Massive Stars: Input Physics and Stellar Models

Abstract

We present a general overview of the structure and evolution of massive stars of masses ≥12 M during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C(α,γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.

This is a preview of subscription content, log in to check access.

References

  1. D.R. Alexander, J.W. Ferguson, Low-temperature Rosseland opacities. Astrophys. J. 437, 879–891 (1994)

    Article  ADS  Google Scholar 

  2. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H. Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, M. Lamehi Rachti, A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999)

    Article  ADS  Google Scholar 

  3. I. Baraffe, M.F. El Eid, Evolution of massive stars with variable initial compositions. Astron. Astrophys. 245, 548–560 (1991)

    ADS  Google Scholar 

  4. M. Brüggen, W. Hillebrandt, Mixing through shear instabilities. Mon. Not. R. Astron. Soc. 320, 73–82 (2001)

    Article  ADS  Google Scholar 

  5. L. Buchmann, New stellar reaction rate for 12C(α,γ)16O. Astrophys. J. 468, L127–L130 (1996)

    Article  ADS  Google Scholar 

  6. G.R. Caughlan, W.A. Fowler, M.J. Harris, B.A. Zimmerman, Tables of thermonuclear reaction rates for low-mass nuclei (Z≤14). At. Data Nucl. Data Tables 32, 197 (1985)

    Article  ADS  Google Scholar 

  7. S. Chandrasekhar, The instability of a layer of fluid heated below and subject to the simultaneous action of a magnetic field and rotation. R. Soc. Lond. Proc. Ser. A 225, 173–184 (1954)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  8. A. Chieffi, M. Limongi, O. Straniero, The evolution of a 25 M solar star from the main sequence up to the onset of the iron core collapse. Astrophys. J. 502, 737–762 (1998)

    Article  ADS  Google Scholar 

  9. C. Chiosi, A. Maeder, The evolution of massive stars with mass loss. Annu. Rev. Astron. Astrophys. 24, 329–375 (1986)

    Article  ADS  Google Scholar 

  10. D.D. Clayton, Cosmic radioactivity—a gamma-ray search for the origins of atomic nuclei. Essays Nucl. Astrophys., pp. 401 (1982)

  11. W. Daeppen, D. Mihalas, D.G. Hummer, B.W. Mihalas, The equation of state for stellar envelopes. III–Thermodynamic quantities. Astrophys. J. 332, 261–270 (1988)

    Article  ADS  Google Scholar 

  12. C. de Jager, H. Nieuwenhuijzen, K.A. van der Hucht, Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl. Ser. 72, 259–289 (1988)

    ADS  Google Scholar 

  13. L. Deng, D.R. Xiong, How to define the boundaries of a convective zone and how extended is overshooting? ArXiv e-prints 707 (2007)

  14. M.F. El Eid, B.S. Meyer, L.-S. The, Evolution of massive stars up to the end of central oxygen burning. Astrophys. J. 611, 452–465 (2004)

    Article  ADS  Google Scholar 

  15. A.S. Endal, S. Sofia, The evolution of rotating stars. II – Calculations with time-dependent redistribution of angular momentum for 7- and 10-solar-mass stars. Astrophys. J. 220, 279–290 (1978)

    Article  ADS  Google Scholar 

  16. B. Freytag, H.-G. Ludwig, M. Steffen, Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron. Astrophys. 313, 497–516 (1996)

    ADS  Google Scholar 

  17. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak interaction rates for intermediate mass nuclei. III – Rate tables for the free nucleons and nuclei with A=21 to A=60. Astrophys. J. Suppl. Ser. 48, 279–319 (1982)

    Article  ADS  Google Scholar 

  18. S.A. Grossman, R. Narayan, A theory of nonlocal mixing-length convection. 2: Generalized smoothed particle hydrodynamics simulations. Astrophys. J. Suppl. Ser. 89, 361–394 (1993)

    Article  ADS  Google Scholar 

  19. S.A. Grossman, R. Narayan, D. Arnett, A theory of nonlocal mixing-length convection. I – The moment form alism. Astrophys. J. 407, 284–315 (1993)

    Article  ADS  Google Scholar 

  20. C.J. Hansen, S.D. Kawaler, Books-received – Stellar interiors – Physical principles structure and evolution. Science 265, 1902 (1994)

    ADS  Google Scholar 

  21. M.J. Harris, J. Knödlseder, P. Jean, E. Cisana, R. Diehl, G.G. Lichti, J.-P. Roques, S. Schanne, G. Weidenspointner, Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI. Astron. Astrophys. 433, L49–L52 (2005)

    Article  ADS  Google Scholar 

  22. A. Heger, N. Langer, S.E. Woosley, Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys. J. 528, 368–396 (2000a)

    Article  ADS  Google Scholar 

  23. A. Heger, S.E. Woosley, N. Langer, Stellar models including pre-SN/SN phases. New Astron. Rev. 44, 297–302 (2000b)

    Article  ADS  Google Scholar 

  24. F. Herwig, The evolution of AGB stars with convective overshoot. Astron. Astrophys. 360, 952–968 (2000)

    ADS  Google Scholar 

  25. F. Herwig, T. Bloecker, D. Schoenberner, M. El Eid, Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars. Astron. Astrophys. 324, L81–L84 (1997)

    ADS  Google Scholar 

  26. R. Hirschi, G. Meynet, A. Maeder, Stellar evolution with rotation. XII. Pre-supernova models. Astron. Astrophys. 425, 649–670 (2004)

    MATH  Article  ADS  Google Scholar 

  27. R. Hirschi, G. Meynet, A. Maeder, Stellar evolution with rotation. XIII. Predicted GRB rates at various Z. Astron. Astrophys. 443, 581–591 (2005)

    Article  ADS  Google Scholar 

  28. W.R. Hix, F.-K. Thielemann, Silicon Burning. I. Neutronization and the physics of quasi-equilibrium. Astrophys. J. 460, 869 (1996)

    Article  ADS  Google Scholar 

  29. D.G. Hummer, D. Mihalas, The equation of state for stellar envelopes. I – An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988)

    Article  ADS  Google Scholar 

  30. C.A. Iglesias, F.J. Rogers, Updated Opal Opacities. Astrophys. J. 464, 943 (1996)

    Article  ADS  Google Scholar 

  31. N. Itoh, H. Hayashi, A. Nishikawa, Y. Kohyama, Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes. Astrophys. J. Suppl. Ser. 102, 411–424 (1996)

    Article  ADS  Google Scholar 

  32. S. Kato, Overstable convection in a medium stratified in mean molecular weight. Publ. Astron. Soc. Jpn. 18, 374 (1966)

    ADS  Google Scholar 

  33. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990), 468 pp. Also Astronomy and Astrophysics Library

    Google Scholar 

  34. R.P. Kudritzki, A. Pauldrach, J. Puls, Radiation driven winds of hot luminous stars. II – Wind models for O-stars in the Magellanic Clouds. Astron. Astrophys. 173, 293–298 (1987)

    ADS  Google Scholar 

  35. R. Kunz, M. Fey, M. Jaeger, A. Mayer, J.W. Hammer, G. Staudt, S. Harissopulos, T. Paradellis, Astrophysical reaction rate of 12C(α,γ)16O. Astrophys. J. 567, 643–650 (2002)

    Article  ADS  Google Scholar 

  36. K. Langanke, G. Martínez-Pinedo, Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 75, 819–862 (2003)

    Article  ADS  Google Scholar 

  37. N. Langer, K.J. Fricke, D. Sugimoto, Semiconvective diffusion and energy transport. Astron. Astrophys. 126, 207–208 (1983)

    ADS  Google Scholar 

  38. N. Langer, M.F. El Eid, K.J. Fricke, Evolution of massive stars with semiconvective diffusion. Astron. Astrophys. 145, 179–191 (1985)

    ADS  Google Scholar 

  39. C. Leitherer, C. Robert, L. Drissen, Deposition of mass, momentum, and energy by massive stars into the interstellar medium. Astrophys. J. 401, 596–617 (1992)

    Article  ADS  Google Scholar 

  40. M. Limongi, A. Chieffi, The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120: The hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006)

    Article  ADS  Google Scholar 

  41. M. Limongi, O. Straniero, A. Chieffi, Massive stars in the range 13–25 M solar : Evolution and nucleosynthesis. II. The solar metallicity models. Astrophys. J. Suppl. Ser. 129, 625–664 (2000)

    Article  ADS  Google Scholar 

  42. A. Maeder, On the Richardson criterion for shear instabilities in rotating stars. Astron. Astrophys. 299, 84 (1995)

    ADS  Google Scholar 

  43. A. Maeder, P.S. Conti, Massive star populations in nearby galaxies. Annu. Rev. Astron. Astrophys. 32, 227–275 (1994)

    Article  ADS  Google Scholar 

  44. A. Maeder, G. Meynet, The evolution of rotating stars. Annu. Rev. Astron. Astrophys. 38, 143–190 (2000)

    Article  ADS  Google Scholar 

  45. A. Maeder, J.-P. Zahn, Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron. Astrophys. 334, 1000–1006 (1998)

    ADS  Google Scholar 

  46. C.A. Meakin, D. Arnett, Turbulent convection in stellar interiors. I. Hydrodynamic simulation. ArXiv Astrophysics e-prints (2006)

  47. B.S. Meyer, The r-, s-, and p-processes in nucleosynthesis. Annu. Rev. Astron. Astrophys. 32, 153–190 (1994)

    Article  ADS  Google Scholar 

  48. B.S. Meyer, L.-S. The, D.D. Clayton, M.F. El Eid, Helium-shell nucleosynthesis and extinct radioactivities, in Lunar and Planetary Institute Conference Abstracts (2004), p. 1908

  49. G. Meynet, A. Maeder, Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron. Astrophys. 361, 101–120 (2000)

    ADS  Google Scholar 

  50. G. Meynet, S. Ekström, A. Maeder, The early star generations: the dominant effect of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006)

    Article  ADS  Google Scholar 

  51. D. Mihalas, W. Dappen, D.G. Hummer, The equation of state for stellar envelopes. II – Algorithm and selected results. Astrophys. J. 331, 815–825 (1988)

    Article  ADS  Google Scholar 

  52. H. Nieuwenhuijzen, C. de Jager, Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. Astron. Astrophys. 231, 134–136 (1990)

    ADS  Google Scholar 

  53. A.A. Pamyatnykh, W.A. Dziembowski, P. Moskalik, M.J. Seaton, OP versus OPAL opacities: consequences for B star oscillations, in Pulsation Rotation and Mass Loss in Early-Type Stars, ed. by L.A. Balona, H.F. Henrichs, J.M. Le. IAU Symposium, vol. 162 (1994), p. 70

  54. C.M. Raiteri, R. Gallino, M. Busso, D. Neuberger, F. Kaeppeler, The weak s-component and nucleosynthesis in massive stars. Astrophys. J. 419, 207–223 (1993)

    Article  ADS  Google Scholar 

  55. T. Rauscher, F. Thielemann, Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75, 1–351 (2000)

    Article  ADS  Google Scholar 

  56. T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002)

    Article  ADS  Google Scholar 

  57. F.J. Rogers, C.A. Iglesias, Radiative atomic Rosseland mean opacity tables. Astrophys. J. Suppl. Ser. 79, 507–568 (1992)

    Article  ADS  Google Scholar 

  58. F.J. Rogers, C.A. Iglesias, Astrophysical opacity. Science 263, 50–55 (1994)

    Article  ADS  Google Scholar 

  59. F.J. Rogers, C.A. Iglesias, Opacity of stellar matter. Space Sci. Rev. 85, 61–70 (1998)

    Article  ADS  Google Scholar 

  60. F.J. Rogers, A. Nayfonov, Updated and expanded OPAL equation-of-state tables: Implications f or helioseismology. Astrophys. J. 576, 1064–1074 (2002)

    Article  ADS  Google Scholar 

  61. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos: Nuclear astrophysics. Research supported by NSF, Georgetown University, DFG, et al. Chicago, IL, University of Chicago Press, 1988, 579 p.

  62. G. Schaller, D. Schaerer, G. Meynet, A. Maeder, New grids of stellar models from 0.8 to 120 solar masses at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269–331 (1992)

    ADS  Google Scholar 

  63. M.J. Seaton, Y. Yan, D. Mihalas, A.K. Pradhan, Opacities for stellar envelopes. Mon. Not. R. Astron. Soc. 266, 805 (1994)

    ADS  Google Scholar 

  64. H.C. Spruit, The rate of mixing in semiconvective zones. Astron. Astrophys. 253, 131–138 (1992)

    MATH  ADS  Google Scholar 

  65. R.B. Stothers, C.-W. Chin, Evolution of massive stars into luminous blue variables and Wolf-Rayet stars for a range of metallicities: Theory versus observation. Astrophys. J. 468, 842 (1996)

    Article  ADS  Google Scholar 

  66. R.B. Stothers, C.-W. Chin, Yellow hypergiants as dynamically unstable post-red supergiant stars. Astrophys. J. 560, 934–936 (2001)

    Article  ADS  Google Scholar 

  67. K. Takahashi, K. Yokoi, Beta-decay rates of highly ionized heavy atoms in stellar interiors. At. Data Nucl. Data Tables 36, 375 (1987)

    Article  ADS  Google Scholar 

  68. L.-S. The, M.F. El Eid, B.S. Meyer, s-process nucleosynthesis in advanced burning phases of massive stars. Astrophys. J. 655, 1058–1078 (2007)

    Article  ADS  Google Scholar 

  69. F. Thielemann, K. Nomoto, M. Hashimoto, Core-collapse supernovae and their ejecta. Astrophys. J. 460, 408–436 (1996)

    Article  ADS  Google Scholar 

  70. F.X. Timmes, D. Arnett, The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 125, 277–294 (1999)

    Article  ADS  Google Scholar 

  71. F.X. Timmes, F.D. Swesty, The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000)

    Article  ADS  Google Scholar 

  72. J. Tuli, Nuclear Wallet Cards (Brookhaven Natl. Lab., Brookhaven, 1995)

    Google Scholar 

  73. D. Vanbeveren, C. De Loore, W. Van Rensbergen, Massive stars. Astron. Astrophys. Rev. 9, 63–152 (1998)

    Article  ADS  Google Scholar 

  74. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, New theoretical mass-loss rates of O and B stars. Astron. Astrophys. 362, 295–309 (2000)

    ADS  Google Scholar 

  75. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001)

    Article  ADS  Google Scholar 

  76. S.E. Woosley, T.A. Weaver, Presupernova models: Sensitivity to convective algorithm and Coulomb corrections. Phys. Rep. 163, 79–94 (1988)

    Article  ADS  Google Scholar 

  77. S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181–235 (1995)

    Article  ADS  Google Scholar 

  78. S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. F. El Eid.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

El Eid, M.F., The, L. & Meyer, B.S. Massive Stars: Input Physics and Stellar Models. Space Sci Rev 147, 1 (2009). https://doi.org/10.1007/s11214-009-9517-6

Download citation

Keywords

  • Stars: internal structure, evolution, nucleosynthesis