Skip to main content
Log in

The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Miniature Radio Frequency (Mini-RF) system is manifested on the Lunar Reconnaissance Orbiter (LRO) as a technology demonstration and an extended mission science instrument. Mini-RF represents a significant step forward in spaceborne RF technology and architecture. It combines synthetic aperture radar (SAR) at two wavelengths (S-band and X-band) and two resolutions (150 m and 30 m) with interferometric and communications functionality in one lightweight (16 kg) package. Previous radar observations (Earth-based, and one bistatic data set from Clementine) of the permanently shadowed regions of the lunar poles seem to indicate areas of high circular polarization ratio (CPR) consistent with volume scattering from volatile deposits (e.g. water ice) buried at shallow (0.1–1 m) depth, but only at unfavorable viewing geometries, and with inconclusive results. The LRO Mini-RF utilizes new wideband hybrid polarization architecture to measure the Stokes parameters of the reflected signal. These data will help to differentiate “true” volumetric ice reflections from “false” returns due to angular surface regolith. Additional lunar science investigations (e.g. pyroclastic deposit characterization) will also be attempted during the LRO extended mission. LRO’s lunar operations will be contemporaneous with India’s Chandrayaan-1, which carries the Forerunner Mini-SAR (S-band wavelength and 150-m resolution), and bistatic radar (S-Band) measurements may be possible. On orbit calibration, procedures for LRO Mini-RF have been validated using Chandrayaan 1 and ground-based facilities (Arecibo and Greenbank Radio Observatories).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.R. Arnold, Ice in the lunar polar regions. J. Geophys. Res. 84, 5659–5668 (1979)

    Article  ADS  Google Scholar 

  • B. Butler, The migration of volatiles on the surfaces of Mercury and the Moon. J. Geophys. Res. 102, 19,283–19,291 (1997)

    ADS  Google Scholar 

  • D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, No evidence for thick deposits of ice at the lunar South Pole. Nature 443, 835–837 (2006)

    Article  ADS  Google Scholar 

  • R.C. Elphic, V.R. Eke, L. Teodoro, D.J. Lawrence, D.B.J. Bussey, Models of the distribution and abundance of hydrogen at the lunar South Pole. Geophys. Res. Lett. 34, L13204 (2007). doi:10.1029/2007GL029954

    Article  ADS  Google Scholar 

  • W.C. Feldman, S. Maurice, A.B. Binder, B.L. Barraclough, R.C. Elphic, D.J. Lawrence, Fluxes of fast and epithermal neutrons from lunar prospector: evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)

    Article  ADS  Google Scholar 

  • W.C. Feldman, D.J. Lawrence, R.C. Elphic, B.L. Barraclough, S. Maurice, I. Genetay, A.B. Binder, Polar hydrogen deposits on the Moon. J. Geophys. Res. 105(E2), 4175–4195 (2000)

    Article  ADS  Google Scholar 

  • J.K. Harmon, M.A. Slade, Radar mapping of Mercury: Full-disk Doppler delay images. Science 258, 640–643 (1992)

    Article  ADS  Google Scholar 

  • M.I. Mishchenko, Polarization characteristics of the coherent backscatter opposition effect. Earth Moon Planets 58, 127–144 (1992)

    Article  ADS  Google Scholar 

  • H. Noda, H. Araki, S. Goossens, Y. Isihara, K. Matsumoto, S. Tazawa, S. Sasaki, N. Kawano, S. Sasaki, Illumination conditions at the lunar polar regions by Kaguya (SELENE) laser altimeter. Geophys. Res. Lett. 35, L24203 (2008). doi:10.1029/2008GL035692

    Article  ADS  Google Scholar 

  • S. Nozette, C. Lichtenberg, P.D. Spudis, R. Bonner, W. Ort, E. Malaret, M. Robinson, E.M. Shoemaker, The Clementine bistatic radar experiment. Science 274, 1495–1498 (1996)

    Article  ADS  Google Scholar 

  • S. Nozette, E.M. Shoemaker, P.D. Spudis, C.L. Lichtenberg, The possibility of ice on the Moon. Science 278, 144–145 (1997)

    Article  Google Scholar 

  • S. Nozette, P.D. Spudis, M. Robinson, D.B.J. Bussey, C. Lichtenberg, R. Bonner, Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar South Pole. J. Geophys. Res. 106(E19), 23253–23266 (2001)

    Article  ADS  Google Scholar 

  • R.K. Raney, Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 45, 3397–3404 (2007)

    Article  ADS  Google Scholar 

  • R.A. Simpson, G.L. Tyler, Reanalysis of Clementine bistatic radar data for the lunar South Pole. J. Geophys. Res. 104, 3845–3862 (1999)

    Article  ADS  Google Scholar 

  • P.D. Spudis, Ice on the Moon. Space Rev. (2006). http://www.thespacereview.com/article/740/1

  • P. Spudis, S. Nozette, B. Bussey, K. Raney, H. Winters, C.L. Lichtenberg, W.M. Marinelli, J.C. Crusan, M.M. Gates, Mini-SAR: An imaging radar experiment for the Chandrayaan-1 mission to the Moon. Curr. Sci. (India) 96, 533–539 (2009)

    Google Scholar 

  • N.J.S. Stacy, High-resolution synthetic aperture radar observations of the moon. Ph.D. dissertation, Cornell University, Ithaca, NY (1993)

  • N.J.S. Stacy, D.B. Campbell, P.G. Ford, Arecibo radar mapping of the lunar poles: A search for ice deposits. Science 276, 1527–1530 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Bussey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozette, S., Spudis, P., Bussey, B. et al. The Lunar Reconnaissance Orbiter Miniature Radio Frequency (Mini-RF) Technology Demonstration. Space Sci Rev 150, 285–302 (2010). https://doi.org/10.1007/s11214-009-9607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-009-9607-5

Keywords

Navigation