Advertisement

Space Science Reviews

, Volume 150, Issue 1–4, pp 161–181 | Cite as

LAMP: The Lyman Alpha Mapping Project on NASA’s Lunar Reconnaissance Orbiter Mission

  • G. Randall GladstoneEmail author
  • S. Alan Stern
  • Kurt D. Retherford
  • Ronald K. Black
  • David C. Slater
  • Michael W. Davis
  • Maarten H. Versteeg
  • Kristian B. Persson
  • Joel W. Parker
  • David E. Kaufmann
  • Anthony F. Egan
  • Thomas K. Greathouse
  • Paul D. Feldman
  • Dana Hurley
  • Wayne R. Pryor
  • Amanda R. Hendrix
Article

Abstract

The Lyman Alpha Mapping Project (LAMP) is a far-ultraviolet (FUV) imaging spectrograph on NASA’s Lunar Reconnaissance Orbiter (LRO) mission. Its main objectives are to (i) identify and localize exposed water frost in permanently shadowed regions (PSRs), (ii) characterize landforms and albedos in PSRs, (iii) demonstrate the feasibility of using natural starlight and sky-glow illumination for future lunar surface mission applications, and (iv) characterize the lunar atmosphere and its variability. As a byproduct, LAMP will map a large fraction of the Moon at FUV wavelengths, allowing new studies of the microphysical and reflectance properties of the regolith. The LAMP FUV spectrograph will accomplish these objectives by measuring the signal reflected from the night-side lunar surface and in PSRs using both the interplanetary HI Lyman-α sky-glow and FUV starlight as light sources. Both these light sources provide fairly uniform, but faint, illumination. With the expected LAMP sensitivity, by the end of the primary 1-year LRO mission, the SNR for a Lyman-α albedo map should be >100 in polar regions >1 km2, providing useful FUV constraints to help characterize subtle compositional and structural features. The LAMP instrument is based on the flight-proven Alice series of spectrographs flying on the Rosetta comet mission and the New Horizons Pluto mission. A general description of the LAMP instrument and its initial ground calibration results are presented here.

Lunar Ultraviolet LRO Lyman-α 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Ajello, A.I. Stewart, G.E. Thomas, A. Graps, Solar cycle study of interplanetary Lyman-alpha variations—Pioneer Venus Orbiter sky background results. Astrophys. J. 317, 964–986 (1987) CrossRefADSGoogle Scholar
  2. J.-L. Bertaux, E. Quémerais, R. Lallement, E. Kyrölä, W. Schmidt, T. Summanen, J.P. Goutail, M. Berthé, J. Costa, T. Holzer, First results from SWAN Lyman alpha solar wind mapper on SOHO. Sol. Phys. 175, 737–770 (1997) CrossRefADSGoogle Scholar
  3. R.J.C. Brown, P.J. Brewer, M.J.T. Milton, The physical and chemical properties of electroless nickel-phosphorus black surfaces. J. Mater. Chem. 12, 2749–2754 (2002) CrossRefGoogle Scholar
  4. D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, No evidence for thick deposits of ice at the lunar south pole. Nature 443, 835–837 (2006) CrossRefADSGoogle Scholar
  5. G. Chin, S. Brylow, M. Foote, J. Garvin, J. Kasper, J. Keller, M. Litvak, I. Mitrofanov, D. Paige, K. Raney, M. Robinson, A. Sanin, D. Smith, H. Spence, P. Spudis, S.A. Stern, M. Zuber, Lunar Reconnaissance Orbiter Overview: The instrument suite and mission. Space Sci. Rev. 129, 391–419 (2007) CrossRefADSGoogle Scholar
  6. D.H. Crider, R.R. Vondrak, Space weathering effects on lunar cold trap deposits. J. Geophys. Res. 108(E7), 5079 (2003). doi: 10.1029/2002JE002030 CrossRefGoogle Scholar
  7. P.D. Feldman, D. Morrison, The Apollo 17 Ultraviolet Spectrometer: Lunar atmosphere measurements revisited. Geophys. Res. Lett. 18(11), 2105–2108 (1991) CrossRefADSGoogle Scholar
  8. W.C. Feldman, S. Maurice, D.J. Lawrence, R.C. Little, S.L. Lawson, O. Gasnault, R.C. Wiens, B.L. Barraclough, R.C. Elphis, T.H. Prettyman, J.T. Steinberg, A.B. Binder, Evidence for water ice near the lunar poles. J. Geophys. Res. 106, 23231–23251 (2001) CrossRefADSGoogle Scholar
  9. B. Hapke, R. Nelson, W. Smythe, The opposition effect of the Moon: Coherent backscatter and shadow hiding. Icarus 133, 89–97 (1998) CrossRefADSGoogle Scholar
  10. A.R. Hendrix, The Galileo Ultraviolet Spectrometer: in-flight calibration and the ultraviolet albedos of the Moon, Gaspra, Ida and Europa, Ph.D. thesis, University of Colorado, Boulder, 1996 Google Scholar
  11. A.R. Hendrix, C.J. Hansen, Ultraviolet observations of Phoebe from the Cassini UVIS. Icarus 193, 323–333 (2008) CrossRefADSGoogle Scholar
  12. R.C. Henry, P.D. Feldman, J.W. Kruk, A.F. Davidsen, S.T. Durrance, Ultraviolet albedo of the Moon with the Hopkins Ultraviolet Telescope. Astrophys. J. 454, L69–L72 (1995) CrossRefADSGoogle Scholar
  13. R.C. Henry, The local interstellar ultraviolet radiation field. Astrophys. J. 570, 697–707 (2002) CrossRefADSGoogle Scholar
  14. R.R. Hodges, Formation of the lunar atmosphere. Moon 14, 139–157 (1975) CrossRefADSGoogle Scholar
  15. R.R. Hodges, Reanalysis of Lunar Prospector neutron spectrometer observations over the lunar poles. J. Geophys. Res. 107, 5125 (2002). doi: 10.1029/2000JE001483 CrossRefGoogle Scholar
  16. R.R. Hodges, J.H. Hoffman, F.S. Johnson, The lunar atmosphere. Icarus 21, 415–426 (1974) CrossRefADSGoogle Scholar
  17. P. Jelinsky, S. Jelinsky, Low reflectance EUV materials: a comparative study. Appl. Opt. 26(4), 613–615 (1987) CrossRefADSGoogle Scholar
  18. R.M. Killen, Source and maintenance of the argon atmospheres of Mercury and the Moon. Meteorit Planet. Sci. 37(9), 1223–1231 (2002) CrossRefADSGoogle Scholar
  19. J. Mathis, P. Mezger, N. Panagia, Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 128, 212–229 (1983) ADSGoogle Scholar
  20. M. Mendillo, The atmosphere of the Moon. Earth Moon Planets 85/86, 271–277 (2001) CrossRefADSGoogle Scholar
  21. K.A. Moldosanov, M.A. Samsonov, L.S. Kim, R. Henneck, O.H.W. Siegmund, J. Warren, S. Cully, D. Marsh, Highly absorptive coating for the vacuum ultraviolet range. Appl. Opt. 37(1), 93–97 (1998) CrossRefADSGoogle Scholar
  22. T.H. Morgan, D.E. Shemansky, Limits to the lunar atmosphere. J. Geophys. Res. 96, 1351–1367 (1991) CrossRefADSGoogle Scholar
  23. National Research Council, The Scientific Context for Exploration of the Moon (The National Academies Press, Washington, 2007), 120 pp. Google Scholar
  24. J. Parker, S.A. Stern, G.R. Gladstone, J. Shull, The spectroscopic detectability of argon in the lunar atmosphere. Astrophys. J. 509, L61–L64 (1998) CrossRefADSGoogle Scholar
  25. W.R. Pryor, P. Gangopadhyay, B. Sandel, T. Forrester, E. Quemerais, E. Moebius, L. Esposito, A.I.F. Stewart, B. McClintock, A. Jouchoux, J. Colwell, V. Izmodenov, Y. Malena, W.K. Tobiska, D.E. Shemansky, J.M. Ajello, C. Hansen, M. Bzowski, P. Frisch, Radiation transport of heliospheric Lyman-alpha from combined Cassini and Voyager data sets. Astron. Astrophys. 491, 21–28 (2008) CrossRefADSGoogle Scholar
  26. P.H. Schultz, M.I. Staid, C.M. Pieters, Lunar activity from recent gas release. Nature 444, 184–186 (2006) CrossRefADSGoogle Scholar
  27. O.H.W. Siegmund, Microchannel plate imaging detector technologies for UV instruments, in Conference Proceedings From X-rays to X-band—Space Astrophysics Detectors and Detector Technologies (Space Telescope Science Institute, 2000) Google Scholar
  28. O.H.W. Siegmund, J. Stock, R. Raffanti, D. Marsh, M. Lampton, Planar delay line readouts for high resolution astronomical EUV/UV spectroscopy, in UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas, Proceedings from the 10th International Colloquium, Berkeley, CA, 3–5 February 1992 (1992), pp. 383–386 Google Scholar
  29. R.A. Simpson, G.L. Tyler, Reanalysis of Clementine bistatic radar data from the lunar south pole. J. Geophys. Res. 104, 3845–3862 (1999) CrossRefADSGoogle Scholar
  30. D.C. Slater, S.A. Stern, T. Booker, J. Scherrer, M.F. A’Hearn, J.L. Bertaux, P.D. Feldman, M.C. Festou, O.H.W. Siegmund, Radiometric and calibration performance results for the Rosetta UV imaging spectrometer Alice, in UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics, ed. by O.H.W. Siegmund, S. Fineschi, M.A. Gummin. Proceedings of SPIE, vol. 4498 (SPIE, Bellingham, 2001), pp. 239–247 Google Scholar
  31. D.C. Slater, M.W. Davis, C.B. Olkin, S.A. Stern, J. Scherrer, Radiometric performance results of the New Horizons’ Alice UV imaging spectrograph, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (SPIE, Bellingham, 2005) Google Scholar
  32. S.A. Stern, The lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999) CrossRefADSGoogle Scholar
  33. S.A. Stern, D.C. Slater, W. Gibson, J. Scherrer, M. A’Hearn, J.-L. Bertaux, P.D. Feldman, M.C. Festou, Alice: an ultraviolet imaging spectrometer for the Rosetta Orbiter. Adv. Space Res. 21, 1517–1525 (1998) CrossRefADSGoogle Scholar
  34. S.A. Stern, J.R. Scherrer, D.C. Slater, G.R. Gladstone, L.A. Young, G.J. Dirks, J.M. Stone, M.W. Davis, Alice: The ultraviolet imaging spectrograph aboard the New Horizons spacecraft, in X-Ray, UV, Visible, and IR Instrumentation for Planetary Missions, ed. by O.H.W. Siegmund, G.R. Gladstone. Proceedings of SPIE, vol. 5906B (SPIE, Bellingham, 2005) Google Scholar
  35. S.A. Stern, D.C. Slater, J.R. Scherrer, J.M. Stone, G.J. Dirks, M.H. Versteeg, M.W. Davis, G.R. Gladstone, J.Wm. Parker, L.A. Young, O.H.W. Siegmund, Alice: the ultraviolet imaging spectrograph aboard the New Horizons Pluto-Kuiper Belt mission. Space Sci. Rev. 140, 155–187 (2008) CrossRefADSGoogle Scholar
  36. A.R. Vasavada, D.A. Paige, S.E. Wood, Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus 141, 179–193 (1999) CrossRefADSGoogle Scholar
  37. R.R. Vondrak, Lunar base activities and the lunar environment. LPI Contribution 652, 246 (1988) ADSGoogle Scholar
  38. R.R. Vondrak, J.W. Freeman, R.A. Lindeman, Measurements of lunar atmospheric loss rate, in Proc. 5th Lunar Sci. Conf. (1974), p. 2945 Google Scholar
  39. J.K. Wagner, B.W. Hapke, E.N. Wells, Atlas of reflectance spectra of terrestrial, lunar, and meteoritic powders and frosts from 92 to 1800 nm. Icarus 69, 14–28 (1987) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • G. Randall Gladstone
    • 1
    Email author
  • S. Alan Stern
    • 2
  • Kurt D. Retherford
    • 1
  • Ronald K. Black
    • 1
  • David C. Slater
    • 1
  • Michael W. Davis
    • 1
  • Maarten H. Versteeg
    • 1
  • Kristian B. Persson
    • 1
  • Joel W. Parker
    • 2
  • David E. Kaufmann
    • 2
  • Anthony F. Egan
    • 2
  • Thomas K. Greathouse
    • 1
  • Paul D. Feldman
    • 3
  • Dana Hurley
    • 4
  • Wayne R. Pryor
    • 5
  • Amanda R. Hendrix
    • 6
  1. 1.Southwest Research InstituteSan AntonioUSA
  2. 2.Southwest Research InstituteBoulderUSA
  3. 3.The Johns Hopkins UniversityBaltimoreUSA
  4. 4.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  5. 5.Central Arizona CollegeCoolidgeUSA
  6. 6.Jet Propulsion LaboratoryPasadenaUSA

Personalised recommendations