Space Science Reviews

, 147:1 | Cite as

Massive Stars: Input Physics and Stellar Models

Article

Abstract

We present a general overview of the structure and evolution of massive stars of masses ≥12 M during their pre-supernova stages. We think it is worth reviewing this topic owing to the crucial role of massive stars in astrophysics, especially in the evolution of galaxies and the universe. We have performed several test computations with the aim to analyze and discuss many physical uncertainties still encountered in massive-star evolution. In particular, we explore the effects of mass loss, convection, rotation, 12C(α,γ)16O reaction and initial metallicity. We also compare and analyze the similarities and differences among various works and ours. Finally, we present useful comments on the nucleosynthesis from massive stars concerning the s-process and the yields for 26Al and 60Fe.

Keywords

Stars: internal structure, evolution, nucleosynthesis 

References

  1. D.R. Alexander, J.W. Ferguson, Low-temperature Rosseland opacities. Astrophys. J. 437, 879–891 (1994) CrossRefADSGoogle Scholar
  2. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs, R. Kunz, J.W. Hammer, A. Mayer, T. Paradellis, S. Kossionides, C. Chronidou, K. Spyrou, S. degl’Innocenti, G. Fiorentini, B. Ricci, S. Zavatarelli, C. Providencia, H. Wolters, J. Soares, C. Grama, J. Rahighi, A. Shotter, M. Lamehi Rachti, A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999) CrossRefADSGoogle Scholar
  3. I. Baraffe, M.F. El Eid, Evolution of massive stars with variable initial compositions. Astron. Astrophys. 245, 548–560 (1991) ADSGoogle Scholar
  4. M. Brüggen, W. Hillebrandt, Mixing through shear instabilities. Mon. Not. R. Astron. Soc. 320, 73–82 (2001) CrossRefADSGoogle Scholar
  5. L. Buchmann, New stellar reaction rate for 12C(α,γ)16O. Astrophys. J. 468, L127–L130 (1996) CrossRefADSGoogle Scholar
  6. G.R. Caughlan, W.A. Fowler, M.J. Harris, B.A. Zimmerman, Tables of thermonuclear reaction rates for low-mass nuclei (Z≤14). At. Data Nucl. Data Tables 32, 197 (1985) CrossRefADSGoogle Scholar
  7. S. Chandrasekhar, The instability of a layer of fluid heated below and subject to the simultaneous action of a magnetic field and rotation. R. Soc. Lond. Proc. Ser. A 225, 173–184 (1954) MATHCrossRefMathSciNetADSGoogle Scholar
  8. A. Chieffi, M. Limongi, O. Straniero, The evolution of a 25 M solar star from the main sequence up to the onset of the iron core collapse. Astrophys. J. 502, 737–762 (1998) CrossRefADSGoogle Scholar
  9. C. Chiosi, A. Maeder, The evolution of massive stars with mass loss. Annu. Rev. Astron. Astrophys. 24, 329–375 (1986) CrossRefADSGoogle Scholar
  10. D.D. Clayton, Cosmic radioactivity—a gamma-ray search for the origins of atomic nuclei. Essays Nucl. Astrophys., pp. 401 (1982) Google Scholar
  11. W. Daeppen, D. Mihalas, D.G. Hummer, B.W. Mihalas, The equation of state for stellar envelopes. III–Thermodynamic quantities. Astrophys. J. 332, 261–270 (1988) CrossRefADSGoogle Scholar
  12. C. de Jager, H. Nieuwenhuijzen, K.A. van der Hucht, Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. Suppl. Ser. 72, 259–289 (1988) ADSGoogle Scholar
  13. L. Deng, D.R. Xiong, How to define the boundaries of a convective zone and how extended is overshooting? ArXiv e-prints 707 (2007) Google Scholar
  14. M.F. El Eid, B.S. Meyer, L.-S. The, Evolution of massive stars up to the end of central oxygen burning. Astrophys. J. 611, 452–465 (2004) CrossRefADSGoogle Scholar
  15. A.S. Endal, S. Sofia, The evolution of rotating stars. II – Calculations with time-dependent redistribution of angular momentum for 7- and 10-solar-mass stars. Astrophys. J. 220, 279–290 (1978) CrossRefADSGoogle Scholar
  16. B. Freytag, H.-G. Ludwig, M. Steffen, Hydrodynamical models of stellar convection. The role of overshoot in DA white dwarfs, A-type stars, and the Sun. Astron. Astrophys. 313, 497–516 (1996) ADSGoogle Scholar
  17. G.M. Fuller, W.A. Fowler, M.J. Newman, Stellar weak interaction rates for intermediate mass nuclei. III – Rate tables for the free nucleons and nuclei with A=21 to A=60. Astrophys. J. Suppl. Ser. 48, 279–319 (1982) CrossRefADSGoogle Scholar
  18. S.A. Grossman, R. Narayan, A theory of nonlocal mixing-length convection. 2: Generalized smoothed particle hydrodynamics simulations. Astrophys. J. Suppl. Ser. 89, 361–394 (1993) CrossRefADSGoogle Scholar
  19. S.A. Grossman, R. Narayan, D. Arnett, A theory of nonlocal mixing-length convection. I – The moment form alism. Astrophys. J. 407, 284–315 (1993) CrossRefADSGoogle Scholar
  20. C.J. Hansen, S.D. Kawaler, Books-received – Stellar interiors – Physical principles structure and evolution. Science 265, 1902 (1994) ADSGoogle Scholar
  21. M.J. Harris, J. Knödlseder, P. Jean, E. Cisana, R. Diehl, G.G. Lichti, J.-P. Roques, S. Schanne, G. Weidenspointner, Detection of γ-ray lines from interstellar 60Fe by the high resolution spectrometer SPI. Astron. Astrophys. 433, L49–L52 (2005) CrossRefADSGoogle Scholar
  22. A. Heger, N. Langer, S.E. Woosley, Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys. J. 528, 368–396 (2000a) CrossRefADSGoogle Scholar
  23. A. Heger, S.E. Woosley, N. Langer, Stellar models including pre-SN/SN phases. New Astron. Rev. 44, 297–302 (2000b) CrossRefADSGoogle Scholar
  24. F. Herwig, The evolution of AGB stars with convective overshoot. Astron. Astrophys. 360, 952–968 (2000) ADSGoogle Scholar
  25. F. Herwig, T. Bloecker, D. Schoenberner, M. El Eid, Stellar evolution of low and intermediate-mass stars. IV. Hydrodynamically-based overshoot and nucleosynthesis in AGB stars. Astron. Astrophys. 324, L81–L84 (1997) ADSGoogle Scholar
  26. R. Hirschi, G. Meynet, A. Maeder, Stellar evolution with rotation. XII. Pre-supernova models. Astron. Astrophys. 425, 649–670 (2004) MATHCrossRefADSGoogle Scholar
  27. R. Hirschi, G. Meynet, A. Maeder, Stellar evolution with rotation. XIII. Predicted GRB rates at various Z. Astron. Astrophys. 443, 581–591 (2005) CrossRefADSGoogle Scholar
  28. W.R. Hix, F.-K. Thielemann, Silicon Burning. I. Neutronization and the physics of quasi-equilibrium. Astrophys. J. 460, 869 (1996) CrossRefADSGoogle Scholar
  29. D.G. Hummer, D. Mihalas, The equation of state for stellar envelopes. I – An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988) CrossRefADSGoogle Scholar
  30. C.A. Iglesias, F.J. Rogers, Updated Opal Opacities. Astrophys. J. 464, 943 (1996) CrossRefADSGoogle Scholar
  31. N. Itoh, H. Hayashi, A. Nishikawa, Y. Kohyama, Neutrino energy loss in stellar interiors. VII. Pair, photo-, plasma, bremsstrahlung, and recombination neutrino processes. Astrophys. J. Suppl. Ser. 102, 411–424 (1996) CrossRefADSGoogle Scholar
  32. S. Kato, Overstable convection in a medium stratified in mean molecular weight. Publ. Astron. Soc. Jpn. 18, 374 (1966) ADSGoogle Scholar
  33. R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990), 468 pp. Also Astronomy and Astrophysics Library Google Scholar
  34. R.P. Kudritzki, A. Pauldrach, J. Puls, Radiation driven winds of hot luminous stars. II – Wind models for O-stars in the Magellanic Clouds. Astron. Astrophys. 173, 293–298 (1987) ADSGoogle Scholar
  35. R. Kunz, M. Fey, M. Jaeger, A. Mayer, J.W. Hammer, G. Staudt, S. Harissopulos, T. Paradellis, Astrophysical reaction rate of 12C(α,γ)16O. Astrophys. J. 567, 643–650 (2002) CrossRefADSGoogle Scholar
  36. K. Langanke, G. Martínez-Pinedo, Nuclear weak-interaction processes in stars. Rev. Mod. Phys. 75, 819–862 (2003) CrossRefADSGoogle Scholar
  37. N. Langer, K.J. Fricke, D. Sugimoto, Semiconvective diffusion and energy transport. Astron. Astrophys. 126, 207–208 (1983) ADSGoogle Scholar
  38. N. Langer, M.F. El Eid, K.J. Fricke, Evolution of massive stars with semiconvective diffusion. Astron. Astrophys. 145, 179–191 (1985) ADSGoogle Scholar
  39. C. Leitherer, C. Robert, L. Drissen, Deposition of mass, momentum, and energy by massive stars into the interstellar medium. Astrophys. J. 401, 596–617 (1992) CrossRefADSGoogle Scholar
  40. M. Limongi, A. Chieffi, The nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120: The hydrostatic and explosive contributions. Astrophys. J. 647, 483–500 (2006) CrossRefADSGoogle Scholar
  41. M. Limongi, O. Straniero, A. Chieffi, Massive stars in the range 13–25 M solar: Evolution and nucleosynthesis. II. The solar metallicity models. Astrophys. J. Suppl. Ser. 129, 625–664 (2000) CrossRefADSGoogle Scholar
  42. A. Maeder, On the Richardson criterion for shear instabilities in rotating stars. Astron. Astrophys. 299, 84 (1995) ADSGoogle Scholar
  43. A. Maeder, P.S. Conti, Massive star populations in nearby galaxies. Annu. Rev. Astron. Astrophys. 32, 227–275 (1994) CrossRefADSGoogle Scholar
  44. A. Maeder, G. Meynet, The evolution of rotating stars. Annu. Rev. Astron. Astrophys. 38, 143–190 (2000) CrossRefADSGoogle Scholar
  45. A. Maeder, J.-P. Zahn, Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron. Astrophys. 334, 1000–1006 (1998) ADSGoogle Scholar
  46. C.A. Meakin, D. Arnett, Turbulent convection in stellar interiors. I. Hydrodynamic simulation. ArXiv Astrophysics e-prints (2006) Google Scholar
  47. B.S. Meyer, The r-, s-, and p-processes in nucleosynthesis. Annu. Rev. Astron. Astrophys. 32, 153–190 (1994) CrossRefADSGoogle Scholar
  48. B.S. Meyer, L.-S. The, D.D. Clayton, M.F. El Eid, Helium-shell nucleosynthesis and extinct radioactivities, in Lunar and Planetary Institute Conference Abstracts (2004), p. 1908 Google Scholar
  49. G. Meynet, A. Maeder, Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron. Astrophys. 361, 101–120 (2000) ADSGoogle Scholar
  50. G. Meynet, S. Ekström, A. Maeder, The early star generations: the dominant effect of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006) CrossRefADSGoogle Scholar
  51. D. Mihalas, W. Dappen, D.G. Hummer, The equation of state for stellar envelopes. II – Algorithm and selected results. Astrophys. J. 331, 815–825 (1988) CrossRefADSGoogle Scholar
  52. H. Nieuwenhuijzen, C. de Jager, Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. Astron. Astrophys. 231, 134–136 (1990) ADSGoogle Scholar
  53. A.A. Pamyatnykh, W.A. Dziembowski, P. Moskalik, M.J. Seaton, OP versus OPAL opacities: consequences for B star oscillations, in Pulsation Rotation and Mass Loss in Early-Type Stars, ed. by L.A. Balona, H.F. Henrichs, J.M. Le. IAU Symposium, vol. 162 (1994), p. 70 Google Scholar
  54. C.M. Raiteri, R. Gallino, M. Busso, D. Neuberger, F. Kaeppeler, The weak s-component and nucleosynthesis in massive stars. Astrophys. J. 419, 207–223 (1993) CrossRefADSGoogle Scholar
  55. T. Rauscher, F. Thielemann, Astrophysical reaction rates from statistical model calculations. At. Data Nucl. Data Tables 75, 1–351 (2000) CrossRefADSGoogle Scholar
  56. T. Rauscher, A. Heger, R.D. Hoffman, S.E. Woosley, Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys. J. 576, 323–348 (2002) CrossRefADSGoogle Scholar
  57. F.J. Rogers, C.A. Iglesias, Radiative atomic Rosseland mean opacity tables. Astrophys. J. Suppl. Ser. 79, 507–568 (1992) CrossRefADSGoogle Scholar
  58. F.J. Rogers, C.A. Iglesias, Astrophysical opacity. Science 263, 50–55 (1994) CrossRefADSGoogle Scholar
  59. F.J. Rogers, C.A. Iglesias, Opacity of stellar matter. Space Sci. Rev. 85, 61–70 (1998) CrossRefADSGoogle Scholar
  60. F.J. Rogers, A. Nayfonov, Updated and expanded OPAL equation-of-state tables: Implications f or helioseismology. Astrophys. J. 576, 1064–1074 (2002) CrossRefADSGoogle Scholar
  61. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos: Nuclear astrophysics. Research supported by NSF, Georgetown University, DFG, et al. Chicago, IL, University of Chicago Press, 1988, 579 p. Google Scholar
  62. G. Schaller, D. Schaerer, G. Meynet, A. Maeder, New grids of stellar models from 0.8 to 120 solar masses at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269–331 (1992) ADSGoogle Scholar
  63. M.J. Seaton, Y. Yan, D. Mihalas, A.K. Pradhan, Opacities for stellar envelopes. Mon. Not. R. Astron. Soc. 266, 805 (1994) ADSGoogle Scholar
  64. H.C. Spruit, The rate of mixing in semiconvective zones. Astron. Astrophys. 253, 131–138 (1992) MATHADSGoogle Scholar
  65. R.B. Stothers, C.-W. Chin, Evolution of massive stars into luminous blue variables and Wolf-Rayet stars for a range of metallicities: Theory versus observation. Astrophys. J. 468, 842 (1996) CrossRefADSGoogle Scholar
  66. R.B. Stothers, C.-W. Chin, Yellow hypergiants as dynamically unstable post-red supergiant stars. Astrophys. J. 560, 934–936 (2001) CrossRefADSGoogle Scholar
  67. K. Takahashi, K. Yokoi, Beta-decay rates of highly ionized heavy atoms in stellar interiors. At. Data Nucl. Data Tables 36, 375 (1987) CrossRefADSGoogle Scholar
  68. L.-S. The, M.F. El Eid, B.S. Meyer, s-process nucleosynthesis in advanced burning phases of massive stars. Astrophys. J. 655, 1058–1078 (2007) CrossRefADSGoogle Scholar
  69. F. Thielemann, K. Nomoto, M. Hashimoto, Core-collapse supernovae and their ejecta. Astrophys. J. 460, 408–436 (1996) CrossRefADSGoogle Scholar
  70. F.X. Timmes, D. Arnett, The accuracy, consistency, and speed of five equations of state for stellar hydrodynamics. Astrophys. J. Suppl. Ser. 125, 277–294 (1999) CrossRefADSGoogle Scholar
  71. F.X. Timmes, F.D. Swesty, The accuracy, consistency, and speed of an electron-positron equation of state based on table interpolation of the Helmholtz free energy. Astrophys. J. Suppl. Ser. 126, 501–516 (2000) CrossRefADSGoogle Scholar
  72. J. Tuli, Nuclear Wallet Cards (Brookhaven Natl. Lab., Brookhaven, 1995) Google Scholar
  73. D. Vanbeveren, C. De Loore, W. Van Rensbergen, Massive stars. Astron. Astrophys. Rev. 9, 63–152 (1998) CrossRefADSGoogle Scholar
  74. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, New theoretical mass-loss rates of O and B stars. Astron. Astrophys. 362, 295–309 (2000) ADSGoogle Scholar
  75. J.S. Vink, A. de Koter, H.J.G.L.M. Lamers, Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001) CrossRefADSGoogle Scholar
  76. S.E. Woosley, T.A. Weaver, Presupernova models: Sensitivity to convective algorithm and Coulomb corrections. Phys. Rep. 163, 79–94 (1988) CrossRefADSGoogle Scholar
  77. S.E. Woosley, T.A. Weaver, The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys. J. Suppl. Ser. 101, 181–235 (1995) CrossRefADSGoogle Scholar
  78. S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsAmerican University of BeirutBeirutLebanon
  2. 2.Department of Physics and Astronomy, Kinard Laboratory of PhysicsClemson UniversityClemsonUSA

Personalised recommendations