Skip to main content
Log in

Neutral Atmospheres

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M.F. A’Hearn, R.L. Millis, D.G. Schleicher, D.J. Osip, P.V. Birch, The ensemble properties of comets: Results from narrowband photometry of 85 comets, 1976–1992. Icarus 118, 223–270 (1995)

    Article  ADS  Google Scholar 

  • N. Achilleos, S. Miller, J. Tennyson, A.D. Aylward, I.C.F. Mueller-Wodarg, D. Rees, JIM: A time-dependent, three-dimensional model of Jupiter’s thermosphere and ionosphere. J. Geophys. Res. 103, 20089–20112 (1998)

    Article  ADS  Google Scholar 

  • N. Achilleos, S. Miller, R. Prangé, G. Millward, M.K. Dougherty, A dynamical model of Jupiter’s auroral electrojet. New J. Phys. 3, 3.1–3.20 (2001)

    Article  Google Scholar 

  • R.K. Achterberg, B.J. Conrath, P.J. Gierasch, F.M. Flasar, C.A. Nixon, Titan’s middle-atmospheric temperatures and dynamics observed by the Cassini composite infrared spectrometer. Icarus 194, 262–277 (2008)

    Article  ADS  Google Scholar 

  • M.J. Alexander, A mechanism for the Venus thermospheric superrotation. Geophys. Res. Lett. 19, 2207–2210 (1992)

    Article  ADS  Google Scholar 

  • D.M. Atkinson, J.B. Pollack, A. Seiff, Galileo Doppler measurements of the deep zonal winds at Jupiter. Science 272, 842–843 (1996)

    Article  ADS  Google Scholar 

  • S.K. Atreya et al., A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet. Space Sci. 47, 1243–1262 (1999)

    Article  ADS  Google Scholar 

  • S.K. Atreya, Z.G. Gu, Stability of the Martian atmosphere: Is heterogeneous catalysis essential? J. Geophys. Res. 99, 13133–13145 (1994)

    Article  ADS  Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, H.B. Niemann, M.H. Wong, T.C. Owen, Composition and origin of the atmosphere of Jupiteran update, and implications for the extrasolar giant planets. Planet. Space Sci. 51, 105–112 (2002). doi:10.1016/S0032-0633(02)00144-7

    Article  ADS  Google Scholar 

  • S.K. Atreya, E.Y. Adama, H.B. Niemann, J.E. Demick-Montelara, T.C. Owen, M. Fulchignoni, F. Ferri, E.H. Wilson, Planet. Space Sci. 54, 1177–1187 (2006)

    Article  ADS  Google Scholar 

  • S.K. Atreya, P.R. Mahaffy, A.-S. Wong, Methane and related trace species on Mars: Origin, loss, implications for life, and habitibility. Planet. Space Sci. 55, 358–369 (2007)

    Article  ADS  Google Scholar 

  • M. Banaszkiewicz, L.M. Lara, R. Rodrigo, J.J. López-Moreno, G.J. Molina-Cuberos, A coupled model of Titan’s atmosphere and ionosphere. Icarus 147, 386–404 (2000)

    Article  ADS  Google Scholar 

  • A. Bar-Nun, V. Dimitrov, Methane on Mars: A product of \({\fam0H_{2}O}\) photolysis in the presence of CO. Icarus 181, 320–322 (2006)

    Article  ADS  Google Scholar 

  • C.D. Barnet, J.A. Westphal, R.F. Beebe, L.F. Huber, Icarus 100, 499 (1992)

    Article  ADS  Google Scholar 

  • J.M. Bell, S.W. Bougher, J.R. Murphy, Vertical dust mixing and the interannual variations in the Mars thermosphere. J. Geophys. Res. 112, E12002 (2007). doi:10.1029/2006JE002856

    Article  ADS  Google Scholar 

  • J.M. Bell, The dynamics of the upper atmospheres of Mars and Titan. Ph.D. Thesis, U. of Michigan (2008)

  • E.A. Bergin et al., Submillimeter Wave Astronomy Satellite observations of Jupiter and Saturn: Detection of 557 GHz water emission from the upper atmosphere. Astrophys. J. 539, L147–L150 (2000)

    Article  ADS  Google Scholar 

  • J.L. Bertaux et al., Nightglow in the upper atmosphere of Mars and implications for atmospheric transport. Science 307, 566–569 (2005). doi:10.1126/science.1106957

    Article  ADS  Google Scholar 

  • J.-L. Bertaux et al., A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450 (2007). doi:10.1038/nature05974

  • B. Bézard, D. Gautier, A seasonal climate model of the atmospheres of the giant planets at the Voyager encounter time. I. Saturn’s stratosphere. Icarus 61, 296–310 (1985)

    Article  ADS  Google Scholar 

  • B. Bézard, E. Lellouch, D. Strobel, J.-P. Maillard, P. Drossart, Carbon monoxide on Jupiter: Evidence for both internal and external sources. Icarus 159, 95–111 (2002)

    Article  ADS  Google Scholar 

  • M.K. Bird et al., The vertical profile of winds on Titan. Nature 438, 800–802 (2005). doi:10.1038/nature04060

    Article  ADS  Google Scholar 

  • J. Bishop, P.N. Romani, S.K. Atreya, Voyager 2 ultraviolet spectrometer solar occultations at Neptune: Constraints on the abundance of methane in the stratosphere. J. Geophys. Res. 97, 11681–11694 (1998)

    Article  ADS  Google Scholar 

  • N. Biver, D. Bockelée-Morvan, J. Crovisier et al., Chemical composition diversity among 24 comets observed at radio wavelengths. Earth Moon Planets 90, 323–333 (2002)

    Article  ADS  Google Scholar 

  • D. Bockelée-Morvan, J. Crovisier, The role of water in the thermal balance of the coma. ESA SP 278, 235–240 (1987)

    ADS  Google Scholar 

  • D. Bockelée-Morvan, J. Crovisier, M.J. Mumma, H.A. Weaver, The composition of cometary volatiles, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2005), pp. 391–423

    Google Scholar 

  • D.D. Bogard et al., Martian volatiles: Isotopic composition, origin, and evolution. Chronol. Evol. Mars 96, 425–458 (2001)

    Google Scholar 

  • J. Boissier, D. Bockelée-Morvan, N. Biver et al., Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp). Astron. Astrophys. 475, 1131–1144 (2007)

    Article  ADS  Google Scholar 

  • S.W. Bougher, D.M. Hunten, R.G. Roble, CO2 cooling in terrestrial planet thermospheres. J. Geophys. Res. 99, 14609–14622 (1994)

    Article  ADS  Google Scholar 

  • S.W. Bougher, M.J. Alexander, H.G. Mayr, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 259–291

    Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res. 104, 16591–16611 (1999)

    Article  ADS  Google Scholar 

  • S.W. Bougher, S. Engel, R.G. Roble, B. Foster, Comparative terrestrial planet thermospheres 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res. 105, 17,669–17,689 (2000)

    Article  ADS  Google Scholar 

  • S.W. Bougher, J.H. Waite Jr., T. Majeed, G.R. Gladstone, Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating. J. Geophys. Res. 110, E04008 (2005). doi:10.1029/2003JE002230

    Article  Google Scholar 

  • S.W. Bougher, S. Rafkin, P. Drossart, Dynamics of the Venus upper atmosphere: Outstanding problems and new constraints expected from Venus Express. Planet. Space Sci. 54, 1371–1380 (2006a). doi:10.1016/j.pss.2006.04.023

    Article  ADS  Google Scholar 

  • S.W. Bougher, J.M. Bell, J.R. Murphy, M.A. López-Valverde, P.G. Withers, Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions. Geophys. Res. Lett. 33, L02203 (2006b). doi:10.1029/2005GL024059

    Article  Google Scholar 

  • S.W. Bougher, P.-L. Blelly, M. Combi, J. Fox, I.C.F. Mueller-Wodarg, A. Ridley, R.G. Roble, Neutral upper atmosphere and ionosphere modeling. Space Sci. Rev. (2008, this issue)

  • G.P. Brasseur, S. Solomon, Aeronomy of the Middle Atmosphere (Springer, Dordrecht, 2005)

    Google Scholar 

  • G.P. Brasseur, J.J. Orlando, G.S. Tyndall (eds.), Atmospheric Chemistry and Global Change (Oxford University Press, New York, 1999)

    Google Scholar 

  • H.C. Brinton, H.A. Taylor, H.B. Niemann, H.G. Mayr, A.F. Nagy, T.E. Cravens, D.F. Strobel, Venus night time hydrogen bulge. Geophys. Res. Lett. 7, 865–868 (1980)

    Article  ADS  Google Scholar 

  • M. Burgdorf, G. Orton, J. van Cleve, V. Meadows, J. Houck, Detection of new hydrocarbons in Uranus’ atmosphere by infrared spectroscopy. Icarus 184, 634–637 (2006)

    Article  ADS  Google Scholar 

  • M.V. Canaves, A.A. de Almeida, D.C. Boice, G.C. Snzovo, On the chemistry of CS and NS in cometary comae. Adv. Space Res. 39, 451–457 (2007)

    Article  ADS  Google Scholar 

  • K.J. Castle, K.M. Kleissas, J.M. Rhinehart, E.S. Hwang, J.A. Dodd, Vibrational relaxation of CO2(?2) by atomic oxygen. J. Geophys. Res. 111, A09303 (2006). doi:10.1029/2006JA011736

    Article  Google Scholar 

  • R.T. Clancy, H. Nair, Annual (perihelion-aphelion) cycles in the photochemical behavior of the global Mars atmosphere. J. Geophys. Res. 101, 12785–12790 (1996)

    Article  ADS  Google Scholar 

  • T.E. Cravens et al., Composition of Titan’s ionosphere. Geophys. Res. Lett. 33, L07105 (2006). doi:10.1029/2005GL025575

    Article  Google Scholar 

  • J.F. Crifo, M. Fulle, N.I. Kmle, K. Szego, Lessons from physical models, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2005), pp. 471–503

    Google Scholar 

  • M.R. Combi, W.M. Harris, W.H. Smyth, Gas dynamics and kinetics in the cometary coma: Theory and observations, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2005), pp. 523–552

    Google Scholar 

  • M.R. Combi, K. Kabin, D. De Zeeuw, T.I. Gombosi, K.G. Powell, Dust-gas interrelations in Comets: Observations and theory. Earth Moon Planets 79, 275–306 (1999)

    Article  ADS  Google Scholar 

  • A. Coustenis, A. Salama, E. Lellouch, T. Encrenaz, G.L. Bjoraker, R.E. Samuelson, T. de Graauw, H. Feuchtgruber, M.F. Kessler, Evidence for water vapor in Titan’s atmosphere. Astron. Astrophys. 336, L85–L89 (1998)

    ADS  Google Scholar 

  • J. Crovisier, The photodissociation of water in cometary atmospheres. Astron. Astrophys. 213, 459–464 (1989)

    ADS  Google Scholar 

  • J. Crovisier, Photodestruction rates for cometary parent molecules. J. Geophys Res. Planets 99, 3777–3781 (1994)

    Article  ADS  Google Scholar 

  • J. Crovisier, Cometary diversity and cometary families, in Proceedings of the XVIIIemes Rencontres de Blois: Planetary Science: Challenges and Discoveries (2007). astro-ph/0703785

  • N. Dauphus, The dual origin of the terrestrial atmosphere. Icarus 165, 326–339 (2003)

    Article  ADS  Google Scholar 

  • C. de Bergh et al., The composition of the atmosphere of Venus below 100 km altitude: An overview. Planet. Space Sci. 54, 1389–1397 (2006)

    Article  ADS  Google Scholar 

  • N. Dello Russo, R.J. Vervack Jr., H.A. Weaver et al., Compositional homogeneity in the fragmented comet 73P/Schwassmann-Wachmann 3. Nature 448, 172–175 (2007)

    Article  ADS  Google Scholar 

  • W.B. DeMore, M.T. Leu, R.H. Smith, Y.L. Yung, Laboratory studies on the reactions between chlorine, sulfur dioxide, and oxygen: Implications for the Venus stratosphere. Icarus 63, 247 (1985)

    Article  ADS  Google Scholar 

  • I. de Pater, H. Roe, J.R. Graham, D.F. Strobel, P. Bernath, Detection of forbidden SO a1Δ–X3Σ rovibronic transition on Io at 1.7 μm. Icarus 156, 296–301 (2002)

    Article  ADS  Google Scholar 

  • I. de Pater, C. Laver, F. Marchis, H.G. Roe, B.A. Macintosh, Spatially resolved observations of the forbidden SO aΔ→XΣ rovibronic transition on Io during an eclipse and a volcanic eruption at Ra Patera. Icarus 191, 172–182 (2007)

    Article  ADS  Google Scholar 

  • T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999)

    Article  ADS  Google Scholar 

  • P. Drossart et al., A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express. Nature 450 (2007). doi:10.1038/nature06140

  • R.A. Duncan, F-region seasonal and magnetic storm behaviour. J. Atmos. Terr. Phys. 31, 59–70 (1969)

    Article  ADS  Google Scholar 

  • J.L. Elliot, D.F. Strobel, X. Zhu, J.A. Stansberry, L.H. Wasserman, O.G. Franz, The thermal structure of Triton’s middle atmosphere. Icarus 143, 425–428 (2000)

    Article  ADS  Google Scholar 

  • J.L. Elliot, M.J. Person, A.A.S. Gulbis et al., Changes in Pluto’s atmosphere: 1988–2006. Astron. J. 134, 1–13 (2007)

    Article  ADS  Google Scholar 

  • T. Encrenaz, B. Bézard, T.K. Greathouse, M.J. Richter, J.H. Lacy, S.K. Atreya, A.S. Wong, S. Lebonnois, F. Lefèvre, F. Forget, Hydrogen peroxide on Mars: evidence for spatial and seasonal variations. Icarus 170, 424–429 (2004)

    Article  ADS  Google Scholar 

  • B. Fegley Jr., M.Yu. Zolotov, Chemistry of sodium, potassium, and chlorine in volcanic gases on Io. Icarus 148, 193–210 (2000)

    Article  ADS  Google Scholar 

  • S.B. Fels, R.S. Lindzen, The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, 149–191 (1974)

    Article  ADS  Google Scholar 

  • H. Feuchtgruber, E. Lellouch, T. de Graauw, B. Bézard, T. Encrenaz, M. Griffin, External supply of oxygen to the atmospheres of the giant planets. Nature 389, 159–162 (1997)

    Article  ADS  Google Scholar 

  • H. Feuchtgruber, E. Lellouch, T. Encrenaz, B. Bézard, A. Coustenis, P. Drossart, A. Salama, T. de Graauw, G.R. Davis, Oxygen in the stratospheres of the giant planets and Titan. In The Universe as Seen by ISO, ed. by P. Cox, M.F. Kessler. ESA SP 427, 133–136 (1999)

    ADS  Google Scholar 

  • B.J. Finlayson-Pitts, J.N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere (Academic Press, San Diego, 1999)

    Google Scholar 

  • F.M. Flasar et al., An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004)

    Article  ADS  Google Scholar 

  • F.M. Flasar et al., Temperatures, winds, and composition in the Saturn system. Science 307, 1247–1251 (2005a)

    Article  ADS  Google Scholar 

  • F.M. Flasar et al., Titan’s atmospheric temperatures, winds, and composition. Science 308, 975–978 (2005b). doi:10.1126/science.1111150

    Article  ADS  Google Scholar 

  • J.M. Forbes, Wave coupling in terrestrial planetary atmospheres, in Atmospheres in the Solar System: Comparative Aeronomy, ed. by M. Mendillo, A. Nagy, J.H. Waite. Geophysical Monograph, vol. 130 (American Geophysical Union, Washington, 2002), pp. 171–190

    Google Scholar 

  • J.M. Forbes, M.E. Hagan, Diurnal Kelvin wave in the atmosphere of Mars: towards an understanding of stationary density structures observed by the MGS accelerometer. Geophys. Res. Lett. 27, 3563–3566 (2000)

    Article  ADS  Google Scholar 

  • J.M. Forbes, A.F.C. Bridger, S.W. Bougher, M.E. Hagan, J.L. Hollingsworth, G.M. Keating, J. Murphy, Nonmigrating tides in the thermosphere of Mars. J. Geophys. Res. 107 (2002). doi:10.1029/2001JE001582

  • J.M. Forbes, X. Zhang, M. Angelats i Coll, G.M. Keating, Nonmigrating tides in the thermosphere of Mars: a quasi-empirical description. Adv. Space Res. 34, 1690–1695 (2004)

    Article  ADS  Google Scholar 

  • J.M. Forbes, S. Bruinsma, F.G. Lemoine, Solar rotation effects on the thermospheres of Mars and Earth. Science 312, 1366–1368 (2006). doi:10.1126/science.1126389

    Article  ADS  Google Scholar 

  • V. Formisano, S.K. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004)

    Article  ADS  Google Scholar 

  • J.L. Fox, Heating efficiencies in the thermosphere of Venus reconsidered. Planet. Space Sci. 36, 37–46 (1998)

    Article  ADS  Google Scholar 

  • J.L. Fox, Advances in the aeronomy of Venus and Mars. Adv. Space Res. 33, 132–139 (2004)

    Article  ADS  Google Scholar 

  • J.L. Fox, S.W. Bougher, Structure, luminosity, and dynamics of the Venus thermosphere. Space Sci. Rev. 55, 357–489 (1991)

    Article  ADS  Google Scholar 

  • J.L. Fox, K.Y. Sung, Solar activity variations of the Venus thermosphere/ionosphere. J. Geophys. Res. 106, 21305–21335 (2001)

    Article  ADS  Google Scholar 

  • A.J. Friedson, A.-S. Wong, Y.L. Yung, Models for polar haze formation in Jupiter’s stratosphere. Icarus 158, 389–400 (2002)

    Article  ADS  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilliet et al., Titan’s Physical Characteristics Measured by the Huygens Atmospheric Structure Instrument (HASI). Nature 438, 785–791 (2005). doi:10.1038/nature04314

    Article  ADS  Google Scholar 

  • T.J. Fuller-Rowell, D. Rees, S. Quegan, R.J. Moffett, M.V. Codrescu, G.H. Millward, A coupled thermosphere-ionosphere model (CTIM), in STEP Handbook of Ionospheric Models, ed. by R.W. Schunk (Utah State University, Logan, 1996), pp. 217–238

    Google Scholar 

  • A. García Muñoz, J.C. McConnell, I.C. McDade, S.M.L. Melo, Airglow on Mars: Some model expectations for the OH Meinel bands and the \({\fam0O_{2}}\) IR atmospheric band. Icarus 176, 75–95 (2005)

    Article  ADS  Google Scholar 

  • M.A. Geller, Dynamics of the Middle Atmosphere. Space Sci. Rev. 34, 359–375 (1983)

    Article  ADS  Google Scholar 

  • P. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32, 1038–1044 (1975)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, R.M. Goody, R.E. Young, D. Crisp, C. Edwards, R. Kahn, D. Rider, A. Del Genio, R. Greeley, A. Hou, C.B. Leovy, D. McCleese, M. Newman, The general circulation of the Venus atmosphere: an assessment, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 459–500

    Google Scholar 

  • G.R. Gladstone, M. Allen, Y.L. Yung, Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus 119, 1–52 (1996)

    Article  ADS  Google Scholar 

  • F. González-Galindo, M.A. López-Valverde, M. Angelats i Coll, F. Forget, Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. J. Geophys. Res. 110 (2005). doi:10.1029/2004JE002312

  • T.K. Greathouse, J.H. Lacy, B. Bézard, J.I. Moses, C.A. Griffith, M.J. Richter, Meridional variations of temperature, \({\fam0C_{2}H_{2}}\) and \({\fam0C_{2}H_{6}}\) abundances in Saturn’s stratosphere at southern summer solstice. Icarus 177, 18–31 (2005)

    Article  ADS  Google Scholar 

  • M.J. Harris, A new coupled terrestrial mesosphere-thermosphere general circulation model: Studies of dynamic, energetic, and photochemical coupling in the middle and upper atmosphere. PhD Thesis, University of London, UK (2000)

  • M.J. Harris, N.F. Arnold, A.D. Aylward, A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT) general circulation model. Ann. Geophys. 20, 225–235 (2002)

    Article  ADS  Google Scholar 

  • A.E. Hedin, E.L. Fleming, A.H. Manson, F.J. Schmidlin, S.K. Avery, R.R. Clark, S.J. Franke, G.J.A. Fraser, T.A. Tsuda, F.A. Vial, R.A. Vincent, Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 58, 1421–1447 (1996)

    Article  ADS  Google Scholar 

  • B.E. Hesman, G.R. Davis, H.E. Matthews, G.S. Orton, The abundance profile of CO in Neptune’s atmosphere. Icarus 186, 342–353 (2007)

    Article  ADS  Google Scholar 

  • R.R. Hodges, Monte Carlo simulation of nonadiabatic expansion in cometary atmospheres–Halley. Icarus 83, 410–433 (1990)

    Article  ADS  Google Scholar 

  • F. Hourdin, O. Talagrand, R. Sadourny, R. Courtin, D. Gautier, C.P. Mc Kay, Numerical simulation of the general circulation of the atmosphere of Titan. Icarus 117, 358–374 (1995)

    Article  ADS  Google Scholar 

  • C.J.A. Howett, P.G.J. Irwin, N.A. Teanby, A. Simon-Miller, S.B. Calcutt, L.N. Fletcher, R. de Kok, Meridional variations in stratospheric acetylene and ethane in the Southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus 190, 556–572 (2007)

    Article  ADS  Google Scholar 

  • W.B. Hubbard et al., The occultation of 28 SGR by Titan. Astron. Astrophys. 269, 541–563 (1993)

    ADS  Google Scholar 

  • W.B. Hubbard et al., Structure of Saturn’s mesosphere from the 28 Sgr occultations. Icarus 130, 404–425 (1997)

    Article  ADS  Google Scholar 

  • W.F. Huebner, J.J. Keady, S.P. Lyon, Astrophys. Space Sci. 195, 1–294 (1992)

    Article  ADS  Google Scholar 

  • D.L. Huestis, S.W. Bougher, J.L. Fox, M. Galand, R.E. Johnson, J.I. Moses, J.C. Pickering, Cross sections and reaction rates for comparative planetary aeronomy. Space Sci. Rev. (2008, this issue)

  • H. Imanaka, M.A. Smith, Role of photoionization in the formation of complex organic molecules in Titan’s upper atmosphere. Geophys. Res. Lett. 34, L02204 (2007). doi:10.1029/2006GL028317

    Article  Google Scholar 

  • A.P. Ingersoll, R.F. Beebe, B.J. Conrath, G.E. Hunt, in Saturn, ed. by T. Gehrels, M.S. Matthews (Univ. of Arizona Press, Tucson, 1984), pp. 195–238

    Google Scholar 

  • W.-H. Ip, On photochemical heating of cometary comae – The cases of H2O and CO-rich comets. Astrophys. J. 264, 726–732 (1983)

    Article  ADS  Google Scholar 

  • K.L. Jessup, J.R. Spencer, G.E. Ballester, R. Howell, F. Roessler, M. Vigel, R.V. Yelle, The atmospheric signature of Io’s Prometheus plume and anti-jovian hemisphere: Evidence for a sublimation atmosphere. Icarus 169, 197–215 (2004)

    Article  ADS  Google Scholar 

  • K.L. Jessup, J. Spencer, R.V. Yelle, Sulfur volcanism on Io. Icarus 192, 24–40 (2007)

    Article  ADS  Google Scholar 

  • W.T. Kasprzak, A.E. Hedin, H.G. Mayr, H.B. Niemann, Wavelike perturbations observed in the neutral thermosphere of Venus. J. Geophys. Res. 93, 11237–11245 (1988)

    Article  ADS  Google Scholar 

  • G.M. Keating et al., The structure of the upper atmosphere of Mars: in situ accelerometer measurements from Mars Global Surveyor. Science 279, 1672–1675 (1998)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Photochemistry of the Atmospheres of Mars and Venus (Springer, Berlin, 1986)

    Google Scholar 

  • V.A. Krasnopolsky, Uniqueness of a solution of a steady-state photochemical problem: Applications to Mars. J. Geophys. Res. 100, 3263–3276 (1995)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Photochemistry in the martian atmosphere: Seasonal, latitudinal, and diurnal variations. Icarus 185, 153–170 (2006a)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Some problems related to the origin of methane on Mars. Icarus 180, 359–367 (2006b)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Chemical composition of Venus atmosphere and clouds: Some unsolved problems. Planet. Space Sci. 54, 1352–1359 (2006c)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Chemical kinetic model for the lower atmosphere of Venus. Icarus 191, 25–37 (2007a)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, Long-term spectroscopic observations of Mars using IRTF/CSHELL: Mapping of O2 dayglow, CO, and search for CH4. Icarus 190, 93–102 (2007b)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Triton’s atmosphere and ionosphere. J. Geophys. Res. 100, 21271–21286 (1995)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, D.P. Cruikshank, Photochemistry of Pluto’s atmosphere and ionosphere near perihelion. J. Geophys. Res. 104, 21979–21996 (1999)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, V.A. Parshev, Photochemistry of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 431–458

    Google Scholar 

  • V.A. Krasnopolsky, J.B. Pollack, H2O- \({\fam0H_{2}SO_{4}}\) system in Venus’ clouds and OCS, CO, and \({\fam0H_{2}SO_{4}}\) profiles in Venus’ troposphere. Icarus 109, 58–78 (1994)

    Article  ADS  Google Scholar 

  • V.A. Krasnopolsky, J.P. Maillard, T.C. Owen, Detection of methane in the martian atmosphere: evidence for life? Icarus 172, 537–547 (2004)

    Article  ADS  Google Scholar 

  • V. Kunde et al., Jupiter’s atmospheric composition from the Cassini thermal infrared spectroscopy experiment. Science 305, 1582–1587 (2004)

    Article  ADS  Google Scholar 

  • H. Lammer et al., Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006)

    Article  ADS  Google Scholar 

  • L.M. Lara, E. Lellouch, J.J. López-Moreno, R. Rodrigo, Vertical distribution of Titan’s atmospheric neutral constituents. J. Geophys. Res. 113, 2–26 (1996)

    Google Scholar 

  • L.M. Lara, W.-H. Ip, R. Rodrigo, Photochemical models of Pluto’s atmosphere. Icarus 130, 16–35 (1997)

    Article  ADS  Google Scholar 

  • C. Laver, I. de Pater, H. Roe, D.F. Strobel, Temporal behavior of the SO 1.707 μm ro-vibronic emission band in Io’s atmosphere. Icarus 189, 401–408 (2007)

    Article  ADS  Google Scholar 

  • S. Lebonnois, D. Toublanc, F. Hourdin, P. Rannou, Seasonal variations of Titan’s atmospheric composition. Icarus 152, 384–406 (2001)

    Article  ADS  Google Scholar 

  • S. Lebonnois, Benzene and aerosol production in Titan and Jupiter’s atmospheres: a sensitivity study. Planet. Space Sci. 53, 486–497 (2005)

    Article  ADS  Google Scholar 

  • F. Lefèvre, S. Lebonnois, F. Montmessin, F. Forget, Threee-dimensional modeling of ozone on Mars. J. Geophys. Res. 109, E07004 (2004). doi:10.1029/2004JE002268

    Article  Google Scholar 

  • F. Lefèvre, J.-L. Bertaux, S. Perrier, S. Lebonnois, O. Korablev, A. Fedorova, F. Montmessin, F. Forget, The Martian ozone layer as seen by SPICAM/Mars-Express. Paper presented at the Seventh International Conference on Mars, 9–13 July 2007, Pasadena, California (2007), p. 3137

  • E. Lellouch, J. Rosenquist, J.J. Goldstein, S.W. Bougher, G. Paubert, First absolute wind measurements in the middle atmosphere of Mars. Astrophys. J. 383, 401–406 (1991)

    Article  ADS  Google Scholar 

  • E. Lellouch, T. Clancy, D. Crisp, A. Kliore, D. Titov, S.W. Bougher, Monitoring of mesospheric structure and dynamics, in Venus II (University of Arizona Press, Tucson, 1997), pp. 295–324

    Google Scholar 

  • E. Lellouch, P.N. Romani, J. Rosenqvist, The vertical distribution and origin of HCN in Neptune’s atmosphere. Icarus 108, 112–136 (1994)

    Article  ADS  Google Scholar 

  • E. Lellouch, B. Bézard, J.I. Moses, G.R. Davis, P. Drossart, H. Feuchtgruber, E.A. Bergin, R. Moreno, T. Encrenaz, The origin of water vapor and carbon dioxide in Jupiter’s stratosphere. Icarus 159, 112–131 (2002)

    Article  ADS  Google Scholar 

  • E. Lellouch, G. Paubert, J.I. Moses, N.M. Schneider, D.F. Strobel, Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421, 45–47 (2003)

    Article  ADS  Google Scholar 

  • E. Lellouch, R. Moreno, G. Paubert, A dual origin for Neptune’s carbon monoxide. Astron. Astrophys. 430, L37–L40 (2005)

    Article  ADS  Google Scholar 

  • E. Lellouch, B. Bézard, D.F. Strobel, G.L. Bjoraker, F.M. Flasar, P.N. Romani, On the HCN and CO2 abundance and distribution in Jupiter’s stratosphere. Icarus 184, 478–497 (2006)

    Article  ADS  Google Scholar 

  • M.-C. Liang, R.-L. Shia, A.Y.-T. Lee, M. Allen, A.J. Friedson, Y.L. Yung, Meridional transport in the stratosphere of Jupiter. Astrophys. J. 635, L177–L180 (2005)

    Article  ADS  Google Scholar 

  • G.F. Lindal, The atmosphere of Neptune: An analysis of the radio occultation data acquired with Voyager 2. Astron. J. 103, 967–972 (1992)

    Article  ADS  Google Scholar 

  • R.S. Lindzen, Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–9714 (1981)

    Article  ADS  Google Scholar 

  • D. Lis, D. Bockelée-Morvan, N. Biver et al., Hydrogen isocyanide in comet 73P/Schwassmann-Wachmann (fragment B). Astrophys. J. 675, 931–936 (2008)

    Article  ADS  Google Scholar 

  • R.D. Lorenz, K.L. Mitchell, R.L. Kirk, A.G. Hayes, O. Aharonson, H.A. Zebker, P. Paillou, J. Radebaugh, J.I. Lunine, M.A. Janssen, S.D. Wall, R.M. Lopes, B. Stiles, S. Ostro, G. Mitri, E.R. Stofan, Titan’s inventory of organic surface materials. Geophys. Res. Lett. 35, L02206 (2008). doi:10.1029/2007GL032118

    Article  Google Scholar 

  • D. Luz, F. Hourdin, P. Rannou, S. Lebonnois, Latitudinal transport by barotropic waves in Titan’s stratosphere. II. Results from a coupled dynamics-microphysics-photochemistry GCM. Icarus 166, 343–358 (2003)

    Article  ADS  Google Scholar 

  • J.R. Lyons, C. Manning, F. Nimmo, Formation of methane on Mars by fluid-rock interaction in the crust. Geophys. Res. Lett. 32, L13201 (2005). doi:10.1029/2004GL022161

    Article  ADS  Google Scholar 

  • Y.-J. Ma, K. Altwegg, T. Breus, M.R. Combi, T.E. Cravens, E. Kallio, S.A. Ledvina, J.G. Luhmann, S. Miller, A.F. Nagy, A.J. Ridley, D.F. Strobel, Plasma flow and related phenomena in planetary aeronomy. Space Sci. Rev. (2008). doi:10.1007/s11214-008-9389-1

    Google Scholar 

  • T. Majeed, J.H. Waite Jr., S.W. Bougher, G.R. Gladstone, Processes of equatorial thermal structure at Jupiter: An analysis of the Galileo temperature profile with a three-dimensional model. J. Geophys. Res. 110, E12007 (2005). doi:10.1029/2004JE002351

    Article  ADS  Google Scholar 

  • H.G. Mayr, I. Harris, W.T. Kasprzak, M. Dube, F. Varosi, Gravity waves in the upper atmosphere of Venus. J. Geophys. Res. 93, 11247–11262 (1988)

    Article  ADS  Google Scholar 

  • M.D. Max, S.M. Clifford, The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105, 4165–4172 (2000)

    Article  ADS  Google Scholar 

  • M.B. McElroy, T.M. Donahue, Stability of the Martian atmosphere. J. Atmos. Sci. 28, 879–884 (1972)

    Article  Google Scholar 

  • A.S. Medvedev, G.P. Klaassen, Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: basic formulation and sensitivity tests. J. Atmos. Sol.-Terr. Phys. 62, 1015–1033 (2000)

    Article  ADS  Google Scholar 

  • C.K. Meyer, Gravity wave interactions with mesospheric planetary waves: A mechanism for penetration into the thermosphere-ionosphere system. J. Geophys. Res. 104, 28181–28196 (1999)

    Article  ADS  Google Scholar 

  • F.P. Mills, I. Observations and photochemical modeling of the Venus middle atmosphere. II. Thermal infrared spectroscopy of Europa and Callisto. Ph.D. Thesis, California Institute of Technology, Pasadena, CA (1998)

  • F.P. Mills, M. Allen, A review of selected issues concerning the chemistry in Venus’ middle atmosphere. Planet. Space Sci. 55, 1729–1740 (2007)

    Article  ADS  Google Scholar 

  • F.P. Mills, M. Sundaram, T.G. Slanger, M. Allen, Y.L. Yung, Oxygen chemistry in the Venus middle atmosphere, in Advances in Geosciences, vol. 3, ed. by W.-H. Ip, A. Bhardwaj (World Scientific Publishing Co., Singapore, 2006), pp. 109–117

    Google Scholar 

  • G.J. Molina-Cuberos, K. Schwingenschuh, J.J. López-Moreno, R. Rodrigo, L.M. Lara, V. Anicich, Nitriles produced by ion chemistry in the lower ionosphere of Titan. J. Geophys. Res. 107, 5099 (2002). doi:10.1029/2000JE001480

    Article  Google Scholar 

  • D. Moreau, L.W. Esposito, G. Brasseur, The chemical composition of the dust-free Martian atmosphere: Preliminary results of a two-dimensional model. J. Geophys. Res. 96, 7933–7945 (1991)

    Article  ADS  Google Scholar 

  • J.I. Moses, T.K. Greathouse, Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from ITRF/TEXES. J. Geophys. Res. 110, E09007 (2005). doi:10.1029/2005JE002450

    Article  Google Scholar 

  • J.I. Moses, B. Bézard, E. Lellouch, G.R. Gladstone, H. Feuchtgruber, M. Allen, Photochemistry of Saturn’s atmosphere. I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143, 244–298 (2000a)

    Article  ADS  Google Scholar 

  • J.I. Moses, E. Lellouch, B. Bézard, G.R. Gladstone, H. Feuchtgruber, M. Allen, Photochemistry of Saturn’s atmosphere. II. Effects of an influx of external material. Icarus 145, 166–202 (2000b)

    Article  ADS  Google Scholar 

  • J.I. Moses, M.Y. Zolotov, B. Fegley Jr., Photochemistry of a volcanically driven atmosphere on Io: Sulfur and oxygen species from a Pele-type eruption. Icarus 156, 76–106 (2002a)

    Article  ADS  Google Scholar 

  • J.I. Moses, M.Y. Zolotov, B. Fegley Jr., Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156, 107–135 (2002b)

    Article  ADS  Google Scholar 

  • J.I. Moses, T. Fouchet, R.V. Yelle, A.J. Friedson, G.S. Orton, B. Bézard, P. Drossart, G.R. Gladstone, T. Kostiuk, T.A. Livengood, The stratosphere of Jupiter, in Jupiter: Planet, Satellites and Magnetosphere, ed. by F. Bagenal, W. McKinnon, T. Dowling (Cambridge Univ. Press, New York, 2004), pp. 129–157

    Google Scholar 

  • J.I. Moses, T. Fouchet, B. Bézard, G.R. Gladstone, E. Lellouch, H. Feuchtgruber, Photochemistry and diffusion in Jupiter’s stratosphere: Constraints from ISO observations and comparisons with other giant planets. J. Geophys. Res. 110, E08001 (2005). doi:10.1029/2005JE002411

    Article  Google Scholar 

  • J.I. Moses, M.-C. Liang, Y.L. Yung, R.-L. Shia, Meridional distribution of hydrocarbons on Saturn: Implications for stratospheric transport. Paper presented at the Planetary Atmospheres Workshop, 6–7 Nov. 2007, Greenbelt, MD (2007), pp. 85–86

  • Y. Moudden, Simulated seasonal variations of hydrogen peroxide in the atmosphere of Mars. Planet. Space Sci. 55, 2137–2143 (2007)

    Article  ADS  Google Scholar 

  • Y. Moudden, J.C. McConnell, Three-dimensional on-line chemical modeling in a Mars general circulation model. Icarus 188, 18–34 (2007)

    Article  ADS  Google Scholar 

  • I.C.F. Mueller-Wodarg, R.V. Yelle, M. Mendillo, L.A. Young, A.D. Aylward, The thermosphere of Titan simulated by a global 3-dimensional time-dependent model. J. Geophys. Res. 105, 20833–20856 (2000)

    Article  ADS  Google Scholar 

  • I.C.F. Mueller-Wodarg, R.V. Yelle, M. Mendillo, A.D. Aylward, On the global distribution of neutral gases in Titan’s upper atmosphere and its effect on the thermal structure. J. Geophys. Res. 108 (2003). doi:10.1029/2003JA010054

  • I.C.F. Mueller-Wodarg, M. Mendillo, R.V. Yelle, A.D. Aylward, A global circulation model of Saturn’s thermosphere. Icarus 180, 147–160 (2006a)

    Article  ADS  Google Scholar 

  • I.C.F. Mueller-Wodarg, R.V. Yelle, N. Borggren, J.H. Waite, Waves and horizontal structures in Titans thermosphere. J. Geophys. Res. 111, A12315 (2006b). doi:10.1029/2006JA011961

    Article  ADS  Google Scholar 

  • I.C.F. Mueller-Wodarg, R.V. Yelle, J. Cui, J.H. Waite, Horizontal structures and dynamics of Titan’s thermosphere. J. Geophys. Res. (2008, in press)

  • M.L. Mumma, M.A. DiSanti, N. Dello Russo et al., Remote infrared observations of parent volatiles in comets: A window on the early solar system. Adv. Space Res. 31, 2563–2575 (2003)

    Article  ADS  Google Scholar 

  • H. Nair, M. Allen, A.D. Anbar, Y.L. Yung, R.T. Clancy, A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994)

    Article  ADS  Google Scholar 

  • H.B. Niemann, S.K. Atreya, S.J. Bauer, G.R. Carignan, J.E. Demick, R.L. Frost, D. Gautier, J.A. Haberman, D.N. Harpold, D.M. Hunten, G. Israel, J.I. Lunine, W.T. Kasprzak, T.C. Owen, M. Paulkovich, F. Raulin, E. Raaen, S.H. Way, The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438, 779–784 (2005). doi:10.1038/nature04122

    Article  ADS  Google Scholar 

  • C.A. Nixon, R.K. Achterberg, B.J. Conrath, P.G.J. Irwin, N.A. Teanby, T. Fouchet, P.D. Parrish, P.N. Romani, M. Abbas, A. LeClair, D. Strobel, A.A. Simon-Miller, D.J. Jennings, F.M. Flasar, V.G. Kunde, Meridional variations of \({\fam0C_{2}H_{2}}\) and \({\fam0C_{2}H_{6}}\) in Jupiter’s atmosphere from Cassini CIRS infrared spectra. Icarus 188, 47–71 (2007)

    Article  ADS  Google Scholar 

  • G. Orton et al., Earth-based observations of the Galileo probe entry site. Science 272, 839–840 (1996)

    Article  ADS  Google Scholar 

  • T. Owen et al., The compostion of the atmosphere at the surface of Mars. J. Geophys. Res. 82, 4635–4639 (1977)

    Article  ADS  Google Scholar 

  • T. Owen, A. Bar-Nun, I. Kleinfeld, Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth, and Mars. Nature 358, 43–46 (1992). doi:10.1038/358043a0

    Article  ADS  Google Scholar 

  • T. Owen, Planetary atmospheres. Space Sci. Rev. 130, 97–104 (2007). doi:10.1007/s11214-007-9233-z

    Article  ADS  Google Scholar 

  • C. Oze, M. Sharma, Have olivine, will gas: Serpentization and the abiogenic production of methane on Mars. Geophys. Res. Lett. 32, L10203 (2005). doi:10.1029/2005GL022691

    Article  ADS  Google Scholar 

  • T.M. Parkinson, D.M. Hunten, Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci. 29, 1380–1390 (1972)

    Article  ADS  Google Scholar 

  • H. Pernice, P. Garcia, H. Willner, J.S. Francisco, F.P. Mills, M. Allen, Y.L. Yung, Laboratory evidence for a key intermediate in the Venus atmosphere: Peroxychloroformyl radical. Proc. Natl. Acad. Sci. 101, 14007–14010 (2004)

    Article  ADS  Google Scholar 

  • D.S. Pollock, G.B.I. Scott, L.F. Phillips, Rate constant for quenching of CO2(010) by atomic oxygen. Geophys. Res. Lett. 20, 727–729 (1993)

    Article  ADS  Google Scholar 

  • R. Prangé, T. Fouchet, R. Courtin, J.E.P. Connerney, J.C. McConnell, Latitudinal variation of Saturn photochemistry deduced from spatially-resolved ultraviolet spectra. Icarus 180, 379–392 (2006)

    Article  ADS  Google Scholar 

  • H. Rishbeth, I.C.F. Mueller-Wodarg, Vertical circulation and thermospheric composition: a modelling study. Ann. Geophys. 17, 794–805 (1999)

    Article  ADS  Google Scholar 

  • R.G. Roble, in On Solar Induced Variability in the Earth’s Upper Atmosphere and Ionosphere, ed. by K.S. Balasubramaniam, S.L. Keil, R.N. Smartt (Astron. Soc. of the Pacific, 1996), p. 609

  • R.G. Roble, R.E. Dickinson, E.C. Ridley, B.A. Emery, P.B. Hays, T.L. Killeen, N.W. Spencer, The high latitude circulation and temperature structure of the thermosphere near solstice. Planet. Space Science 31, 1479–1499 (1983). doi:10.1016/0032-0633(83)90021-1

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A.D. Richmond, D.E. Dickinson, A coupled Thermosphere-Ionosphere General Circulation Model. Geophys. Res. Lett. 15, 1325–1328 (1988)

    Article  ADS  Google Scholar 

  • R.G. Roble, E.C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30500 km). Geophys. Res. Lett. 21, 417–420 (1994)

    Article  ADS  Google Scholar 

  • S.D. Rogers, S.B. Charnley, W.F. Huebner, D.C. Boice, Physical processes and chemical reactions in cometary comae, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (Univ. Arizona Press, Tucson, 2005), pp. 505–522

    Google Scholar 

  • P.N. Romani, Recent rate constant and product measurements of the reactions \({\fam0C_{2}H_{3}}+{\fam0H_{2}}\) and \({\fam0C_{2}H_{3}}+\) H—Importance for photochemical modeling of hydrocarbons on Jupiter. Icarus 122, 233–241 (1996)

    Article  ADS  Google Scholar 

  • P.N. Romani, S.K. Atreya, Methane photochemistry and haze production on Neptune. Icarus 74, 424–445 (1988)

    Article  ADS  Google Scholar 

  • P.N. Romani, J. Bishop, B. Bézard, S. Atreya, Methane photochemistry on Neptune: Ethane and acetylene mixing ratios and haze production. Icarus 106, 442–463 (1993)

    Article  ADS  Google Scholar 

  • A. Sánchez-Lavega, S. Pérez-Hoyos, J.F. Rojas, R. Hues, R.G. French, Nature 423, 623 (2003)

    Article  ADS  Google Scholar 

  • J. Saur, D.F. Strobel, Relative contributions of sublimation and volcanoes to Io’s atmosphere from its plasma interaction during solar eclipse. Icarus 171, 411–420 (2004)

    Article  ADS  Google Scholar 

  • L. Schaefer, B. Fegley, A thermodynamic model of high temperature lava vaporization on Io. Icarus 169, 216–241 (2004)

    Article  ADS  Google Scholar 

  • L. Schaefer, B. Fegley, Predicted abundances of carbon compounds in volcanic gases on Io. Astrophys. J. 618, 1079–1085 (2005a)

    Article  ADS  Google Scholar 

  • L. Schaefer, B. Fegley, Alkali and halogen chemistry in volcanic gases on Io. Icarus 173, 454–468 (2005b)

    Article  ADS  Google Scholar 

  • L. Schaefer, B. Fegley, Silicon tetrafluoride on Io. Icarus 179, 252–258 (2005c)

    Article  ADS  Google Scholar 

  • M.R. Schoeberl, D.F. Strobel, The zonally averaged circulation of the middle atmosphere. J. Atmos. Sci. 35, 577–591 (1978)

    Article  ADS  Google Scholar 

  • J.T. Schofield, F.W. Taylor, Measurements of the mean solar-fixed temperature and cloud structure in the middle atmosphere of Venus. Q.J.R. Meteorol. Soc. 109, 57–80 (1983)

    Article  ADS  Google Scholar 

  • G. Schubert, General circulation and dynamical state of the Venus atmosphere, in Venus, ed. by D.M. Hunten et al. (Univ. of Arizona Press, Tucson, 1983), pp. 681–765

    Google Scholar 

  • G. Schubert et al., Venus atmosphere dynamics: A continuing enigma, in Exploring Venus as a Terrestrial Planet. Geophysical Monograph, vol. 176 (American Geophysical Union, 2007), pp. 101–120

  • A. Seiff, Models of Venuss atmospheric structure, in Venus, ed. by D.M. Hunten, L. Colin, V.I. Moroz (Univ. Arizona Press, Tucson, 1983), pp. 1045–1048

    Google Scholar 

  • A. Seiff et al., Thermal structure of Jupiter’s upper atmosphere derived from the Galileo probe. Science 276, 102–104 (1997)

    Article  ADS  Google Scholar 

  • J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, Hoboken, 2006)

    Google Scholar 

  • M.C. Senay, D. Jewitt, Coma formation driven by carbon-monoxide release from comet Schwassmann-Wachmann 1. Nature 371, 229–231 (1994)

    Article  ADS  Google Scholar 

  • R.D. Sharma, P.P. Wintersteiner, Role of carbon dioxide in cooling planetary thermospheres. Geophys. Res. Lett. 17, 2201–2204 (1990)

    Article  ADS  Google Scholar 

  • G.M. Shved, L.E. Khvorostovskaia, I.Iu. Potekhin, A.I. Dem’ianikov, A.A. Kutepov, The measurement of the rate constant of CO2/01 super-1 0/ quenching by atomic oxygen and the importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere. Akad. Nauk SSSR, Izv. Fiz. Atmos. Okeana 27, 431–437 (1991) (ISSN 0002-3515)

    ADS  Google Scholar 

  • B. Sicardy et al., The two Titan stellar occultations of 14 November 2003. J. Geophys. Res. 111, E11S91 (2006). doi:10.1029/2005JE002624

    Article  Google Scholar 

  • T. Slanger, D.L. Huestis, P.C. Cosby, N.J. Chanover, T.A. Bida, The Venus nightglow: Ground-based observations and chemical mechanisms. Icarus 182, 1–9 (2006)

    Article  ADS  Google Scholar 

  • C.G.A. Smith, A.D. Aylward, G.H. Millward, S. Miller, L.E. Moore, An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445, 399–401 (2007). doi:10.1038/nature05518

    Article  ADS  Google Scholar 

  • W.H. Smyth, M.C. Wong, Impact of electron chemistry on the structure and composition of Io’s atmosphere. Icarus 171, 171–182 (2004)

    Article  ADS  Google Scholar 

  • J.R. Spencer, K.L. Jessup, M.A. McGrath, G.E. Ballester, R. Yelle, Discovery of gaseous \({\fam0S_{2}}\) in Io’s Pele plume. Science 288, 1208–1210 (2000)

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, G. Millward, R.D. Joseph, On the dynamics of the jovian ionosphere and thermosphere. I. The measurement of ion winds. Icarus 154, 475–491 (2001)

    Article  ADS  Google Scholar 

  • T. Stallard, S. Miller, H. Melin, M. Lystrup, K. Dougherty, N. Achilleos, Saturn’s auroral/polar H +3 infrared emission—I. General morphology and ion velocity structure. Icarus 189, 1–13 (2007). doi:10.1016/j.icarus.2006.12.027

    Article  ADS  Google Scholar 

  • M.H. Stevens, D.F. Strobel, F. Herbert, An analysis of the Voyager 2 ultraviolet spectrometer occultation data at Uranus: Inferring heat sources and model atmospheres. Icarus 100, 45–63 (1993)

    Article  ADS  Google Scholar 

  • D.F. Strobel, Photochemistry in outer solar system atmospheres. Space Sci. Rev. 116, 155–170 (2005)

    Article  ADS  Google Scholar 

  • D.F. Strobel, Titan’s hydrodynamically escaping atmosphere. Icarus 193, 588–594 (2008a). doi:10.1016/j.icarus.2007.08.014

    Article  ADS  Google Scholar 

  • D.F. Strobel, N2 Escape rates from Pluto’s atmosphere. Icarus 193, 612–619 (2008b). doi:10.1016/j.icarus.2007.08.021

    Article  ADS  Google Scholar 

  • D.F. Strobel, M.E. Summers, Triton’s upper atmosphere and ionosphere, in Neptune and Triton, ed. by D.P. Cruikshank (Univ. Arizona Press, Tucson, 1995), pp. 1107–1148

    Google Scholar 

  • D.F. Strobel, B.C. Wolven, The atmosphere of Io: Abundances and sources of sulfur dioxide and atomic hydrogen. Astrophys. Space Sci. 277, 271–287 (2001)

    Article  MATH  ADS  Google Scholar 

  • D.F. Strobel, X. Zhu, M.E. Summers, On the vertical thermal structure of Pluto’s atmosphere. Icarus 120, 266–289 (1996)

    Article  ADS  Google Scholar 

  • M.E. Summers, D.F. Strobel, Photochemistry of the atmosphere of Uranus. Astrophys. J. 346, 495–508 (1989)

    Article  ADS  Google Scholar 

  • M.E. Summers, D.F. Strobel, Photochemistry and vertical transport in Io’s atmosphere and ionosphere. Icarus 120, 290–316 (1996)

    Article  ADS  Google Scholar 

  • J.M. Sunshine, M.F. A’Hearn, O. Groussin et al., Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2007)

    Article  ADS  Google Scholar 

  • M.E. Summers, D.F. Strobel, G.R. Gladstone, Chemical models of Pluto’s atmosphere, in Pluto, ed. by S.A. Stern, D.J. Tholen (Univ. Arizona Press, Tucson, 1997), pp. 391–434

    Google Scholar 

  • D. Toublanc, J.P. Parisot, J. Brillet, D. Gautier, F. Raulin, C.P. McKay, Photochemical modeling of Titan’s atmosphere. Icarus 113, 2–26 (1995)

    Article  ADS  Google Scholar 

  • W.-L. Tseng, D. Bockelée-Morvan, J. Crovisier, P. Colom, W.-H. Ip, Cometary water expansion velocity from OH line shapes. Astron. Astrophys. 467, 729–735 (2007)

    Article  ADS  Google Scholar 

  • G.L. Villanueva, B.P. Bonev, M.J. Mumma et al., The volatile composition of the split ecliptic comet 73P/Schwassmann-Wachmann 3: A comparison of fragments C and B. Astrophys. J. 650, L87–L90 (2006)

    Article  ADS  Google Scholar 

  • V. Vuitton, R.V. Yelle, V.G. Anicich, The nitrogen chemistry of Titan’s upper atmosphere revealed. Astrophys. J. 647, L175–L178 (2006)

    Article  ADS  Google Scholar 

  • V. Vuitton, R.V. Yelle, M.J. McEwan, Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191, 722–742 (2007)

    Article  ADS  Google Scholar 

  • J.H. Waite et al., Ion Neutral Mass Spectrometer results from the first flyby of Titan. Science 308, 982–986 (2005)

    Article  ADS  Google Scholar 

  • J.H. Waite, D.T. Young, T.E. Cravens, A.J. Coates, F.J. Crary, B. Magee, J. Westlake, The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007)

    Article  ADS  Google Scholar 

  • R.P. Wayne, Chemistry of Atmospheres (Oxford University Press, Oxford, 2000)

    Google Scholar 

  • E.H. Wilson, S.K. Atreya, Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 (2004). doi:10.1029/2003JE002181

    Article  Google Scholar 

  • E.H. Wilson, S.K. Atreya, A. Coustenis, Mechanisms for the formation of benzene in the atmosphere of Titan. J. Geophys. Res. 108, 5014 (2003). doi:10.1029/2002JE001896

    Article  Google Scholar 

  • J.R. Winick, A.I. Stewart, Photochemistry of SO2 in Venus’ upper cloud layers. J. Geophys. Res. 85, 7849–7860 (1980)

    Article  ADS  Google Scholar 

  • P. Withers, S.W. Bougher, G.M. Keating, The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer. Icarus 164, 14–32 (2003)

    Article  ADS  Google Scholar 

  • M.C. Wong, R.E. Johnson, A three-dimensional azimuthally symmetric model atmosphere for Io. 1. Photochemistry and the accumulation of a nightside atmosphere. J. Geophys. Res. 101, 23243–23254 (1996)

    Article  ADS  Google Scholar 

  • M.C. Wong, W.H. Smyth, Model calculations for Io’s atmosphere at eastern and western elongations. Icarus 146, 60–74 (2000)

    Article  ADS  Google Scholar 

  • A.-S. Wong, A.Y.T. Lee, Y.L. Yung, J.M. Ajello, Jupiter: Aerosol chemistry in the polar atmosphere. Astrophys. J. 534, L215–L217 (2000)

    Article  ADS  Google Scholar 

  • A.-S. Wong, C.G. Morgan, Y.L. Yung, Evolution of CO on Titan. Icarus 155, 382–392 (2002)

    Article  ADS  Google Scholar 

  • A.-S. Wong, Y.L. Yung, A.J. Friedson, Benzene and haze formation in the polar atmosphere of Jupiter. Geophys. Res. Lett. 30, 1447 (2003). doi:10.1029/2002GL016661

    Article  ADS  Google Scholar 

  • R.V. Yelle, Non-LTE models of Titan’s upper atmosphere. Astrophys. J. 383, 380–400 (1991)

    Article  ADS  Google Scholar 

  • R.V. Yelle, J.I. Lunine, Evidence for a molecule heavier than methane in the atmosphere of Pluto. Nature 339, 288–290 (1989)

    Article  ADS  Google Scholar 

  • R.V. Yelle, L.R. Doose, M.G. Tomasko, D.F. Strobel, Analysis of Raman scattered Ly-Alpha emissions from the atmosphere of Uranus. Geophys. Res. Lett. 14, 483 (1987)

    Article  ADS  Google Scholar 

  • R.V. Yelle, C.A. Griffith, L.A. Young, Structure of the Jovian stratosphere at the Galileo probe entry site. Icarus 152, 331–346 (2001)

    Article  ADS  Google Scholar 

  • R.V. Yelle, S. Miller, Jupiter’s thermosphere and ionosphere, in Jupiter, The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  • R.V. Yelle, J. Cui, I.C.F. Mueller-Wodarg, Eddy diffusion and methane escape from Titan’s atmosphere. J. Geophys. Res. (2008, in press)

  • Y.L. Yung, W.B. DeMore, Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus 51, 199–247 (1982)

    Article  ADS  Google Scholar 

  • Y.L. Yung, W.B. DeMore, Photochemistry of Planetary Atmospheres (Oxford University Press, New York, 1999)

    Google Scholar 

  • Y.L. Yung, M. Allen, J.P. Pinto, Photochemistry of the atmosphere of Titan: Comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984)

    Article  ADS  Google Scholar 

  • J. Zhang, D.B. Goldstein, P.L. Varghese, N.E. Gimelshein, S.F. Gimelshein, D.A. Levin, Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus 163, 182–197 (2003)

    Article  ADS  Google Scholar 

  • J. Zhang, D.B. Goldstein, P.L. Varghese, L. Trafton, C. Moore, K. Miki, Numerical modeling of ionian volcanis plumes with entrained particulates. Icarus 172, 479–502 (2004)

    Article  ADS  Google Scholar 

  • Q.H. Zhou, M.P. Sulzer, C.A. Tepley, C.G. Fesen, R.G. Roble, M.C. Kelley, Neutral winds and temperature in the tropical mesosphere and lower thermosphere during January 1993: Observation and comparison with TIME-GCM results. J. Geophys. Res. 102, 11,507–11,519 (1997)

    ADS  Google Scholar 

  • X. Zhu, J.-H. Yee, Wave-photochemistry coupling and its effect on water vapor, ozone and airglow variations in the atmosphere of Mars. Icarus 189, 136–150 (2007)

    Article  ADS  Google Scholar 

  • M.Yu. Zolotov, B. Fegley Jr., Volcanic origin of disulfur monoxide (S2O) on Io. Icarus 133, 293–297 (1998a)

    Article  ADS  Google Scholar 

  • M.Yu. Zolotov, B. Fegley Jr., Volcanic production of sulfur monoxide (SO) on Io. Icarus 132, 431–434 (1998b)

    Article  ADS  Google Scholar 

  • M.Yu. Zolotov, B. Fegley Jr., Oxidation state of volcanic gases and the interior of Io. Icarus 141, 40–52 (1999)

    Article  ADS  Google Scholar 

  • M.Yu. Zolotov, B. Fegley Jr., Eruption conditions of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophys. Res. Lett. 27, 2789–2792 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. F. Mueller-Wodarg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller-Wodarg, I.C.F., Strobel, D.F., Moses, J.I. et al. Neutral Atmospheres. Space Sci Rev 139, 191–234 (2008). https://doi.org/10.1007/s11214-008-9404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9404-6

Keywords

Navigation