Space Science Reviews

, Volume 152, Issue 1–4, pp 449–500 | Cite as

Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

Article

Abstract

Of the terrestrial planets, Earth and Mercury have self-sustained fields while Mars and Venus do not. Magnetic field data recorded at Ganymede have been interpreted as evidence of a self-generated magnetic field. The other icy Galilean satellites have magnetic fields induced in their subsurface oceans while Io and the Saturnian satellite Titan apparently are lacking magnetic fields of internal origin altogether. Parts of the lunar crust are remanently magnetized as are parts of the crust of Mars. While it is widely accepted that the magnetization of the Martian crust has been caused by an early magnetic field, for the Moon alternative explanations link the magnetization to plasma generated by large impacts. The necessary conditions for a dynamo in the terrestrial planets and satellites are the existence of an iron-rich core that is undergoing intense fluid motion. It is widely accepted that the fluid motion is caused by convection driven either by thermal buoyancy or by chemical buoyancy or by both. The chemical buoyancy is released upon the growth of an inner core. The latter requires a light alloying element in the core that is enriched in the outer core as the solid inner core grows. In most models, the light alloying element is assumed to be sulfur, but other elements such as, e.g., oxygen, silicon, and hydrogen are possible. The existence of cores in the terrestrial planets is either proven beyond reasonable doubt (Earth, Mars, and Mercury) or the case for a core is compelling as for Venus and the Moon. The Galilean satellites Io and Ganymede are likely to have cores judging from Galileo radio tracking data of the gravity fields of these satellites. The case is less clear cut for Europa. Callisto is widely taken as undifferentiated or only partially differentiated, thereby lacking an iron-rich core. Whether or not Titan has a core is not known at the present time. The terrestrial planets that do have magnetic fields either have a well-established inner core with known radius and density such as Earth or are widely agreed to have an inner core such as Mercury. The absence of an inner core in Venus, Mars, and the Moon (terrestrial bodies that lack fields) is not as well established although considered likely. The composition of the Martian core may be close to the Fe–FeS eutectic which would prevent an inner core to grow as long as the core has not cooled to temperatures around 1500 Kelvin. Venus may be on the verge of growing an inner core in which case a chemical dynamo may begin to operate in the geologically near future. The remanent magnetization of the Martian and the lunar crust is evidence for a dynamo in Mars’ and possibly the Moon’s early evolution and suggests that powerful thermally driven dynamos are possible. Both the thermally and the chemically driven dynamo require that the core is cooled at a sufficient rate by the mantle. For the thermally driven dynamo, the heat flow from the core into the mantle must by larger than the heat conducted along the core adiabat to allow a convecting core. This threshold is a few mW m−2 for small planets such as Mercury, Ganymede, and the Moon but can be as large as a few tens mW m−2 for Earth and Venus. The buoyancy for both dynamos must be sufficiently strong to overcome Ohmic dissipation. On Earth, plate tectonics and mantle convection cool the core efficiently. Stagnant lid convection on Mars and Venus are less efficient to cool the core but it is possible and has been suggested that Mars had plate tectonics in its early evolution and that Venus has experienced episodic resurfacing and mantle turnover. Both may have had profound implications for the evolution of the cores of these planets. It is even possible that inner cores started to grow in Mars and Venus but that the growth was frustrated as the mantles heated following the cessation of plate tectonics and resurfacing. The generation of Ganymede’s magnetic field is widely debated. Models range from magneto-hydrodynamic convection in which case the field will not be self-sustained to chemical and thermally-driven dynamos. The wide range of possible compositions for Ganymede’s core allows models with a completely liquid near eutectic Fe–FeS composition as well as models with Fe inner cores or cores in with iron snowfall.

Keywords

Magnetic field generation Thermal evolution Terrestrial planets Satellites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission. Science 279, 1676–1680 (1998) ADSCrossRefGoogle Scholar
  2. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetism discovered by the Mars global surveyor MAG/ER experiment. Science 284, 790–793 (1999) ADSCrossRefGoogle Scholar
  3. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Rème, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23,403–23,418 (2001) ADSCrossRefGoogle Scholar
  4. O. Aharonson, M.T. Zuber, S.C. Solomon, Crustal remanence in an internally magnetized non-uniform shell: A possible source for Mercury’s magnetic field? Earth Planet. Sci. Lett. 218, 261–268 (2004) ADSCrossRefGoogle Scholar
  5. K.M. Alley, E.M. Parmentier, Numerical experiments on thermal convection in a chemically stratified viscous fluid heated from below: implications for a model of lunar evolution. Phys. Earth Planet. Int. 108, 15–32 (1998) ADSCrossRefGoogle Scholar
  6. B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt, The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science 321, 82–85 (2008). doi:10.1126/science.1159081 ADSCrossRefGoogle Scholar
  7. J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996) ADSCrossRefGoogle Scholar
  8. J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Europa’s differentiated internal structure: Inferences from two Galileo encounters. Science 276, 1236–123 (1998) ADSCrossRefGoogle Scholar
  9. J.D. Anderson, R.A. Jacobson, T.P. McElrath et al., Shape, mean radius, gravity field and interior structure of Callisto. Icarus 153, 157–161 (2001a). doi:10.1006/icar.2001.6664 ADSCrossRefGoogle Scholar
  10. J.D. Anderson, R.A. Jacobson, E.L. Lau, W.B. Moore, G. Schubert, Io’s gravity field and interior structure. J. Geophys. Res. 106(E12), 32,963–32,969 (2001b) ADSCrossRefGoogle Scholar
  11. A. Anselmi, G. Scoon, BepiColombo, ESA’s Mercury Cornerstone mission. Planet. Space Sci. 49, 1409–1420 (2001) ADSCrossRefGoogle Scholar
  12. J. Arkani-Hamed, J. Dyment, Magnetic potential and magnetization contrasts of Earth’s lithosphere. J. Geophys. Res. 101(B5), 11,401–11,426 (1996) ADSCrossRefGoogle Scholar
  13. Y. Asahara, D.J. Frost, D.C. Rubie, Partitioning of FeO between magnesiowustite and liquid iron at high pressures and temperatures: Implications for the composition of the Earth’s outer core. Earth Planet. Sci. Lett. 257, 435–449 (2007) ADSCrossRefGoogle Scholar
  14. J. Aubert, S. Labrosse, C. Poitou, Modelling the paleo-evolution of the geodynamo. Geophys. J. Int. 179, 1414–1428 (2009). doi:10.1111/j.1365-246X.2009.04361.x ADSCrossRefGoogle Scholar
  15. H. Backes, F.M. Neubauer, M.K. Dougherty, N. Achilleos, N. André, C.S. Arridge, C. Bertucci, G.H. Jones, K.K. Khurana, C.T. Russell, A. Wennmacher, Titan’s magnetic field signature during the first Cassini encounter. Science 308, 992–995 (2005) ADSCrossRefGoogle Scholar
  16. P.S. Balog, R.A. Secco, D.C. Rubie, D.J. Frost, Equation of state of liquid Fe-10 wt.% S: Implications for the metallic cores of planetary bodies. J. Geophys. Res. 108(B2), 2124 (2003). doi:10.1029/2001JB001646 ADSCrossRefGoogle Scholar
  17. Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the Terrestrial Planets (Pergamon, New York, 1981). Google Scholar
  18. D. Bercovici, Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication. Earth Planet. Sci. Lett. 154, 139–151 (1998) ADSCrossRefGoogle Scholar
  19. C.M. Bertka, Y. Fei, Mineralogy of the Martian interior up to core–mantle boundary pressures. J. Geophys. Res. 102, 5251–5264 (1997) ADSCrossRefGoogle Scholar
  20. M.T. Bland, A.P. Showman, G. Tobie, The production of Ganymede’s magnetic field. Icarus 198, 384–399 (2008) ADSCrossRefGoogle Scholar
  21. U. Bleil, N. Petersen, Variations in magnetization intensity and low-temperature titanomagnetite oxidation of ocean floor basalts. Nature 301, 384–388 (1983) ADSCrossRefGoogle Scholar
  22. J.R. Booker, K.C. Stengel, Further thoughts on convective heat transport in a variable viscosity fluid. J. Fluid Mech. 86, 289–291 (1978) MATHADSCrossRefGoogle Scholar
  23. S.I. Braginsky, Mac-oscillations of the hidden ocean of the core. J. Geomag. Geoelectr. 45, 1517–1538 (1993) Google Scholar
  24. S.I. Braginsky, Formation of the stratified ocean of the core. Earth Planet. Sci. Lett. 243, 650–656 (2006) ADSCrossRefGoogle Scholar
  25. S.I. Braginsky, P.H. Roberts, Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1–97 (1995) ADSCrossRefGoogle Scholar
  26. D. Breuer, W.B. Moore, Dynamics and thermal history of the terrestrial planets, the Moon, and Io, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 299–348 CrossRefGoogle Scholar
  27. D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics: Evidence from the magnetic field history and crust evolution. J. Geophys. Res.-Planets 108(E7), 5072 (2003). doi:10.1029/20002JE001999 ADSCrossRefGoogle Scholar
  28. D. Breuer, T. Spohn, Viscosity of the Martian mantle and its initial temperature: Constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54, 153–169 (2006) ADSCrossRefGoogle Scholar
  29. D. Breuer, S.A. Hauck, M. Buske, M. Pauer, T. Spohn, Interior evolution of Mercury. Space Sci. Rev. 132(2–4), 229–260 (2007). doi:10.1007/s11214-007-9228-9 ADSCrossRefGoogle Scholar
  30. D. Breuer, H. Hussmann, T. Spohn, The magnetic dichotomy of the Galilean satellites Europa and Ganymede, in Geophysical Research Abstracts, European Geosciences Union—General Assembly, Vienna (Austria), 2008-04-13–2008-04-18, abstract 07511, 2008 Google Scholar
  31. B.A. Buffett, Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett. 29, 7 (2002) ADSCrossRefGoogle Scholar
  32. B. Buffett, Core-mantle interactions, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 345–358 CrossRefGoogle Scholar
  33. B.A. Buffett, H.E. Huppert, J.R. Lister, A.W. Woods, Analytical model for solidification of the Earth’s core. Nature 356, 329–331 (1992) ADSCrossRefGoogle Scholar
  34. B.A. Buffett, H.E. Huppert, J.R. Lister, A.W. Woods, On the thermal evolution of the Earth’s core. J. Geophys. Res. 101, 7989–8006 (1996) ADSCrossRefGoogle Scholar
  35. M. Buske, Dreidimensionale thermische Evolutionsmodelle für das Innere von Mars und Merkur, Doktorarbeit, IMPRS, Katlenburg-Lindau, 2006 Google Scholar
  36. F.H. Busse, Phys. Earth Planet. Inter. 12, 350–358 (1976) ADSCrossRefGoogle Scholar
  37. F.H. Busse, R. Simitev, Planetary dynamos, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 281–290 CrossRefGoogle Scholar
  38. S. Butler, W. Peltier, S. Costin, Numerical models of the Earth’s thermal history: Effects of inner-core solidification and core potassium. Phys. Earth Planet. Inter. 152, 22–42 (2005) ADSCrossRefGoogle Scholar
  39. B. Chen, J. Li, S.A. Hauck, Non-ideal liquidus curve in the Fe–S system and Mercury’s snowing core. Geophys. Res. Lett. 35 (2008). doi:10.1029/2008GL033311
  40. U.R. Christensen, Thermal evolution models for the Earth. J. Geophys. Res. 90, 2995–3007 (1985) ADSCrossRefGoogle Scholar
  41. U.R. Christensen, A deep dynamo generating Mercury’s magnetic field. Nature 444, 1056–1058 (2006). doi: 10.1038/nature05342 ADSCrossRefGoogle Scholar
  42. U. Christensen, Dynamo scaling laws and applications to the planets. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9553-2, this issue Google Scholar
  43. U.R. Christensen, J. Aubert, Geophys. J. Int. 166(1), 97–114 (2006) ADSCrossRefGoogle Scholar
  44. U.R. Christensen, A. Tilgner, Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169–171 (2004) ADSCrossRefGoogle Scholar
  45. U.R. Christensen, J. Wicht, Numerical dynamo simulations, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 245–282 CrossRefGoogle Scholar
  46. U.R. Christensen, V. Holzwarth, A. Reiners, Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009) ADSCrossRefGoogle Scholar
  47. L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe–S to 44 GPa. Earth Planet Sci. Lett. 257, 97–103 (2007). doi:10.1016/j.epsl.2007.02.024 ADSCrossRefGoogle Scholar
  48. S.M. Cisowski, M. Fuller, Lunar paleointensities via the IRMs normalization method and the early magnetic history of the Moon, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor (Lunar and Planetary Science Institute, Houston, 1986), pp. 411–424 Google Scholar
  49. J.E.P. Connerney, Planetary magnetism, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 243–280 CrossRefGoogle Scholar
  50. J.E.P. Connerney, M.H. Acuña, P. Wasilewski, N.F. Ness, H. Rème, C. Mazelle, D. Vignes, R.P. Lin, D. Mitchell, P. Cloutier, Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999) ADSCrossRefGoogle Scholar
  51. J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111(1–2), 1–32 (2004) ADSCrossRefGoogle Scholar
  52. J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Reme, From the cover: Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. 102, 14970–14975 (2005) ADSCrossRefGoogle Scholar
  53. V. Conzelmann, Thermische Evolution des Planeten Merkur berechnet unter Anwendung verschiedener Viskositätsgesetze. Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 1999 Google Scholar
  54. S.O. Costin, S.L. Butler, Modelling the effects of internal heating in the core and lowermost mantle on the earth’s magnetic history. Phys. Earth Planet. Inter. 157, 55–71 (2006) ADSCrossRefGoogle Scholar
  55. F.J. Crary, F. Bagenal, Remanant ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, 25757–25773 (1998) ADSCrossRefGoogle Scholar
  56. A. Davaille, C. Jaupart, Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993) ADSCrossRefGoogle Scholar
  57. F. Deschamps, C. Sotin, Inversion of two-dimensional numerical convection experiments for a fluid with a strongly temperature-dependent viscosity. Geophys. J. Int. 143, 204–218 (2000) ADSCrossRefGoogle Scholar
  58. J.O. Dickey, P.L. Bender, J.E. Faller et al., Lunar laser ranging: A continuing legacy of the Apollo program. Science 265, 482–490 (1994) ADSCrossRefGoogle Scholar
  59. G. Dreibus, H. Wänke, Mars: A volatile-rich planet. Meteoritics 20, 367–382 (1985) ADSGoogle Scholar
  60. D.J. Dunlop, O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573 CrossRefGoogle Scholar
  61. A.M. Dziewonski, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981) ADSCrossRefGoogle Scholar
  62. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: Implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003) ADSCrossRefGoogle Scholar
  63. L.T. Elkins-Tanton, S. Zaranek, E.M. Parmentier, Early magnetic field and magmatic activity on Mars from magma ocean overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005) ADSCrossRefGoogle Scholar
  64. Y. Fei, C.T. Prewitt, H. Mao, C.M. Bertka, Structure and density of FeS at high pressure and high temperature and the internal structure of Mars. Science 268, 1892–1894 (1995) ADSCrossRefGoogle Scholar
  65. Y. Fei, C.M. Bertka, L.W. Finger, High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997) CrossRefGoogle Scholar
  66. Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. Am. Mineral. 85, 1830–1833 (2000) Google Scholar
  67. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997) ADSCrossRefGoogle Scholar
  68. H.V. Frey, Impact constraints on the age and origin of the lowlands of Mars. Geophys. Res. Lett. 33, L08S02 (2006). doi:10.1029/2005GL024484 CrossRefMathSciNetGoogle Scholar
  69. G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50, 757–762 (2002) ADSCrossRefGoogle Scholar
  70. K.H. Glassmeier, H.-U. Auster, U. Motschmann, A feedback dynamo generating Mercury’s magnetic field. Geophys. Res. Lett. 34, L22201 (2007). doi:10.1029/2007GL031662 ADSCrossRefGoogle Scholar
  71. F. Goarant, F. Guyot, J. Peyronneau, J.-P. Poirier, High-pressure and high-temperature reactions between silicates and liquid iron alloys, in the diamond anvil cell, studied by analytical electron microscopy. J. Geophys. Res. 97, 4477–4487 (1992) ADSCrossRefGoogle Scholar
  72. O. Grasset, E.M. Parmentier, Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution. J. Geophys. Res. 103, 18171–18181 (1998) ADSCrossRefGoogle Scholar
  73. O. Grasset, C. Sotin, F. Deschamps, On the internal structure and dynamics of Titan. Planet. Space Sci. 48, 617–636 (2000) ADSCrossRefGoogle Scholar
  74. C. Grignè, S. Labrosse, P.J. Tackley, Convective heat transfer as a function of wavelength: Implications for the cooling of the Earth. J. Geophys. Res. 110, B03409 (2005). doi:10.1029/2004JB003376 CrossRefGoogle Scholar
  75. M. Grott, D. Breuer, The evolution of the martian elastic lithosphere and implications for crustal and mantle rheology. Icarus 193, 503–515 (2008). doi:10.1016/j.icarus.2007.08.015 ADSCrossRefGoogle Scholar
  76. D. Gubbins, Energetics of the Earth’s core. J. Geophys. 43, 453–464 (1977) Google Scholar
  77. D. Gubbins, D. Alfë, G. Masters, D. Price, M.J. Gillan, Can the Earth’s dynamo run on heat alone? Geophys. J. Int. 155, 609–622 (2003) ADSCrossRefGoogle Scholar
  78. D. Gubbins, D. Alfë, G. Masters, D. Price, M.J. Gillan, Gross thermodynamics of 2-component core convection. Geophys. J. Int. 157, 1407–1414 (2004) ADSCrossRefGoogle Scholar
  79. U. Hansen, D.A. Yuen, High Rayleigh number regime of temperature-dependent viscosity convection and the Earth’s early thermal history. Geophys. Res. Lett. 20, 2191–2194 (1993) ADSCrossRefGoogle Scholar
  80. H. Harder, U. Christensen, A one-plume model of Martian mantle convection. Nature 380, 507–509 (1996) ADSCrossRefGoogle Scholar
  81. H. Harder, G. Schubert, Sulfur in Mercury’s core? Icarus 151, 118–122 (2001) ADSCrossRefGoogle Scholar
  82. S.A. Hauck, R.J. Phillips, Thermal and crustal evolution of Mars. J. Geophys. Res. 107(E7) (2002). doi:10.1029/2001JE001801
  83. S.A. Hauck, A.J. Dombard, R.J. Phillips, S.C. Solomon, Internal and tectonic evolution of Mercury. Earth Planet. Sci. Lett. 222(3–4), 713–728 (2004) ADSCrossRefGoogle Scholar
  84. S.A. Hauck, J.M. Aurnou, A.J. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111 (2006) Google Scholar
  85. J.W. Head, R. Greeley, M.P. Golombek et al., Geological processes and evolution. Space Sci. Rev. 96(1/4), 263–292 (2001) ADSCrossRefGoogle Scholar
  86. M.H. Heimpel, J.M. Aurnou, F.M. Al-Shamali, N. Gomez Perez, A numerical study of dynamo action as a function of spherical shell geometry. Earth Planet. Sci. Lett. 236 (2005). doi:10.1016/j.epsl.2005.04.032
  87. J.W. Hernlund, C. Thomas, P.J. Tackley, Phase boundary double crossing and the structure of Earth’s deep mantle. Nature 434, 882–886 (2005). doi:10.1038/nature03472 ADSCrossRefGoogle Scholar
  88. J.M. Hewitt, D.P. McKenzie, N.O. Weiss, Dissipative heating in convective flows. J. Fluid Mech. 68, 721–738 (1975) MATHADSCrossRefGoogle Scholar
  89. R. Hide, The hydrodynamics of the Earth’s core. Phys. Chem. Earth 1, 94–137 (1956) CrossRefGoogle Scholar
  90. R. Hide, Comments on the Moon’s magnetism. Moon 4, 39 (1972) ADSCrossRefGoogle Scholar
  91. L. Hood, Z. Huang, Formation of magnetic anomalies antipodal to lunar impact basins: Two dimensional model calculations. J. Geophys. Res. 96, 9837–9846 (1991) ADSCrossRefGoogle Scholar
  92. L.L. Hood, D.L. Mitchell, R.P. Lin, M.H. Acuna, A.B. Binder, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999) ADSCrossRefGoogle Scholar
  93. L. Hood, A. Vickery, Magnetic field amplification and generation in hypervelocity meteorid impacts with application to lunar paleomagnetism, in Proceedings of the Lunar and Planetary Science Conference 15th, Part 1. J. Geophys. Res. 89(supplement), C211–C223 (1984) Google Scholar
  94. L.L. Hood, A. Zakharian, J. Halekas et al., Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J. Geophys. Res. 106, 27825–27839 (2001) ADSCrossRefGoogle Scholar
  95. W.B. Hubbard, in Planetary Interiors (Van Nostrand–Reinhold, New York, 1984) Google Scholar
  96. C. Huettig, Scaling laws for internally heated mantle convection, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2009 Google Scholar
  97. G. Hulot, C. Eymin, B. Langlais, M. Mandea, N. Olsen, Small-scale structure of the geodynamo inferred from Oersted and Magsat satellite data. Nature 416, 620–623 (2002) ADSCrossRefGoogle Scholar
  98. H. Hussman, T. Spohn, Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004) ADSCrossRefGoogle Scholar
  99. H. Hussmann, C. Sotin, J.I. Lunine, Interiors and evolution of Icy satellites, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 509–540 CrossRefGoogle Scholar
  100. J.A. Jacobs, The Earth’s inner core. Nature 172, 297–298 (1953) ADSCrossRefGoogle Scholar
  101. C. Jaupart, S. Labrosse, J.-C. Mareschal, Temperatures, heat and energy in the mantle of the Earth, in Mantle Dynamics. Treatise of Geophysics, vol. 7 (Elsevier, Amsterdam, 2007), pp. 253–303 CrossRefGoogle Scholar
  102. H. Jeffreys, The instability of a compressible fluid heated below. Proc. Camb. Philos. Soc. 26, 170–172 (1930) MATHCrossRefGoogle Scholar
  103. C.A. Jones, Thermal and compositional convection in the outer core, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 131–185 CrossRefGoogle Scholar
  104. S. Karato, D.C. Rubie, Towards an experimental study of deep mantle rheology: A new multi-anvil specimen assembly for deformation studies under high pressure and temperatures. J. Geophys. Res. 102, 20,111–20,122 (1997) ADSCrossRefGoogle Scholar
  105. S. Karato, P. Wu, Rheology of the upper mantle. Science 260, 771–778 (1993) ADSCrossRefGoogle Scholar
  106. Y. Ke, V.S. Solomatov, Early transient superplumes and the origin of the Martian crustal dichotomy. J. Geophys. Res. 111 (2006). doi:10.1029/2005JE002631
  107. T. Keller, P.J. Tackley, Towards self-consistent modelling of the Martian dichotomy: The influence of low-degree convection on crustal thickness distribution. Icarus 202 (2009). doi:10.1016/j.icarus.2009.03.029
  108. B.L.N. Kennett, E.R. Engdahl, R.P. Buland, Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124 (1995) ADSCrossRefGoogle Scholar
  109. R. Kerswell, Elliptical instability. Ann. Rev. Fluid Mech. 34, 83–113 (2002) ADSCrossRefMathSciNetGoogle Scholar
  110. A. Khan, K. Mosegaard, J.G. Williams, P. Lognonné, Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J. Geophys. Res. 109(E09), E09007 (2004). doi:10.1029/2004JE002294 CrossRefGoogle Scholar
  111. J. Kimura, T. Nakagawa, K. Kurita, Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo. Icarus (2009). doi:10.1016/-j.icarus.2009.02.026
  112. R.L. Kirk, D.J. Stevenson, Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987) ADSCrossRefGoogle Scholar
  113. M.G. Kivelson, K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo Spacecraft. Nature 384, 537–541 (1996) ADSCrossRefGoogle Scholar
  114. M.G. Kivelson, K.K. Khurana, M. Volwerk, The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002) ADSCrossRefGoogle Scholar
  115. E. Knittle, R. Jeanloz, Earth’s core-mantle boundary: Results of experiments at high pressures and temperatures. Science 251, 1438–1443 (1991) ADSCrossRefGoogle Scholar
  116. A.S. Konopliv, S.W. Asmar, E. Carranza, W.L. Sjogren, D.N. Yuan, Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001) ADSCrossRefGoogle Scholar
  117. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006) ADSCrossRefGoogle Scholar
  118. W. Konrad, T. Spohn, Thermal history of the Moon: Implications for an early core dynamo and post-accretional magmatism. Adv. Space Res. 19(10), 1511–1521 (1997) ADSCrossRefGoogle Scholar
  119. J. Korenaga, Archean geodynamics and the thermal evolution of the Earth, in Archean Geodynamics and Environments, ed. by K. Benn, J. Mareschal, K.C. Condie. Geophysical Monograph Series, vol. 164 (American Geophysical Union, Washington, 2006), pp. 7–32 Google Scholar
  120. Y.N. Kulikov, H. Lammer, H.I.M. Lichtenegger, T. Penz, D. Breuer, T. Spohn, R. Lundin, H.K. Biernat, A comparative study of the influence of the active young sun on the early atmospheres of Earth, Venus, and Mars. Space Sci. Rev. 129(1–3), 207–243 (2007). doi:10.1007/s11214-007-9192-4 ADSCrossRefGoogle Scholar
  121. O.L. Kuskov, V.A. Kronrod, Core sizes and internal structure of Earth’s and Jupiter’s satellites. Icarus 151, 204–227 (2001) ADSCrossRefGoogle Scholar
  122. S. Labrosse, Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 199, 147–156 (2002) ADSCrossRefGoogle Scholar
  123. S. Labrosse, Thermal and magnetic evolution of the Earth’s core. Phys. Earth Planet. Inter. 140, 127–143 (2003) ADSCrossRefGoogle Scholar
  124. S. Labrosse, C. Jaupart, Thermal evolution of the earth: Secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007) ADSCrossRefGoogle Scholar
  125. S. Labrosse, J.-P. Poirier, J.-L. Le Mouîl, On cooling of the Earth’s core. Phys. Earth Planet. Inter. 99, 1–17 (1997) ADSCrossRefGoogle Scholar
  126. S. Labrosse, J.-P. Poirier, J.-L. Le Mouîl, The age of the inner core. Earth Planet. Sci. Lett. 190, 111–123 (2001) ADSCrossRefGoogle Scholar
  127. S. Labrosse, J.W. Hernlund, N. Coltice, A crystallizing dense magma ocean at the base of Earth’s mantle. Nature 450, 866–869 (2007) ADSCrossRefGoogle Scholar
  128. A. Landolt-Börnstein, Terrestrial planets and satellites: Planetary interiors, in Numerical Data and Functional Relationships in Science and Technology. New Series Group VI: Astronomy and Astrophysics, 4: Astronomy, Astrophysics, and Cosmology (Subvolume B Solar System) (Springer, Berlin, 2009), pp. 200–224. ISBN 978-3-540-88054-7. ISSN 0942-8011 Google Scholar
  129. B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res. 109, 37 (2004). doi:10.1029/2003JE002048 CrossRefGoogle Scholar
  130. B. Langlais, V. Lesur, M.E. Purucker, J.P.E. Connerney, M. Mandea, Crustal magnetic fields of terrestrial planets. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9557-y, this issue Google Scholar
  131. T. Lay, J. Hernlund, B.A. Buffett, Core-mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008) ADSCrossRefGoogle Scholar
  132. F.G. Lemoine, D.E. Smith, D.D. Rowlands et al., An improved solution of the gravity field of Mars (GMM-2B) from Mars Global Surveyor. J. Geophys. Res. 106, 23359–23376 (2001) ADSCrossRefGoogle Scholar
  133. J.S. Lewis, The temperature gradient in the solar nebula. Science 186, 440–443 (1972) ADSCrossRefGoogle Scholar
  134. J.S. Lewis, Io: Geochemistry of sulfur. Icarus 50, 103–114 (1982) ADSCrossRefGoogle Scholar
  135. J.S. Lewis, Origin and composition of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 651–666 Google Scholar
  136. J. Li, C.B. Agee, Geochemistry of mantle-core differentiation at high pressure. Nature 381, 686–689 (1996) ADSCrossRefGoogle Scholar
  137. J.R. Lister, Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Inter. 140, 145–158 (2003) ADSCrossRefGoogle Scholar
  138. J.R. Lister, B.A. Buffett, The strength and efficiency of the thermal and compositional convection in the geodynamo. Phys. Earth Planet. Inter. 91, 17–30 (1995) CrossRefGoogle Scholar
  139. J.R. Lister, B.A. Buffett, Stratification of the outer core at the core-mantle boundary. Phys. Earth Planet. Inter. 105, 5–19 (1998) ADSCrossRefGoogle Scholar
  140. K. Lodders, B. Fegley, The Planetary Scientist’s Companion (Oxford University Press, Oxford, 1998) Google Scholar
  141. P. Lognonne, C. Johnson, Planetary seismology, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 69–122 CrossRefGoogle Scholar
  142. D.E. Loper, The gravitationally powered dynamo. Geophys. J. R. Astron. Soc. 54, 389–404 (1978a) Google Scholar
  143. D.E. Loper, Some thermal consequences of a gravitationally powered dynamo. J. Geophys. Res. 83, 5961–5970 (1978b) ADSCrossRefGoogle Scholar
  144. J.I. Lunine, D.J. Stevenson, Clathrate and ammonia hydrates at high pressure: Application to the origin of methane on Titan. Icarus 70, 61–77 (1987) ADSCrossRefGoogle Scholar
  145. J.L. Margot, S.J. Peale, R.F. Jurgens, M.A. Slade, I.V. Holin, Large longitude libration of mercury reveals a molten core. Science 316(5825), 710–714 (2007) ADSCrossRefGoogle Scholar
  146. W.B. McKinnon, Core evolution in the icy satellites, and the prospects for dynamo-generated magnetic fields. Bull. Am. Astron. Soc. 28, 1076 (1996) ADSGoogle Scholar
  147. W.B. McKinnon, K. Zahnle, B.A. Ivanov, H.J. Melosh, Cratering on Venus: Modeling and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 969–1014 Google Scholar
  148. H.Y. McSween Jr., SNC meteorites: Clues to Martian petrologic evolution? Rev. Geophys. 23, 391–416 (1985) ADSCrossRefGoogle Scholar
  149. D.L. Mitchell, R.P. Lin, H. Rème, M.H. Acuña, P.A. Cloutier, N.F. Ness, Crystal magnetospheres observed in the Martian night hemisphere, in American Astronomical Society, DPS Meeting #31, abstracts #59.04, Bull. Am. Astron. Soc. 31, 1584 (1999) Google Scholar
  150. D.L. Mitchell, R.P. Lin, C. Mazelle, H. Rème, P.A. Cloutier, J.E.P. Connerney, M.H. Acuña, N.F. Ness, Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer. J. Geophys. Res. 106(E10), 23,419–23,428 (2001) ADSCrossRefGoogle Scholar
  151. D.L. Mitchell, J.S. Halekas, R.P. Lin, S. Frey, L.L. Hood, M.H. Acuña, Global mapping of lunar crustal fields by Lunar Prospector. Icarus 194, 401–409 (2008) ADSCrossRefGoogle Scholar
  152. P.S. Mohit, J. Arkani-Hamed, Impact demagnetization of the Martian crust. Icarus 168 (2004). doi:10.1016/j.icarus.2003.12.005
  153. L.-N. Moresi, V.S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995) MATHADSCrossRefGoogle Scholar
  154. S. Mollett, Thermal and magnetic constraints on the cooling of the Earth. Geophys. J. R. Astron. Soc. 76, 653–666 (1984) ADSGoogle Scholar
  155. W.B. Moore, Heat transport in a convecting layer heated from within and below. J. Geophys. Res. 113 (2008) Google Scholar
  156. K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004) ADSCrossRefGoogle Scholar
  157. T. Nakagawa, P.J. Tackley, Effects of thermo-chemical mantle convection on the thermal evolution of the Earth’s core. Earth Planet. Sci. Lett. 220, 107–119 (2004) ADSCrossRefGoogle Scholar
  158. T. Nakagawa, P.J. Tackley, Deep mantle heat flow and thermal evolution of the Earth’s core in thermochemical multiphase models of mantle convection. Geochem. Geophys. Geosyst. 6, Q08003 (2005). doi:10.1029/2005GC000967 CrossRefGoogle Scholar
  159. Y. Nakamura, G. Latham, D. Lammlein, M. Ewing, F. Duennebier, J. Dorman, Deep lunar interior inferred from recent seismic data. Geophys. Res. Lett. 1, 137–140 (1974) ADSCrossRefGoogle Scholar
  160. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Magnetic field of Mercury confirmed. Nature 255, 204 (1975) ADSCrossRefGoogle Scholar
  161. N.F. Ness, M.H. Acuña, J. Connerney, P. Wasilewski, C. Mazelle, J. Sauvaud, D. Vignes, C. D’Uston, H. Reme, R. Lin, D.L. Mitchell, J. McFadden, D. Curtis, P. Cloutier, S.J. Bauer, MGS magnetic fields and electron reflectometer investigation: Discovery of paleomagnetic fields due to crustal remanence. Adv. Space Res. 23(11), 1879–1886 (1999) ADSCrossRefGoogle Scholar
  162. F. Nimmo, Energetics of the core, in Treatise on Geophysics, vol. 8, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 31–66 CrossRefGoogle Scholar
  163. F. Nimmo, D. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11,969–11,979 (2000) ADSCrossRefGoogle Scholar
  164. F. Nimmo, G.D. Price, J. Brodholt, D. Gubbins, The influence of potassium on core and geodynamo evolution. Geophys. J. Int. 156, 263–376 (2004) CrossRefGoogle Scholar
  165. P. Olson, Overview on core dynamics, in Treatise on Geophysics, vol. 8, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 1–31. Chap. 8.01 CrossRefGoogle Scholar
  166. C. O’Neill, A. Lenardic, Geological consequences of super-sized Earths. Geophys. Res. Lett. 34, L19204 (2007). doi:10.1029/2007GL030598 ADSCrossRefGoogle Scholar
  167. H. Ozawa, K. Hirose, M. Mitome, Y. Bando, N. Sata, Y. Ohishi, Chemical equilibrium between ferropericlase and molten iron to 134 GPa and implications for iron content at the bottom of the mantle. Geophys. Res. Lett. 35 (2008) Google Scholar
  168. M. Ozima, K. Seki, N. Terada, Y.N. Miura, F.A. Podosek, H. Shinagawa, Terrestrial nitrogen and noble gases in lunar soils. Nature 436, 655–659 (2005) ADSCrossRefGoogle Scholar
  169. E.M. Parmentier, S. Zhong, M. Zuber, Gravitational differentiation due to initial chemical stratification: Origin of lunar asymmetry by the creep of denseKREEP? Earth Planet Sci. Lett. 201, 473–480 (2002) ADSCrossRefGoogle Scholar
  170. S.J. Peale, Inferences from the dynamical history of Mercury’s rotation. Icarus 28, 459–467 (1976) ADSCrossRefGoogle Scholar
  171. S.J. Peale, The rotational dynamics of Mercury and the state of its core, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 461–493 Google Scholar
  172. J.-P. Poirier, Transport properties of liquid metals and viscosity of the Earth’s core. Phys. Earth Planet. Inter. 92, 99–105 (1988) Google Scholar
  173. J.-P. Poirier, Light elements in the Earth’s core: A critical review. Phys. Earth Planet. Inter. 85, 319–337 (1994) ADSCrossRefGoogle Scholar
  174. M.E. Purucker, A global model of the internal magnetic field of the Moon based on Lunar Prospector magnetometer observations. Icarus 197 (2008). doi:10.1016/j.icarus.2008.03.016
  175. N.J. Rappaport, A.S. Konopliv, A.B. Kucinskas, P.G. Ford, An improved 360 degree and order model of Venus topography. Icarus 139, 19–31 (1999) ADSCrossRefGoogle Scholar
  176. C.C. Reese, V.S. Solomatov, J.R. Baumgardner, Scaling laws for time dependent stagnant lid convection in a spherical shell. Phys. Earth Planet. Inter. 149, 361–370 (2005) ADSCrossRefGoogle Scholar
  177. G.O. Roberts, Fast viscous Bernard convection. Geophys. Astrophys. Fluid Dyn. 12, 235–272 (1979) MATHADSCrossRefGoogle Scholar
  178. P.H. Roberts, Theory of the geodynamo, in Core Dynamics, ed. by P. Olson. Treatise on Geophysics, vol. 8 (Elsevier, Amsterdam, 2007), pp. 67–105 CrossRefGoogle Scholar
  179. J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemisphere dichotomy. J. Geophys. Res. 111, E06013 (2006) CrossRefGoogle Scholar
  180. J.H. Roberts, R.J. Lillis, M. Manga, Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114, E04009 (2009). doi:10.1029/2008JE003287 CrossRefGoogle Scholar
  181. P.H. Roberts, C.A. Jones, A.R. Calderwood, Energy fluxes and ohmic dissipation in the Earth’s core, in Earth’s Core and Lower Mantle, ed. by C.A. Jones, A.M. Soward, K. Zhang (Taylor & Francis, London, 2003), pp. 100–129 Google Scholar
  182. P. Rochette, G. Fillion, R. Ballou, F. Brunet, B. Ouladdiaf, L.L. Hood, High pressure magnetic transition in pyrrhotite and impact demagnetization on Mars. Geophys. Res. Lett. 30 (2003). doi:10.1029/2003GL017359
  183. S.K. Runcorn, An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975) ADSCrossRefGoogle Scholar
  184. C.T. Russell, R.C. Elphic, J.A. Slavin, Initial Pioneer Venus magnetic field results: Dayside observations. Science 203, 745 (1979a) ADSCrossRefGoogle Scholar
  185. C.T. Russell, R.C. Elphic, J.A. Slavin, Initial Pioneer Venus magnetic field results: Nightside observations. Science 205, 114 (1979b) ADSCrossRefGoogle Scholar
  186. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999) ADSCrossRefGoogle Scholar
  187. G.R. Sarson, C.A. Jones, K. Zhang, G. Schubert, Magneto-convection dynamos and the magnetic fields of Io and Ganymede. Science 276, 1106–1108 (1997) ADSCrossRefGoogle Scholar
  188. G.G. Schaber, R.G. Strom, H.J. Moore et al., Geology and distribution of impact craters on Venus: What are they telling us? J. Geophys. Res. 97, 13,257–13,301 (1992) ADSCrossRefGoogle Scholar
  189. G. Schubert, Ann. Rev. Earth Planet. Sci. 7, 289 (1979) Google Scholar
  190. G. Schubert, T. Spohn, Thermal history of Mars and the sulfur content of its core. J. Geophys. Res. 95, 14095–14104 (1990) ADSCrossRefGoogle Scholar
  191. G. Schubert, P. Cassen, R.E. Young, Subsolidus convective cooling histories of terrestrial planets. Icarus 38, 192–211 (1979) ADSCrossRefGoogle Scholar
  192. G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field, in Mercury, ed. by F. Viulas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tuscon, 1988), pp. 514–561 Google Scholar
  193. G. Schubert, S.C. Solomon, D.L. Turcotte, M.J. Drake, N.H. Sleep, Origin and thermal evolution of Mars, in Mars, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (Univ. Press of Arizona, Tucson, 1992), pp. 147–183 Google Scholar
  194. G. Schubert, K. Zhang, M.G. Kivelson, J.D. Anderson, The magnetic field and internal structure of Ganymede. Nature 384, 544–545 (1996) ADSCrossRefGoogle Scholar
  195. G. Schubert, C.T. Russell, W.B. Moore, Timing of the Martian dynamo. Nature 408, 666–667 (2000) ADSCrossRefGoogle Scholar
  196. G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge Univ. Press, Cambridge, 2001), 940 pp. CrossRefGoogle Scholar
  197. G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter, ed. by F. Bagnell, T. Dowling, W.B. McKinnon. The Planet, Satellites and Magnetosphere (Cambridge University Press, Cambridge, 2004), pp. 281–306 Google Scholar
  198. S. Schumacher, D. Breuer, Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J. Geophys. Res. 111, E02006 (2006). doi:10.1029/2005JE002429 CrossRefGoogle Scholar
  199. H.P. Scott, Q. Williams, F.J. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203, 399–412 (2002) ADSCrossRefGoogle Scholar
  200. H.N. Sharpe, W.R. Peltier, Parameterized mantle convection and the Earth’s thermal history. Geophys. Res. Lett. 5, 737–740 (1978) ADSCrossRefGoogle Scholar
  201. H.N. Sharpe, W.R. Peltier, A thermal history model for the Earth with parameterized convection. Geophys. J. R. Astron. Soc. 59, 171–203 (1979) ADSGoogle Scholar
  202. A.P. Showman, R. Malhotra, Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus 127, 93–111 (1997) ADSCrossRefGoogle Scholar
  203. A.P. Showman, D.J. Stevenson, R. Malhotra, Coupled orbital and thermal evolution of Ganymede. Icarus 129, 367–383 (1997) ADSCrossRefGoogle Scholar
  204. R.W. Siegfried, S.C. Solomon, Icarus 23, 192–205 (1974) ADSCrossRefGoogle Scholar
  205. W.L. Sjogren, W.B. Banerdt, P.W. Chodas et al., The Venus gravity field and other geodetic parameters, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. Press of Arizona, Tucson, 1997), pp. 1125–1162 Google Scholar
  206. D.E. Smith, M.T. Zuber, The shape of Mars and the topographic signature of the hemispheric dichotomy. Science 271, 184–188 (1996) ADSCrossRefGoogle Scholar
  207. F. Sohl, G. Schubert, Interior structure, composition, and mineralogy of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 27–68 CrossRefGoogle Scholar
  208. F. Sohl, T. Spohn, The structure of Mars: Implications from SNC-Meteorites. J. Geophys. Res. 102, 1613–1635 (1997) ADSCrossRefGoogle Scholar
  209. F. Sohl, T. Spohn, D. Breuer, K. Nagel, Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002) ADSCrossRefGoogle Scholar
  210. F. Sohl, G. Schubert, T. Spohn, Geophysical constraints on the composition and structure of the Martian interior. J. Geophys. Res. 110, E12008 (2005). doi:10.1029/2005JE002520 ADSCrossRefGoogle Scholar
  211. V.S. Solomatov, Scaling of temperature- and stress-dependent viscosity. Phys. Fluids 7, 266–274 (1995) MATHADSCrossRefGoogle Scholar
  212. V.S. Solomatov, L.N. Moresi, Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res. 105, 21795–21817 (2000) ADSCrossRefGoogle Scholar
  213. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head III, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, Planet. Space Sci. 49, 1445–1465 (2001) ADSCrossRefGoogle Scholar
  214. C.S. Solomon, O. Aharonson, J.M. Aurnou et al., New perspectives on ancient Mars. Science 307, 1214–1220 (2005) ADSCrossRefGoogle Scholar
  215. A. Souriau, Deep Earth structure—The Earth’s cores, in Seismology and the Structure of the Earth, ed. by A.M. Dziewonski, B.A. Romanowicz. Treatise on Geophysics, vol. 1 (Elsevier, Amsterdam, 2007), pp. 655–693 CrossRefGoogle Scholar
  216. E.A. Spiegel, G. Veronis, On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442–447 (1960) ADSCrossRefMathSciNetGoogle Scholar
  217. T. Spohn, Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus 90, 222–236 (1991) ADSCrossRefGoogle Scholar
  218. T. Spohn, D. Breuer, Implications from Galileo observations on the interior structure and evolution of the Galilean satellites, in Planetary Systems: The Long View, ed. by L.M. Celnikier, J. Tran Thanh Van (Editions Frontiers, 1998), pp. 135–145 Google Scholar
  219. T. Spohn, F. Sohl, D. Breuer, Mars. Astron. Astrophys. Rev. 8, 181–235 (1998) ADSCrossRefGoogle Scholar
  220. T. Spohn, F. Sohl, K. Wieczerkowski, V. Conzelmann, The interior structure of Mercury: What we know, what we expect from BepiColombo. Planet. Space Sci. 49, 1561–1570 (2001a) ADSCrossRefGoogle Scholar
  221. T. Spohn, M.A. Acunã, D. Breuer et al., Geophysical constraints on the evolution of Mars. Space Sci. Rev. 96, 231–262 (2001b) ADSCrossRefGoogle Scholar
  222. T. Spohn, W. Konrad, D. Breuer, R. Ziethe, Lunar volcanism induced by heat advected from the lower mantle: Results of 2D and 3D mantle convection calculations. Icarus 149, 54–65 (2001c) ADSCrossRefGoogle Scholar
  223. F.D. Stacey, O.L. Anderson, Electrical and thermal conductivities of Fe–Ni–Si alloy under core conditions. Phys. Earth Planet. Inter. 124, 153–162 (2001) ADSCrossRefGoogle Scholar
  224. S. Stanley, Glatzmeier, Dynamo models for planets other than Earth. Space Sci. Rev. (2009). doi:10.1007/s11214-009-9573-y, this issue Google Scholar
  225. S. Stanley, J. Bloxham, W.E. Hutchinson, M.T. Zuber, Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 27–38 (2005). doi:10.1016/j.epsl.2005.02.040 ADSCrossRefGoogle Scholar
  226. S. Stanley, L. Elkins-Tanton, M.T. Zuber, E.M. Parmentier, Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321(5897), 1822–1825 (2008) ADSCrossRefGoogle Scholar
  227. D.R. Stegman, A.M. Jellinek, S.A. Zatman, J.R. Baumgardner, M.A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421, 143–146 (2003a) ADSCrossRefGoogle Scholar
  228. V. Steinbach, D. Yuen, Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions. Phys. Earth Planet. Inter. 86, 165–183 (1994) ADSCrossRefGoogle Scholar
  229. D.R. Stegman, A.M. Jellinek, S.A. Zatman, J.R. Baumgardner, M.A. Richards, An early lunar core dynamo driven by thermochemical mantle convection. Nature 421(6919), 143–146 (2003b) ADSCrossRefGoogle Scholar
  230. A. Stephenson, S.K. Runcorn, D.W. Collinson, On changes in the intensity of the ancient lunar magnetic field, in Proceedings of the 6th Lunar Science Conference. Geochim. Cosmochim. Acta (1975) Google Scholar
  231. D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555–620 (1983). doi:10.1088/0034-4885/46/5/001 ADSCrossRefGoogle Scholar
  232. D.J. Stevenson, Mercury’s magnetic field: A thermoelectric dynamo? Earth Planet. Sci. Lett. 82, 114 (1987) ADSCrossRefGoogle Scholar
  233. D.J. Stevenson, When Galileo met Ganymede. Nature 384, 511–512 (1996) ADSCrossRefGoogle Scholar
  234. D.J. Stevenson, Mars core and magnetism. Nature 412, 214–219 (2001) ADSCrossRefGoogle Scholar
  235. D.J. Stevenson, Possible connections between the history of the Venus magnetic field and observable features, American Geophysical Union, Spring Meeting 2002, abstract #P21A-08 (2002) Google Scholar
  236. D. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983) ADSCrossRefGoogle Scholar
  237. A.J. Stewart, M.W. Schmidt, W. van Westrenen, C. Liebske, Mars: A new core-crystallization regime. Science 316, 1323–1325 (2007) ADSCrossRefGoogle Scholar
  238. R.G. Strom, N.J. Trask, J.E. Guest, J. Geophys. Res. 80, 2478–2507 (1975) ADSCrossRefGoogle Scholar
  239. P.J. Tackley, The quest for self-consistent incorporation of plate tectonics in mantle convection, in History and Dynamics of Global Plate Motions, ed. by M.A. Richards, R. Gordon, R. van der Hilst. Geophysical Monograph Series, vol. 121 (American Geophysical Union, Washington, 2000a) Google Scholar
  240. P.J. Tackley, Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, Part 1: Pseudoplastic yielding. Geochem. Geophys. Geosyst. 1 (2000b) Google Scholar
  241. J.A. Tarduno, R.D. Cottrell, M.K. Watkeys, D. Bauch, Geomagnetic field strength 3.2 billion years ago recorded by single silicate crystals. Nature 446, 657–660 (2007) ADSCrossRefGoogle Scholar
  242. H. Terasaki, T. Kato, S. Urakawa, K. Funakoshi, A. Suzuki, T. Okada, M. Maeda, J. Sato, T. Kubo, S. Kasai, The effect of temperature, pressure, and sulfur content on viscosity of the Fe–FeS melt. Earth Planet. Sci. Lett. 190, 93–101 (2001) ADSCrossRefGoogle Scholar
  243. Y. Thibault, M.J. Walter, The influence of pressure and temperature on the metal-silicate partition coefficients of nickel and cobalt in a model C1 chondrite and implications for metal segregation in a deep matma ocean. Geochim. Cosmochim. Acta 59, 991–1002 (1995) ADSCrossRefGoogle Scholar
  244. A. Tilgner, Precession driven dynamos. Phys. Fluids 17, 034104 (2005) ADSCrossRefMathSciNetGoogle Scholar
  245. G. Tobie, A. Mocquet, C. Sotin, Tidal dissipation within large icy satellites: Europa and Titan. Icarus 177, 534–549 (2005) ADSCrossRefGoogle Scholar
  246. P.B. Toft, J. Arkani-Hamed, Magnetization of the Pacific Ocean lithosphere deduced from Magsat data. J. Geophys. Res. 97, 4387–4406 (1992) ADSCrossRefGoogle Scholar
  247. R.A. Trompert, U. Hansen, On the Rayleigh number dependence of convection with strongly temperature dependent viscosity. Phys. Fluids 10(2), 351–360 (1998) ADSCrossRefGoogle Scholar
  248. D.L. Turcotte, An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17,061–17,068 (1993) ADSCrossRefGoogle Scholar
  249. D.L. Turcotte, E.R. Oxburgh, Finite amplitude convective cells and continental drift. J. Fluid. Mech. 28, 29–42 (1967) MATHADSCrossRefGoogle Scholar
  250. D. Valencia, R.J. O’Connell, Convection scaling and subduction on Earth and super-Earths. Earth Planet. Sci. Lett. 286, 492–502 (2009) ADSCrossRefGoogle Scholar
  251. D. Valencia, R.J. O’Connell, D. Sasselov, Inevitability of plate tectonic on super-Earths. Astrophys. J. 670, L45–L48 (2007) ADSCrossRefGoogle Scholar
  252. T. Van Holst, The rotation of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 123–164 Google Scholar
  253. L. Vocadlo, Mineralogy of the Earth—The Earth’s core: Iron and iron alloys, in Mineral Physics, ed. by D. Price. Treatise on Geophysics, vol. 2 (Elsevier, Amsterdam, 2007), pp. 91–120 CrossRefGoogle Scholar
  254. S.A. Weinstein, The effects of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets. J. Geophys. Res. 100(E6), 11,719–11,728 (1995) ADSCrossRefGoogle Scholar
  255. B. Weiss, J. Berdahl, L. Elkins-Tanton, S. Stanley, E.A. Lima, L. Carpozen, Magnetism on the angrite parent body and the early differentiation of planetesimals. Science 332, 713–716 (2008) ADSCrossRefGoogle Scholar
  256. G.W. Wetherill, Acculmulation of mercury from planetesimals, in Mercury, ed. by F. Viulas, C.R. Chapman, M.S. Matthews (Univ. Press of Arizona, Tucson, 1988), pp. 514–561 Google Scholar
  257. M.A. Wieczorek, Gravity and topography of the terrestrial planets, in Planets and Moons, ed. by T. Spohn. Treatise on Geophysics, vol. 10 (Elsevier, Amsterdam, 2007), pp. 165–206 CrossRefGoogle Scholar
  258. U. Wienbruch, T. Spohn, A self sustained magnetic field on Io? Planet. Space Sci. 9, 1045–1057 (1995) ADSCrossRefGoogle Scholar
  259. J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27,933–27,968 (2001) ADSGoogle Scholar
  260. J.-P. Williams, F. Nimmo, Thermal evolution of the Martian core: Implications for an early dynamo. Geology 32, 97–100 (2004) ADSCrossRefGoogle Scholar
  261. D.T. Woods, J.M. Shull, C.L. Sarazin, Astrophys. J. 249, 399 (1981) ADSCrossRefGoogle Scholar
  262. S. Xie, P.J. Tackley, Evolution of helium and argon isotopes in a convecting mantle. Phys. Earth Planet. Inter. 146, 417–439 (2004) ADSCrossRefGoogle Scholar
  263. C.F. Yoder, The free librations of a dissipative Moon. Philos. Trans. R. Soc. Lond. Ser. A 303, 327–338 (1981) ADSCrossRefGoogle Scholar
  264. C.F. Yoder, Venusian spin dynamics, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Philips (Univ. Press of Arizona, Tucson, 1997), pp. 1087–1124 Google Scholar
  265. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide (1993). doi:10.1126/science.1079645
  266. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003). doi:10.1126/science.1079645 ADSCrossRefGoogle Scholar
  267. T. Yukutake, Implausibility of thermal convection in the Earth’s solid inner core. Phys. Earth Planet. Inter. 108, 1–13 (1998) ADSCrossRefGoogle Scholar
  268. R. Ziethe, K. Seiferlin, H. Hiesinger, Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages. Planet. Space Sci. 57(7), 784–796 (2009). doi:10.1016/j.pss.2009.02.002 ADSCrossRefGoogle Scholar
  269. V.N. Zharkov, V.P. Trubitsyn, Physics of Planetary Interiors (Pachart, Tucson, 1978) Google Scholar
  270. S. Zhong, M.T. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001) ADSCrossRefGoogle Scholar
  271. M.T. Zuber, S.C. Solomon, R.J. Phillips et al., Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287, 1788–1793 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.DLRInstitute of Planetary ResearchBerlinGermany
  2. 2.Laboratoire des sciences de la TerreENS LyonLyon Cedex 07France

Personalised recommendations