Abstract
Laboratory measurements of physical properties of planetary ices generate information for dynamical models of tectonically active icy bodies in the outer solar system. We review the methods for measuring both flow properties and thermal properties of icy planetary materials in the laboratory, and describe physical theories that are essential for intelligent extrapolation of data from laboratory to planetary conditions. This review is structured with a separate and independent section for each of the two sets of physical properties, rheological and thermal. The rheological behaviors of planetary ices are as diverse as the icy moons themselves. High-pressure water ice phases show respective viscosities that vary over four orders of magnitude. Ices of CO2, NH3, as well as clathrate hydrates of CH4 and other gases vary in viscosity by nearly ten orders of magnitude. Heat capacity and thermal conductivity of detected/inferred compositions in outer solar system bodies have been revised. Some low-temperature phases of minerals and condensates have a deviant thermal behavior related to paramount water ice. Hydrated salts have low values of thermal conductivity and an inverse dependence of conductivity on temperature, similar to clathrate hydrates or glassy solids. This striking behavior may suit the dynamics of icy satellites.
Similar content being viewed by others
References
N. Ahmad, W.A. Phillips, Thermal-conductivity of ice and ice clathrate. Solid State Commun. 63(2), 167–171 (1987)
R.B. Alley, Flow-law hypotheses for ice-sheet modeling. J. Glaciol. 38, 245–256 (1992)
P. Andersson, R.G. Ross, Effect of guest molecule size on thermal conductivity and heat capacity of clathrate hydrates. J. Phys. C. Solid State Phys. 16, 1423–1432 (1983)
O. Andersson, H. Suga, Thermal conductivity of low density amorphous ice. Solid State Comm. 91(12), 985–988 (1994)
M.F. Ashby, R.A. Verrall, Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149–163 (1973)
N.J. Austin, B. Evans, Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology 35(4), 343–346 (2007)
A. Ball, M.M. Hutchinson, Superplasticity in the aluminum-zinc eutectoid. Metal Sci. J. 3, 1–7 (1969)
S. Bhattacharyya, S.N. Bhattacharyya, Heat-capacity and enthalpy of the ternary-system ferrous sulfate heptahydrate, sulfuric-acid, and water. J. Chem. Eng. Data 24(2), 93–96 (1979)
J.P. Bloomfield, S.J. Covey-Crump, Correlating mechanical data with microstructural observations in deformation experiments on synthetic 2-phase aggregates. J. Struct. Geol. 15(8), 1007–1019 (1993)
G.E. Brodale, W.F. Giauque, Heat of hydration of sodium sulfate. Low-temperature heat capacity and entropy of sodium sulfate decahydrate. J. Am. Chem. Soc. 80, 2042–2024 (1958)
W.F. Budd, T.H. Jacka, A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol. 16, 107–144 (1989)
B. Burton, Diffusional Creep of Polycrystalline Materials (Trans. Tech. Publications, Germany, 1977), 119 pp.
R.W. Carlson, R.E. Johnson, M.S. Anderson, Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999)
R.W. Carlson, J.S. Kargel, S. Doute, L.A. Soderblom, J.B. Dalton, Io’s surface composition, in Io after Galileo, ed. by R.M.C. Lopes, J.R. Spencer (Springer, Berlin, 2006)
M. Choukroun, O. Grasset, G. Tobie, C. Sotin, Stability of methane clathrate hydrates under pressure: Influence on Titan’s cryovolcanism and atmospheric methane replenishment. Icarus (2009). doi:10.1016/j.icarus.2009.08.011
R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963)
W.P. Cox, E.W. Hornung, W.F. Giauque, The spontaneous transformation from macrocrystalline to microcrystalline phases at low temperatures. The heat capacity of MgSO4⋅6H2O. J. Am. Chem. Soc. 77(15), 3935–3938 (1955)
S.K. Croft, J.I. Lunine, J. Kargel, Equation of state- of ammonia-water liquid—Derivation and planetological applications. Icarus 73, 279–293 (1988)
J.B. Dalton et al., Space Sci. Rev. (2010, this issue)
J.B. Dalton, O. Prieto-Ballesteros, J.S. Kargel et al., Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177, 472–490 (2005)
J.H.P. De Bresser, C.J. Peach, J.P.J. Reijs, C.J. Spiers, On dynamic recrystallization during solid state flow: Effects of stress and temperature. Geophys. Res. Lett. 25, 3457–3460 (1998)
J.H.P. De Bresser, J.H. Ter Heege, C.J. Spiers, Grain size reduction by dynamic recrystallization: Can it result in major rheological weakening? Int. J. Earth Sci. 90(1), 28–45 (2001)
M.W.C. Dharma-Wardana, F. Perrot, G.C. Aers, Effective proton-proton potential in hydrogen plasmas. Phys. Rev. A 28, 344–349 (1983)
A.J. Dombard, W.B. McKinnon, Formation of grooved terrain on Ganymede: Extensional instability mediated by cold, diffusional creep. Lunar Planet. Sci. Conf. 27, 317–318 (1996)
A.J. Dombard, W.B. McKinnon, Long-term retention of impact crater topography on Ganymede. Geophys. Res. Lett. 27, 3663–3666 (2000)
W.B. Durham, H.C. Heard, S.H. Kirby, Experimental deformation of polycrystalline H2O ice at high pressure and low temperature: Preliminary results. J. Geophys. Res. 88, B377–B392 (1983)
W.B. Durham, S.H. Kirby, L.A. Stern, Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res. 97, 20883–20897 (1992)
W.B. Durham, S.H. Kirby, L.A. Stern, Flow of ices in the ammonia-water system. J. Geophys. Res. 98, 17667–17682 (1993)
W.B. Durham, S.H. Kirby, L.A. Stern, Creep of water ices at planetary conditions: a compilation. J. Geophys. Res. (Planets) 102, 16293–16302 (1997)
W.B. Durham, L.A. Stern, S.H. Kirby, Steady-state flow of solid CO2. Geophys. Res. Lett. 26, 3493–3496 (1999)
W.B. Durham, S.H. Kirby, L.A. Stern, Rheology of ice I at low stress and elevated confining pressure. J. Geophys. Res. 106, 11,031–11,042 (2001)
W.B. Durham, S.H. Kirby, L.A. Stern, W. Zhang, The strength and rheology of methane clathrate hydrate. J. Geophys. Res. 108(B4), 2182 (2003). doi:2110.1029/2002JB001872
W.B. Durham, L.A. Stern, T. Kubo, S.H. Kirby, Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa. J. Geophys. Res. (Planets) 110(E12), E12010 (2005a). doi:12010.11029/12005JE002475
W.B. Durham, L.A. Stern, S.H. Kirby, S. Circone, Rheological comparisons and structural imaging of sI and sII endmember gas hydrates and hydrate/sediment aggregates, in Proceedings of the 5th International Conference on Gas Hydrates (paper #2030), Trondheim, Norway (2005b), pp. 607–614
W.B. Durham, A.V. Pathare, L.A. Stern, H.J. Lenferink, Mobility of icy sand packs, with application to Martian permafrost. Geophys. Res. Lett. (2009). doi:10.1029/2009GL040392
P. Duval, M.F. Ashby, I. Anderman, Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem. 87(21), 4066–4074 (1983)
A.D. Fortes, M. Choukroun, Space Sci. Rev. (2010, this issue)
H.J. Frost, M.F. Ashby, Deformation Mechanism Maps (Pergamon, New York, 1982) 167 pp.
R.C. Gifkins, Grain boundary sliding and its accommodation during creep and superplasticity. Metall. Trans. 7A, 1225–1232 (1976)
J.W. Glen, Experiments on the deformation of ice. J. Glaciol. 2, 111–114 (1952)
J.W. Glen, The creep of polycrystalline ice. Proc. R. Soc. Lon., Ser. A 228, 519–538 (1955)
D.L. Goldsby, Superplastic flow of ice relevant to glacier and ice sheet mechanics, in Glaciology and Earth’s Changing Environment, ed. by P. Knight (Blackwell, Oxford, 2006), p. 527
D.L. Goldsby, D.L. Kohlstedt, Diffusion creep in ice, in Proceedings of the 35 th U.S. Rock Mechanics Symposium, ed. by J.K. Daemen, R.A. Schultz (Balkema, United States 1995), pp. 199–206
D.L. Goldsby, D.L. Kohlstedt, Grain boundary sliding in fine-grained Ice I. Scr. Mater. 37, 1399–1406 (1997a)
D.L. Goldsby, D.L. Kohlstedt, Flow of ice I by dislocation, grain boundary sliding, and diffusion processes, in Proceedings of the 28th Annual Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 1997b), pp. 429–430
D.L. Goldsby, D.L. Kohlstedt, Superplastic deformation of ice: Experimental observations. J. Geophys. Res. 106, 11,017–11,030 (2001)
D.L. Goldsby, D.L. Kohlstedt, W.B. Durham, in Abstracts of the 24th Lunar and Planetary Science Conference, Houston, TX, 15–19 March 1993 (1993), p. 543
Y.P. Handa, J.G. Cook, Thermal conductivity of xenon hydrate. J. Phys. Chem. 91(25), 6327–6328 (1987)
Y.P. Handa, J.S. Tse, Thermodynamic properties of empty lattices of structure I and structure II clathrate hydrates. J. Phys. Chem. 90, 5917–5921 (1996)
C. Herring, Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437–444 (1950)
D.L. Hogenboom, J.S. Kargel, G.J. Consolmagno, T.C. Holden, L. Lee, M. Buyyounouski, The ammonia-water system and the chemical differentiation of icy satellites. Icarus 128, 171–180 (1997)
B.K. Holtzman et al., Melt segregation and strain partitioning: Implications for seismic anisotropy and mantle flow. Science 301(5637), 1227–1230 (2003)
B.K. Holtzman, D.L. Kohlstedt, Stress-driven melt segregation and strain partitioning in partially molten rocks: Effects of stress and strain. J. Petrol. 48(12), 2379–2406 (2007)
S.C. Ji, A generalized mixture rule for estimating the viscosity of solid-liquid suspensions and mechanical properties of polyphase rocks and composite materials. J. Geophys. Res. (Solid Earth) 109(B10), B10207 (2004)
P.G. Jordan, The deformational behavior of bimineralic limestone halite aggregates. Tectonophysics 135(1–3), 185–197 (1987)
O.A. Kaibyshev, Superplasticity of Alloys, Intermetallides, and Ceramics (Springer, New York, 1992), 317 pp.
J.S. Kargel, Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368–390 (1991)
J.S. Kargel, S.K. Croft, J.I. Lunine, J.S. Lewis, Rheological properties of ammonia-water liquids and crystal–liquid slurries—Planetological applications. Icarus 89, 93–112 (1991)
J.S. Kargel, Ammonia-water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100, 556–574 (1992)
J.S. Kargel, S. Pozio, The volcanic and tectonic history of Enceladus. Icarus 119, 385–404 (1996)
J.S. Kargel, J.Z. Kaye, J.W. Head, G.M. Marion, R. Sassen, J.K. Crowley, O. Prieto-Ballesteros, S.A. Grant, D.L. Hogenboom, Europa’s crust and ocean: Origin, composition, and the prospects for life. Icarus 148, 226–265 (2000)
J.S. Kargel, R. Furfaro, O. Prieto-Ballesteros, J.A.P. Rodriguez, D.R. Montgomery, A.R. Gillespie, G.M. Marion, S.E. Wood, Martian hydrogeology sustained by thermally insulating gas and salt hydrates. Geology 35(11), 975–978 (2007) (2007)
A. Kellermann Slotemaker, J.H.P. de Bresser, On the role of grain topology in dynamic grain growth - 2D microstructural modeling. Tectonophysics 427(1–4), 73–93 (2006)
N.I. Komle, G. Kargl, K. Thiel, K. Seiferlin, Thermal properties of cometary ices and sublimation residua including organics. Planet. Space Sci. 44(7), 675–689 (1996)
T. Kubo, W.B. Durham, L.A. Stern, S.H. Kirby, Grain size-sensitive creep in ice II. Science 311(5765), 1267–1269 (2006)
T.G. Langdon, Grain boundary sliding as a deformation mechanism during creep. Phil. Mag. 22, 689–700 (1970)
E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, D.F. Strobel, Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421, 45–47 (2003)
J.S. Lewis, Low-temperature condensation from solar nebula. Icarus 16(2), 241–252 (1972)
D.R. Lide (Editor in chief). Crc Handbook of Chemistry and Physics 2008–2009. Editorial: Taylor & Francis 89th edition (2008)
R.D. Lorenz, E. Kraal, E. Asphaug, R. Thomson, The seas of Titan. Eos 84, 125–132 (2003)
J.I. Lunine, D.J. Stevenson, Y.L. Yung, Ethane Ocean on Titan. Science 222(4629), 1229–1230 (1983)
C.M. McCarthy, S.H. Kirby, W.B. Durham, L.A. Stern, Melt-grown grain textures of eutectic mixtures of water ice with magnesium- and sodium-sulfate hydrates and sulfuric-acid hydrate using cryogenic SEM (CSEM). Eos Trans. AGU 84(46), Fall Meet. Suppl., Abstract T42A-0275 (2003)
C.M. McCarthy, S.H. Kirby, W.B. Durham, L.A. Stern, Microstructure and physical properties of sulfate hydrate/ice eutectic aggregates in the binary system sodium-sulfate/water at planetary conditions. Eos Trans. AGU 85(47), Fall Meet. Suppl., Abstract P31A-0955 (2004)
C. McCarthy, R.F. Cooper, S.H. Kirby, K.D. Rieck, L.A. Stern, Solidification and microstructures of binary ice-I/hydrate eutectic aggregates. Am. Mineral. 92(10), 1550–1560 (2007)
T.C. McCord et al., Salts an Europa’s surface detected by Galileo’s Near Infrared Mapping Spectrometer. Science 280, 1242–1245 (1998)
R.E. Milliken, J.F. Mustard, D.L. Goldsby, Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 108, 5057 (2003) 10.1029/2002JE002005
G. Mitri et al., Resurfacing of Titan by ammonia-water cryomagma. Icarus 196(1), 216–224 (2008)
A.K. Mukherjee, The rate-controlling mechanism in superplasticity. Mater. Sci. Eng. 8, 83–89 (1971)
F.R.N. Nabarro, Deformation of crystals by the motion of single ions, in Report of a Conference on Strength of Solids (Bristol) (The Physical Society, London, 1948), pp. 75–90
F. Nimmo, M. Manga, Causes, characteristics and consequences of convective diapirism on Europa, Geophys. Res. Lett. 29(23) (2002)
J.F. Nye, A flow model for the polar ice caps of Mars. J. Glaciol. 46, 438–444 (2000)
J.F. Nye, W.B. Durham, P.M. Schenk, J.M. Moore, The instability of a south polar cap on Mars composed of carbon dioxide. Icarus 144(2), 449–455 (2000)
R.T. Pappalardo, J.W. Head, R. Greeley, R.J. Sullivan, C. Pilcher, G. Schubert, W.B. Moore, M.H. Carr, J.M. Moore, M.J.S. Belton, D.L. Goldsby, Geological evidence for solid state convection in Europa’s ice shell. Nature 391, 365–368 (1998)
M.S. Paterson, The ductility of rocks, in Physics of Strength and Plasticity, ed. by A.S. Argon (MIT, Cambridge, 1969), pp. 377–392
W.S.B. Paterson, The Physics of Glaciers, 3rd edn. (Pergamon, Oxford, 1994), 250 pp.
V.F. Petrenko, R.W. Whitworth, Physics of Ice (Oxford University Press, New York, 1999), 373 pp.
W.A. Phillips, Tunnelling states in amorphous solids. Bull. Am. Phys. Soc. 17(1), 115 (1972)
P. Picker, E. Tremblay, C. Jolicoeur, Heat capacity measurements of liquids with a Picker mixing flow microcalorimeter. J. Solut. Chem. 3, 377 (1974)
D. Prialnik, J. Benkhoff, M. Podolak, Modeling the structure and activity of comet nuclei. Comets II, 359–387 (2004)
F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009)
O. Prieto-Ballesteros, J.S. Kargel, Thermal state and complex geology of a heterogeneous salty crust of Jupiter’s satellite Europa. Icarus 173, 212–221 (2005)
R. Raj, M.F. Ashby, On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113–1127 (1971)
R.O. Ramseier, Self-diffusion in ice monocrystals. US Army Cold Regions Research and Engineering Laboratory Hanover, NH, Research Report, 232 (1967a)
R.O. Ramseier, Self-diffusion of tritium in natural and synthetic ice monocrystals. J. Appl. Phys. 38, 2553–2556 (1967b)
M. Randall, F.D. Rossini, Heat capacities in aqueous salt solutions. J. Am. Chem. Soc. 51, 323–345 (1929)
M. Randall, M.D. Taylor, Heat capacity and density of aqueous solutions of potassium iodate, potassium acid sulfate, iodic acid, and sulfuric acid at 25 degrees C. J. Phys. Chem. 45(6), 959–967 (1941)
J.H. Roberts, F. Nimmo, Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus 194, 675–689 (2008)
E.J. Rosenbaum, N.J.K. English Johnson, D.W. Shaw, R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation. J. Phys. Chem. B 111(46), 13194–13205 (2007)
R.G. Ross, J.S. Kargel, Thermal conductivity of solar system ices, with special reference to Martian polar caps, in Solar System Ices, ed. by C. de Bergh, M. Festou, B. Schmitt (Kluwer, Dordrecht, 1998), pp. 33–62
R.G. Ross, P. Andersson, G. Backstrom, Effects of h-order and d-order on thermal-conductivity of ice phases. J. Chem. Phys. 68(9), 3967–3972 (1978)
R.G. Ross, P. Andersson, G. Backstrom, Unusual pt dependence of thermal-conductivity for a clathrate hydrate. Nature 290(5804), 322–323 (1981)
K. Seiferlin, T. Spohn, J. Benkhoff, Cometary ice texture and the thermal revolution of comets. Lab. Planetol. 15(10), 35–38 (1995)
K. Seiferlin, N. I Komle, G. Kargl, Line heat-source measurements of the thermal conductivity of porous H2O ice, CO2 ice and mineral powders under. Planet. Space Sci. 44(7), 691–704 (1996)
N.M. Schneider, M.H. Burger, E.L. Schaller, M.E. Brown, R.E. Johnson, J.S. Kargel, M. Dougherty, N. Achilleos, No sodium in Enceladus’ vapor plumes. Nature 459, 1102–1104 (2009)
E.M. Schulson, P. Duval, Creep and Fracture of Ice (Cambridge University Press, New York, 2009)
M.A. Simard, J.L. Fortier, Heat-capacity measurements of liquids with a picker mixing flow micro-calorimeter source. Canadian J. of Chemistry-Revue Canadienne de Chimie 59(22), 3208–3211 (1981)
G.A. Slack, Thermal conductivity of ice. Phys. Rev. B 22, 3065–3071 (1980)
G. Steiner, N.I. Kömle, A model of the thermal-conductivity of porous water ice at low gas-pressures. Planet. Space Sci. 39(3), 507–513 (1991)
L.A. Stern, W.B. Durham, S.H. Kirby, Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization. J. Geophys. Res. 102, 5313–5325 (1997)
E.R. Stofan et al., The lakes of Titan. Nature 445, 61–64 (2007)
E. Tombari, S. Presto, G. Salvetti, G.P. Johari, Heat capacity of tetrahydrofuran clathrate hydrate and of its components, and the clathrate formation from supercooled melt. J. Chem. Phys. 124(15), 154507 (2006)
S.H. Treagus, Viscous anisotropy of two-phase composites, and applications to rocks and structures. Tectonophysics 372(3–4), 121–133 (2003)
J.S. Tse, M.A. White, Origin of glassy crystalline behaviour in thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate. J. Phys. Chem. 92, 5006–5011 (1988)
T.E. Tullis, F.G. Horowitz, J. Tullis, Flow laws of polyphase aggregates from end-member flow laws. J. Geophys. Res. 96, 8081–8096 (1991)
G. Wakahama, On the plastic deformation of single crystal of ice, in Proceedings of the International Conference on Low Temperature Science, vol. 1 (Inst. of Low Temp. Sci., Hokkaido Univ., Sapporo, 1967), pp. 292–311
W.F. Waite, L.A. Stern, S.H. Kirby, W.J. Winters, D.H. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate. Geophys. J. Int. 169, 767–774 (2007)
J. Weertman, Dislocation climb theory of steady-state creep. Trans. ASM 61, 681–694 (1968)
M.A. White, M.T. MacLean, Rotational freedom of guest molecules in tetrahydrofuran clathrate hydrate, as determined by heat capacity measurements. J. Phys. Chem. 89, 1380–1383 (1985)
M.Yu. Zolotov, J.S. Kargel, Chemical composition of Europa’s ice shell, ocean, and underlying rocks, in Europa, ed. by R. Pappalardo. Space Science (University of Arizona Press, Tucson, 2008, in press)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Durham, W.B., Prieto-Ballesteros, O., Goldsby, D.L. et al. Rheological and Thermal Properties of Icy Materials. Space Sci Rev 153, 273–298 (2010). https://doi.org/10.1007/s11214-009-9619-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-009-9619-1