Space Science Reviews

, Volume 152, Issue 1–4, pp 307–339 | Cite as

The Magnetic Field of Mercury

  • Brian J. Anderson
  • Mario H. Acuña
  • Haje Korth
  • James A. Slavin
  • Hideharu Uno
  • Catherine L. Johnson
  • Michael E. Purucker
  • Sean C. Solomon
  • Jim M. Raines
  • Thomas H. Zurbuchen
  • George Gloeckler
  • Ralph L. McNuttJr.
Article

Abstract

The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-RM3, where RM is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-RM3, and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5RM altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.

Keywords

Mercury Magnetic field Magnetosphere MESSENGER BepiColombo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Rème, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Science 284, 790 (1999) CrossRefADSGoogle Scholar
  2. O. Aharonson, M.T. Zuber, S.C. Solomon, Earth Planet. Sci. Lett. 218, 261 (2004) CrossRefADSGoogle Scholar
  3. I.I. Alexeev, E. Belenkaya, Ann. Geophys. 23, 809 (2005) CrossRefADSGoogle Scholar
  4. I.I. Alexeev, E. Belenkaya, S.Yu. Bobrovnikov, J.A. Slavin, M. Sarantos, J. Geophys. Res. 113, A12210 (2008). doi:10.1029/2008JA013368 CrossRefADSGoogle Scholar
  5. B.J. Anderson, M.H. Acuña, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, Space Sci. Rev. 131, 417 (2007) CrossRefADSGoogle Scholar
  6. B.J. Anderson, H. Korth, C.L. Waters, D.L. Green, P. Stauning, Ann. Geophys. 26, 671–687 (2008a) CrossRefADSGoogle Scholar
  7. B.J. Anderson, M.H. Acuña, H. Korth, M.E. Purucker, C.L. Johnson, J.A. Slavin, S.C. Solomon, R.L. McNutt Jr., Science 321, 82 (2008b) CrossRefADSGoogle Scholar
  8. G.B. Andrews, T.H. Zurbuchen, B.H. Mauk, H. Malcom, L.A. Fisk, G. Gloeckler, G.C. Ho, J.S. Kelley, P.L. Koehn, T.W. LeFevere, S.S. Livi, R.A. Lundgren, J.M. Raines, Space Sci. Rev. 131, 523 (2007) CrossRefADSGoogle Scholar
  9. C.S. Arridge, N. Achilleos, M.K. Dogherty, K.K. Khurana, C.T. Russell, J. Geophys. Res. 111, A11227 (2006). doi:10.1029/2005JA011574 CrossRefADSGoogle Scholar
  10. G. Backus, J. Geophys. Res. 75, 6339 (1970) CrossRefADSGoogle Scholar
  11. A. Balogh, R. Grard, S.C. Solomon, R. Schulz, Y. Langevin, Y. Kasaba, M. Fujimoto, Space Sci. Rev. 132, 611 (2007) CrossRefADSGoogle Scholar
  12. W.A. Baumjohann, A. Matsuoka, K.-H. Glassmeier, C.T. Russell, T. Nagai, M. Hoshino, T. Nakagawa, A. Balogh, J.A. Slavin, R. Nakamura, W. Magnes, Adv. Space Res. 38, 604 (2006) CrossRefADSGoogle Scholar
  13. B. Chen, J. Li, S.A. Hauck II, Geophys. Res. Lett. 35, L07201 (2008). doi:10.1029/2008GL033311 CrossRefGoogle Scholar
  14. U.R. Christensen, Nature 444, 1056 (2006) CrossRefADSGoogle Scholar
  15. U.R. Christensen, J. Wicht, Icarus 196, 16 (2008) CrossRefADSGoogle Scholar
  16. S.P. Christon, Icarus 71, 448 (1987) CrossRefADSGoogle Scholar
  17. J.E.P. Connerney, N.F. Ness, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  18. S.W.H. Cowley, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R.L. Lysak. Geophysical Monograph, vol. 118 (American Geophysical Union, Washington, 2000), pp. 91–106 Google Scholar
  19. I.M. Engle, Planet. Space Sci. 45, 127 (1997) CrossRefADSGoogle Scholar
  20. G. Giampieri, A. Balogh, Planet. Space Sci. 49, 1637 (2001) CrossRefADSGoogle Scholar
  21. G. Giampieri, A. Balogh, Planet. Space Sci. 50, 757 (2002) CrossRefADSGoogle Scholar
  22. K.-H. Glassmeier, Planet. Space Sci. 45, 119 (1997) CrossRefADSGoogle Scholar
  23. K.-H. Glassmeier, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R.L. Lysak. Geophysical Monograph, vol. 118 (American Geophysical Union, Washington, 2000), pp. 371–380 Google Scholar
  24. K.-H. Glassmeier, J. Grosser, U. Auster, D. Constaninescu, Y. Narita, S. Stellmach, Space Sci. Rev. 132, 511 (2007a) CrossRefADSGoogle Scholar
  25. K.-H. Glassmeier, H.-U. Auster, U. Motschmann, Geophys. Res. Lett. 34, L22201 (2007b). doi:10.1029/2007GL031662 CrossRefADSGoogle Scholar
  26. J. Grosser, K.-H. Glassmeier, A. Stadelmann, Planet. Space Sci. 52, 1251 (2004) CrossRefADSGoogle Scholar
  27. S. Hauck, A. Dombard, R. Phillips, S.C. Solomon, Earth Planet. Sci. Lett. 222, 713 (2004) CrossRefADSGoogle Scholar
  28. M. Heimpel, J. Aurnou, F. Al-Shamali, N. Gomez Perez, Earth Planet. Sci. Lett. 236, 542 (2005) CrossRefADSGoogle Scholar
  29. T. Iijima, T.A. Potemra, J. Geophys. Res. 81, 2165 (1976) CrossRefADSGoogle Scholar
  30. W.-H. Ip, A. Kopp, J. Geophys. Res. 107, 1348 (2002). doi:10.1029/2001JA009171 CrossRefGoogle Scholar
  31. W.-H. Ip, A. Kopp, Adv. Space Res. 33, 2172 (2004) CrossRefADSGoogle Scholar
  32. Q. Jia, R.J. Walker, M.G. Kivelson, K.K. Khurana, J.A. Linker, J. Geophys. Res. 113, A06212 (2008). doi:10.1029/2007JA012748 CrossRefGoogle Scholar
  33. K.K. Khurana, J. Geophys. Res. 102, 11295 (1997) CrossRefADSGoogle Scholar
  34. H. Korth, B.J. Anderson, M.H. Acuña, J.A. Slavin, N.A. Tsyganenko, S.C. Solomon, R.L. McNutt Jr., Planet. Space Sci. 54, 733 (2004) CrossRefADSGoogle Scholar
  35. J.G. Luhmann, C.T. Russell, N.A. Tsyganenko, J. Geophys. Res. 103, 9113 (1998) CrossRefADSGoogle Scholar
  36. A.T.Y. Lui (ed.), Magnetotail Physics (The Johns Hopkins University Press, Baltimore, 1987), 433 pp Google Scholar
  37. J. Margot, S. Peale, R. Jurgens, M. Slade, I. Holin, Science 316, 710 (2007) CrossRefADSGoogle Scholar
  38. J.V. McAdams, R.W. Farquhar, A.H. Taylor, B.G. Williams, Space Sci. Rev. 131, 219 (2007) CrossRefADSGoogle Scholar
  39. W. Menke, Geophysical Data Analysis: Discrete Inverse Theory (Academic Press, San Diego, 1989), 289 pp MATHGoogle Scholar
  40. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Science 185, 151 (1974) CrossRefADSGoogle Scholar
  41. N.F. Ness, K.W. Behannon, R.P. Lepping, J. Geophys. Res. 80, 2708 (1975) CrossRefADSGoogle Scholar
  42. N.F. Ness, in Solar System Plasma Physics, vol. II, ed. by C.F. Kennel, L.J. Lanzerotti, E.N. Parker (North-Holland, New York, 1979), pp. 185–206 Google Scholar
  43. K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, J. Geophys. Res. 82, 1807 (1977) CrossRefADSGoogle Scholar
  44. G.K. Parks, Physics of Space Plasmas, An Introduction (Addison-Wesley, New York, 1991), 538 pp Google Scholar
  45. M.E. Purucker, T.J. Sabaka, S.C. Solomon, B.J. Anderson, H. Korth, M.T. Zuber, G.A. Neumann, Earth. Planet. Sci. Lett. (2009). doi:10.1016/j.epsl.2008.12.017 Google Scholar
  46. A.D. Richmond, J.P. Thayer, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R.L. Lysak. Geophysical Monograph, vol. 118 (American Geophysical Union, Washington, 2000), pp. 131–146 Google Scholar
  47. C.T. Russell, D.N. Baker, J.A. Slavin, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 494–513 Google Scholar
  48. G. Schubert, M. Ross, D. Stevenson, T. Spohn, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 429–460 Google Scholar
  49. D.G. Sibeck, R.E. Lopez, E.C. Roelof, J. Geophys. Res. 96, 5489 (1991) CrossRefADSGoogle Scholar
  50. J.-H. Shue, P. Song, C.T. Russell, J.T. Steinberg, J.K. Chao, G. Zastenker, O.L. Vaisberg, S. Kokubun, H.J. Singer, T.R. Detman, H. Kawano, J. Geophys. Res. 103, 17691 (1998) CrossRefADSGoogle Scholar
  51. J.A. Slavin, R.E. Holzer, Phys. Earth Planet. Inter. 20, 231 (1979) CrossRefADSGoogle Scholar
  52. J.A. Slavin, R.E. Holzer, J. Geophys. Res. 86, 11401 (1981) CrossRefADSGoogle Scholar
  53. J.A. Slavin, C.J. Owen, J.E.P. Connerney, S.P. Christon, Planet. Space Sci. 45, 133 (1997) CrossRefADSGoogle Scholar
  54. J.A. Slavin, S.M. Krimigis, M.H. Acuña, B.J. Anderson, D.N. Baker, P.L. Koehn, H. Korth, S.S. Livi, B.H. Mauk, S.C. Solomon, T.H. Zurbuchen, Space Sci. Rev. 131, 133 (2007) CrossRefADSGoogle Scholar
  55. J.A. Slavin, M.H. Acuña, B.J. Anderson, D.N. Baker, M. Benna, G. Gloeckler, R.E. Gold, G.C. Ho, R.M. Killen, H. Korth, S.M. Krimigis, R.L. McNutt Jr., L.R. Nittler, J.M. Raines, D. Schriver, S.C. Solomon, R.D. Starr, P. Trávníček, T.H. Zurbuchen, Science 321, 85 (2008) CrossRefADSGoogle Scholar
  56. J.A. Slavin, B.J. Anderson, T.H. Zurbuchen, D.N. Baker, S.M. Krimigis, M.H. Acuña, M. Benna, S.A. Boardsen, G. Gloeckler, R.E. Gold, G.C. Ho, H. Korth, R.L. McNutt Jr., J.M. Raines, S. Menelaos, D. Schriver, S.C. Solomon, P. Trávníček, Geophys. Res. Lett. 36, L02101 (2009a). doi:10.1029/2008GL036158 CrossRefGoogle Scholar
  57. J.A. Slavin, M.H. Acuña, B.J. Anderson, D.N. Baker, M. Benna, S.A. Boardsen, G. Gloeckler, R.E. Gold, G.C. Ho, H. Korth, S.M. Krimigis, R.L. McNutt Jr., J.M. Raines, M. Sarantos, D. Schriver, S.C. Solomon, P. Trávníček, T.H. Zurbuchen, Science 324, 606 (2009b) CrossRefADSGoogle Scholar
  58. S.C. Solomon, Icarus 28, 509 (1976) CrossRefADSGoogle Scholar
  59. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head III, S.M. Krimigis, W.E. McClintock, S.J. Peale, S.L. Murchie, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, Planet. Space Sci. 49, 1445–1465 (2001) CrossRefADSGoogle Scholar
  60. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, D.L. Domingue, Space Sci. Rev. 131, 3 (2007) CrossRefADSGoogle Scholar
  61. L.J. Srnka, Phys. Earth Planet. Inter. 11, 184 (1976) CrossRefADSGoogle Scholar
  62. S. Stanley, J. Bloxham, W. Hutchison, M. Zuber, Earth Planet. Sci. Lett. 234, 27 (2005) CrossRefADSGoogle Scholar
  63. S. Stanley, M. Zuber, J. Bloxham, Geophys. Res. Lett. 34 (2007). doi:10.1029/2007GL030892.
  64. A. Stephenson, Earth Planet. Sci. Lett. 28, 454 (1976) CrossRefADSGoogle Scholar
  65. D.J. Stevenson, Rep. Prog. Phys. 46, 555 (1983) CrossRefADSGoogle Scholar
  66. D.J. Stevenson, Earth Planet. Sci. Lett. 82, 114–120 (1987) CrossRefADSGoogle Scholar
  67. F. Takahashi, M. Matsushima, Geophys. Res. Lett. 33, L10202 (2006). doi:10.1029/2006GL02579 CrossRefADSGoogle Scholar
  68. P.M. Trávníček, P. Hellinger, D. Schriver, Geophys. Res. Lett. 34, L05104 (2007). doi:10.1029/2006GL028518. CrossRefGoogle Scholar
  69. P.M. Trávníček, P. Hellinger, D. Schriver, D. Herčík, J.A. Slavin, B.J. Anderson, Geophys. Res. Lett. 36, L07104 (2009). doi:10.1029/2008GL036630. CrossRefGoogle Scholar
  70. N.A. Tsyganenko, J. Geophys. Res. 100, 5599 (1995) CrossRefADSGoogle Scholar
  71. N.A. Tsyganenko, M.I. Sitnov, J. Geophys. Res. 110, A03208 (2005). doi:10.1029/2004JA010798. CrossRefGoogle Scholar
  72. H. Uno, MS Thesis, University of British Columbia, Vancouver, BC, Canada, 2009, 57 pp Google Scholar
  73. H. Uno, C.L. Johnson, B.J. Anderson, H. Korth, S.C. Solomon, Earth. Planet. Sci. Lett. (2009). doi:10.1016/j.epsl.2009.02.032 Google Scholar
  74. J. Wicht, M. Mandea, F. Takahashi, U. Christensen, M. Matsushima, B. Langlais, Space Sci. Rev. 132, 261 (2007) CrossRefADSGoogle Scholar
  75. M.T. Zuber, O. Aharonson, J.M. Aurnou, A.F. Cheng, S.A. Hauck II, M.H. Heimpel, G.A. Neumann, S.J. Peale, R.J. Phillips, D.E. Smith, S.C. Solomon, S. Stanley, Space Sci. Rev. 131, 105 (2007) CrossRefADSGoogle Scholar
  76. T.H. Zurbuchen, J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, P.L. Koehn, R.M. Killen, A.L. Sprague, R.L. McNutt Jr., S.C. Solomon, Science 321, 90 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Brian J. Anderson
    • 1
  • Mario H. Acuña
    • 2
  • Haje Korth
    • 1
  • James A. Slavin
    • 3
  • Hideharu Uno
    • 4
  • Catherine L. Johnson
    • 4
  • Michael E. Purucker
    • 2
  • Sean C. Solomon
    • 5
  • Jim M. Raines
    • 6
  • Thomas H. Zurbuchen
    • 6
  • George Gloeckler
    • 6
  • Ralph L. McNuttJr.
    • 1
  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA
  2. 2.Solar System Exploration DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  4. 4.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA
  6. 6.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA

Personalised recommendations