  ADS  Google Scholar 

  • A.J. Dombard, W.B. McKinnon, Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, diffusional creep. Lunar Planet. Sci. Conf. 27, 317–318 (1996)

    ADS  Google Scholar 

  • A.J. Dombard, W.B. McKinnon, Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett. 27, 3663–3666 (2000)

    Article  ADS  Google Scholar 

  • W.B. Durham, H.C. Heard, S.H. Kirby, Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res. 88, B377–B392 (1983)

    Article  ADS  Google Scholar 

  • W.B. Durham, S.H. Kirby, L.A. Stern, Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res. 97, 20883–20897 (1992)

    Article  ADS  Google Scholar 

  • W.B. Durham, S.H. Kirby, L.A. Stern, Flow of ices in the ammonia-water system. J. Geophys. Res. 98, 17667–17682 (1993)

    Article  ADS  Google Scholar 

  • W.B. Durham, S.H. Kirby, L.A. Stern, Creep of water ices at planetary conditions: a compilation. J. Geophys. Res. (Planets) 102, 16293–16302 (1997)

    Article  ADS  Google Scholar 

  • W.B. Durham, L.A. Stern, S.H. Kirby, Steady-state flow of solid CO2. Geophys. Res. Lett. 26, 3493–3496 (1999)

    Article  ADS  Google Scholar 

  • W.B. Durham, S.H. Kirby, L.A. Stern, Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res. 106, 11,031–11,042 (2001)

    Article  ADS  Google Scholar 

  • W.B. Durham, S.H. Kirby, L.A. Stern, W. Zhang, The strength and rheology of methane clathrate hydrate. J. Geophys. Res. 108(B4), 2182 (2003). doi:2110.1029/2002JB001872

    Article  ADS  Google Scholar 

  • W.B. Durham, L.A. Stern, T. Kubo, S.H. Kirby, Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa. J. Geophys. Res. (Planets) 110(E12), E12010 (2005a). doi:12010.11029/12005JE002475

    Article  ADS  Google Scholar 

  • W.B. Durham, L.A. Stern, S.H. Kirby, S. Circone, Rheological comparisons and structural imaging of sI and sII endmember gas hydrates and hydrate/sediment aggregates, in Proceedings of the 5th International Conference on Gas Hydrates (paper #2030), Trondheim, Norway (2005b), pp. 607–614

  • W.B. Durham, A.V. Pathare, L.A. Stern, H.J. Lenferink, Mobility of icy sand packs, with application to Martian permafrost. Geophys. Res. Lett. (2009). doi:10.1029/2009GL040392

    Google Scholar 

  • P. Duval, M.F. Ashby, I. Anderman, Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem. 87(21), 4066–4074 (1983)

    Article  Google Scholar 

  • A.D. Fortes, M. Choukroun, Space Sci. Rev. (2010, this issue)

  • H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon, New York, 1982) 167 pp.

    Google Scholar 

  • R.C. Gifkins, Grain boundary sliding and its accommodation during creep and superplasticity. Metall. Trans. 7A, 1225–1232 (1976)

    Google Scholar 

  • J.W. Glen, Experiments on the deformation of ice. J. Glaciol. 2, 111–114 (1952)

    ADS  Google Scholar 

  • J.W. Glen, The creep of polycrystalline ice. Proc. R. Soc. Lon., Ser. A 228, 519–538 (1955)

    Article  ADS  Google Scholar 

  • D.L. Goldsby, Superplastic flow of ice relevant to glacier and ice sheet mechanics, in Glaciology and Earth’s Changing Environment, ed. by P. Knight (Blackwell, Oxford, 2006), p. 527

    Google Scholar 

  • D.L. Goldsby, D.L. Kohlstedt, Diffusion creep in ice, in Proceedings of the 35 th U.S. Rock Mechanics Symposium, ed. by J.K. Daemen, R.A. Schultz (Balkema, United States 1995), pp. 199–206

  • D.L. Goldsby, D.L. Kohlstedt, Grain boundary sliding in fine-grained Ice I. Scr. Mater. 37, 1399–1406 (1997a)

    Article  Google Scholar 

  • D.L. Goldsby, D.L. Kohlstedt, Flow of ice I by dislocation, grain boundary sliding, and diffusion processes, in Proceedings of the 28th Annual Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 1997b), pp. 429–430

    Google Scholar 

  • D.L. Goldsby, D.L. Kohlstedt, Superplastic deformation of ice: Experimental observations. J. Geophys. Res. 106, 11,017–11,030 (2001)

    Article  ADS  Google Scholar 

  • D.L. Goldsby, D.L. Kohlstedt, W.B. Durham, in Abstracts of the 24th Lunar and Planetary Science Conference, Houston, TX, 15–19 March 1993 (1993), p. 543

  • Y.P. Handa, J.G. Cook, Thermal conductivity of xenon hydrate. J. Phys. Chem. 91(25), 6327–6328 (1987)

    Article  Google Scholar 

  • Y.P. Handa, J.S. Tse, Thermodynamic properties of empty lattices of structure I and structure II clathrate hydrates. J. Phys. Chem. 90, 5917–5921 (1996)

    Article  Google Scholar 

  • C. Herring, Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437–444 (1950)

    Article  ADS  Google Scholar 

  • D.L. Hogenboom, J.S. Kargel, G.J. Consolmagno, T.C. Holden, L. Lee, M. Buyyounouski, The ammonia-water system and the chemical differentiation of icy satellites. Icarus 128, 171–180 (1997)

    Article  ADS  Google Scholar 

  • B.K. Holtzman et al., Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science 301(5637), 1227–1230 (2003)

    Article  ADS  Google Scholar 

  • B.K. Holtzman, D.L. Kohlstedt, Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain. J. Petrol. 48(12), 2379–2406 (2007)

    Article  Google Scholar 

  • S.C. Ji, A generalized mixture rule for estimating the viscosity of solid-liquid suspensions and mechanical properties of polyphase rocks and composite materials. J. Geophys. Res. (Solid Earth) 109(B10), B10207 (2004)

    Article  ADS  Google Scholar 

  • P.G. Jordan, The deformational behavior of bimineralic limestone halite aggregates. Tectonophysics 135(1–3), 185–197 (1987)

    Article  ADS  Google Scholar 

  • O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides, and Ceramics (Springer, New York, 1992), 317 pp.

    Google Scholar 

  • J.S. Kargel, Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368–390 (1991)

    Article  ADS  Google Scholar 

  • J.S. Kargel, S.K. Croft, J.I. Lunine, J.S. Lewis, Rheological properties of ammonia-water liquids and crystal–liquid slurries—Planetological applications. Icarus 89, 93–112 (1991)

    Article  ADS  Google Scholar 

  • J.S. Kargel, Ammonia-water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100, 556–574 (1992)

    Article  ADS  Google Scholar 

  • J.S. Kargel, S. Pozio, The volcanic and tectonic history of Enceladus. Icarus 119, 385–404 (1996)

    Article  ADS  Google Scholar 

  • J.S. Kargel, J.Z. Kaye, J.W. Head, G.M. Marion, R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, D.L. Hogenboom, Europa’s crust and ocean: Origin, composition, and the prospects for life. Icarus 148, 226–265 (2000)

    Article  ADS  Google Scholar 

  • J.S. Kargel, R. Furfaro, O. Prieto-Ballesteros, J.A.P. Rodriguez, D.R. Montgomery, A.R. Gillespie, G.M. Marion, S.E. Wood, Martian hydrogeology sustained by thermally insulating gas and salt hydrates. Geology 35(11), 975–978 (2007) (2007)

    Article  ADS  Google Scholar 

  • A. Kellermann Slotemaker, J.H.P. de Bresser, On the role of grain topology in dynamic grain growth - 2D microstructural modeling. Tectonophysics 427(1–4), 73–93 (2006)

    Article  ADS  Google Scholar 

  • N.I. Komle, G. Kargl, K. Thiel, K. Seiferlin, Thermal properties of cometary ices and sublimation residua including organics. Planet. Space Sci. 44(7), 675–689 (1996)

    Article  ADS  Google Scholar 

  • T. Kubo, W.B. Durham, L.A. Stern, S.H. Kirby, Grain size-sensitive creep in ice II. Science 311(5765), 1267–1269 (2006)

    Article  ADS  Google Scholar 

  • T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)

    Article  ADS  Google Scholar 

  • E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, D.F. Strobel, Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421, 45–47 (2003)

    Article  ADS  Google Scholar 

  • J.S. Lewis, Low-temperature condensation from solar nebula. Icarus 16(2), 241–252 (1972)

    Article  ADS  Google Scholar 

  • D.R. Lide (Editor in chief). Crc Handbook of Chemistry and Physics 2008–2009. Editorial: Taylor & Francis 89th edition (2008)

  • R.D. Lorenz, E. Kraal, E. Asphaug, R. Thomson, The seas of Titan. Eos 84, 125–132 (2003)

    Article  ADS  Google Scholar 

  • J.I. Lunine, D.J. Stevenson, Y.L. Yung, Ethane Ocean on Titan. Science 222(4629), 1229–1230 (1983)

    Article  ADS  Google Scholar 

  • C.M. McCarthy, S.H. Kirby, W.B. Durham, L.A. Stern, Melt-grown grain textures of eutectic mixtures of water ice with magnesium- and sodium-sulfate hydrates and sulfuric-acid hydrate using cryogenic SEM (CSEM). Eos Trans. AGU 84(46), Fall Meet. Suppl., Abstract T42A-0275 (2003)

    Google Scholar 

  • C.M. McCarthy, S.H. Kirby, W.B. Durham, L.A. Stern, Microstructure and physical properties of sulfate hydrate/ice eutectic aggregates in the binary system sodium-sulfate/water at planetary conditions. Eos Trans. AGU 85(47), Fall Meet. Suppl., Abstract P31A-0955 (2004)

  • C. McCarthy, R.F. Cooper, S.H. Kirby, K.D. Rieck, L.A. Stern, Solidification and microstructures of binary ice-I/hydrate eutectic aggregates. Am. Mineral. 92(10), 1550–1560 (2007)

    Article  Google Scholar 

  • T.C. McCord et al., Salts an Europa’s surface detected by Galileo’s Near Infrared Mapping Spectrometer. Science 280, 1242–1245 (1998)

    Article  ADS  Google Scholar 

  • R.E. Milliken, J.F. Mustard, D.L. Goldsby, Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 108, 5057 (2003) 10.1029/2002JE002005

    Article  Google Scholar 

  • G. Mitri et al., Resurfacing of Titan by ammonia-water cryomagma. Icarus 196(1), 216–224 (2008)

    Article  ADS  Google Scholar 

  • A.K. Mukherjee, The rate-controlling mechanism in superplasticity. Mater. Sci. Eng. 8, 83–89 (1971)

    Article  Google Scholar 

  • F.R.N. Nabarro, Deformation of crystals by the motion of single ions, in Report of a Conference on Strength of Solids (Bristol) (The Physical Society, London, 1948), pp. 75–90

    Google Scholar 

  • F. Nimmo, M. Manga, Causes, characteristics and consequences of convective diapirism on Europa, Geophys. Res. Lett. 29(23) (2002)

  • J.F. Nye, A flow model for the polar ice caps of Mars. J. Glaciol. 46, 438–444 (2000)

    Article  ADS  Google Scholar 

  • J.F. Nye, W.B. Durham, P.M. Schenk, J.M. Moore, The instability of a south polar cap on Mars composed of carbon dioxide. Icarus 144(2), 449–455 (2000)

    Article  ADS  Google Scholar 

  • R.T. Pappalardo, J.W. Head, R. Greeley, R.J. Sullivan, C. Pilcher, G. Schubert, W.B. Moore, M.H. Carr, J.M. Moore, M.J.S. Belton, D.L. Goldsby, Geological evidence for solid state convection in Europa’s ice shell. Nature 391, 365–368 (1998)

    Article  ADS  Google Scholar 

  • M.S. Paterson, The ductility of rocks, in Physics of Strength and Plasticity, ed. by A.S. Argon (MIT, Cambridge, 1969), pp. 377–392

    Google Scholar 

  • W.S.B. Paterson, The Physics of Glaciers, 3rd edn. (Pergamon, Oxford, 1994), 250 pp.

    Google Scholar 

  • V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, New York, 1999), 373 pp.

    Google Scholar 

  • W.A. Phillips, Tunnelling states in amorphous solids. Bull. Am. Phys. Soc. 17(1), 115 (1972)

    Google Scholar 

  • P. Picker, E. Tremblay, C. Jolicoeur, Heat capacity measurements of liquids with a Picker mixing flow microcalorimeter. J. Solut. Chem. 3, 377 (1974)

    Article  Google Scholar 

  • D. Prialnik, J. Benkhoff, M. Podolak, Modeling the structure and activity of comet nuclei. Comets II, 359–387 (2004)

    ADS  Google Scholar 

  • F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009)

    Article  ADS  Google Scholar 

  • O. Prieto-Ballesteros, J.S. Kargel, Thermal state and complex geology of a heterogeneous salty crust of Jupiter’s satellite Europa. Icarus 173, 212–221 (2005)

    Article  ADS  Google Scholar 

  • R. Raj, M.F. Ashby, On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113–1127 (1971)

    Article  ADS  Google Scholar 

  • R.O. Ramseier, Self-diffusion in ice monocrystals. US Army Cold Regions Research and Engineering Laboratory Hanover, NH, Research Report, 232 (1967a)

  • R.O. Ramseier, Self-diffusion of tritium in natural and synthetic ice monocrystals. J. Appl. Phys. 38, 2553–2556 (1967b)

    Article  ADS  Google Scholar 

  • M. Randall, F.D. Rossini, Heat capacities in aqueous salt solutions. J. Am. Chem. Soc. 51, 323–345 (1929)

    Article  Google Scholar 

  • M. Randall, M.D. Taylor, Heat capacity and density of aqueous solutions of potassium iodate, potassium acid sulfate, iodic acid, and sulfuric acid at 25 degrees C. J. Phys. Chem. 45(6), 959–967 (1941)

    Article  Google Scholar 

  • J.H. Roberts, F. Nimmo, Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194, 675–689 (2008)

    Article  ADS  Google Scholar 

  • E.J. Rosenbaum, N.J.K. English Johnson, D.W. Shaw, R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation. J. Phys. Chem. B 111(46), 13194–13205 (2007)

    Article  Google Scholar 

  • R.G. Ross, J.S. Kargel, Thermal conductivity of solar system ices, with special reference to Martian polar caps, in Solar System Ices, ed. by C. de Bergh, M. Festou, B. Schmitt (Kluwer, Dordrecht, 1998), pp. 33–62

    Google Scholar 

  • R.G. Ross, P. Andersson, G. Backstrom, Effects of h-order and d-order on thermal-conductivity of ice phases. J. Chem. Phys. 68(9), 3967–3972 (1978)

    Article  ADS  Google Scholar 

  • R.G. Ross, P. Andersson, G. Backstrom, Unusual pt dependence of thermal-conductivity for a clathrate hydrate. Nature 290(5804), 322–323 (1981)

    Article  ADS  Google Scholar 

  • K. Seiferlin, T. Spohn, J. Benkhoff, Cometary ice texture and the thermal revolution of comets. Lab. Planetol. 15(10), 35–38 (1995)

    Google Scholar 

  • K. Seiferlin, N. I Komle, G. Kargl, Line heat-source measurements of the thermal conductivity of porous H2O ice, CO2 ice and mineral powders under. Planet. Space Sci. 44(7), 691–704 (1996)

    Article  ADS  Google Scholar 

  • N.M. Schneider, M.H. Burger, E.L. Schaller, M.E. Brown, R.E. Johnson, J.S. Kargel, M. Dougherty, N. Achilleos, No sodium in Enceladus’ vapor plumes. Nature 459, 1102–1104 (2009)

    Article  ADS  Google Scholar 

  • E.M. Schulson, P. Duval, Creep and Fracture of Ice (Cambridge University Press, New York, 2009)

    Book  Google Scholar 

  • M.A. Simard, J.L. Fortier, Heat-capacity measurements of liquids with a picker mixing flow micro-calorimeter source. Canadian J. of Chemistry-Revue Canadienne de Chimie 59(22), 3208–3211 (1981)

    Article  Google Scholar 

  • G.A. Slack, Thermal conductivity of ice. Phys. Rev. B 22, 3065–3071 (1980)

    Article  ADS  Google Scholar 

  • G. Steiner, N.I. Kömle, A model of the thermal-conductivity of porous water ice at low gas-pressures. Planet. Space Sci. 39(3), 507–513 (1991)

    Article  ADS  Google Scholar 

  • L.A. Stern, W.B. Durham, S.H. Kirby, Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization. J. Geophys. Res. 102, 5313–5325 (1997)

    Article  ADS  Google Scholar 

  • E.R. Stofan et al., The lakes of Titan. Nature 445, 61–64 (2007)

    Article  ADS  Google Scholar 

  • E. Tombari, S. Presto, G. Salvetti, G.P. Johari, Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt. J. Chem. Phys. 124(15), 154507 (2006)

    Article  ADS  Google Scholar 

  • S.H. Treagus, Viscous anisotropy of two-phase composites, and applications to rocks and structures. Tectonophysics 372(3–4), 121–133 (2003)

    Article  ADS  Google Scholar 

  • J.S. Tse, M.A. White, Origin of glassy crystalline behaviour in thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate. J. Phys. Chem. 92, 5006–5011 (1988)

    Article  Google Scholar 

  • T.E. Tullis, F.G. Horowitz, J. Tullis, Flow laws of polyphase aggregates from end-member flow laws. J. Geophys. Res. 96, 8081–8096 (1991)

    Article  ADS  Google Scholar 

  • G. Wakahama, On the plastic deformation of single crystal of ice, in Proceedings of the International Conference on Low Temperature Science, vol. 1 (Inst. of Low Temp. Sci., Hokkaido Univ., Sapporo, 1967), pp. 292–311

    Google Scholar 

  • W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys. J. Int. 169, 767–774 (2007)

    Article  ADS  Google Scholar 

  • J. Weertman, Dislocation climb theory of steady-state creep. Trans. ASM 61, 681–694 (1968)

    Google Scholar 

  • M.A. White, M.T. MacLean, Rotational freedom of guest molecules in tetrahydrofuran clathrate hydrate, as determined by heat capacity measurements. J. Phys. Chem. 89, 1380–1383 (1985)

    Article  Google Scholar 

  • M.Yu. Zolotov, J.S. Kargel, Chemical composition of Europa’s ice shell, ocean, and underlying rocks, in Europa, ed. by R. Pappalardo. Space Science (University of Arizona Press, Tucson, 2008, in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Durham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durham, W.B., Prieto-Ballesteros, O., Goldsby, D.L. et al. Rheological and Thermal Properties of Icy Materials. Space Sci Rev 153, 273–298 (2010). https://doi.org/10.1007/s11214-009-9619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9619-1

Keywords

Navigation