Skip to main content

An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity

Abstract

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences.

Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

This is a preview of subscription content, access via your institution.

References

  • S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., Geophys. Res. Lett. 29, 2217 (2002)

    Article  ADS  Google Scholar 

  • S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 33

  • K.L. Aplin, R.A. McPheat, J. Atmos. Sol.-Terr. Phys. 67, 775 (2005)

    Article  ADS  Google Scholar 

  • K.L. Aplin, R.G. Harrison, M.J. Rycroft, Space. Sci. Rev. (2008, this issue)

  • K. Bahr, F. Simpson, Practical Magnetotellurics (Cambridge University Press, Cambridge, 2005), pp. 270

    Google Scholar 

  • G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, J. Atmos. Sol.-Terr. Phys. 62, 1577 (2000)

    Article  ADS  Google Scholar 

  • G.A. Bazilevskaya, I.G. Usoskin, E. Flückiger et al., Space. Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9339-y

    Google Scholar 

  • E.A. Bering, R.H. Holzworth, B.D. Reddell et al., Adv. Space Res. 35, 1434 (2005)

    Article  ADS  Google Scholar 

  • P.A. Bedrosian, Surv. Geophys. 28, 121 (2007)

    Article  ADS  Google Scholar 

  • P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys. 58, 601 (1996)

    Article  ADS  Google Scholar 

  • P.A. Bespalov, Yu.V. Chugunov, S.S. Davydenko, J. Atmos. Terr. Phys. 58, 605 (1996)

    Article  ADS  Google Scholar 

  • K.G. Budden, The Propagation of Radio Waves (Cambridge University Press, Cambridge, 1985), pp. 669

    Google Scholar 

  • K.S. Carslaw, R.G. Harrison, J. Kirkby, Science 298, 1732 (2002)

    Article  ADS  Google Scholar 

  • J.A. Chalmers, Atmospheric Electricity, 2nd edn. (Pergamon Press, 1967)

  • W.E. Cobb, H.J. Wells, J. Atmos. Sci. 27, 814 (1970)

    Article  ADS  Google Scholar 

  • S.S. Davydenko, E.A. Mareev, T.C. Marshall, M. Stolzenburg, J. Geophys. Res. 109 (2004). doi:10.1029/2003JD003832

  • W.H. Evans, J. Geophys. Res. 74, 939 (1969)

    Article  ADS  Google Scholar 

  • W.M. Farrell, M.D. Desch, Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013908

  • M. Fullekrug, E.A. Mareev, M.J. Rycroft (eds.), Sprites, Elves and Intense Lightning Discharges (Springer, New York, 2006), pp. 398

    Google Scholar 

  • O.H. Gish, Terr. Magn. Atmos. Electr. 49, 15 (1944)

    Google Scholar 

  • R. Gunn, J. Meteor. 11, 339 (1954)

    Google Scholar 

  • L.C. Hale, Adv. Space Res. 4, 175 (1984)

    Article  ADS  Google Scholar 

  • R.G. Harrison, Surv. Geophys. 25, 441 (2004a)

    Article  ADS  Google Scholar 

  • R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 66, 1127 (2004b)

    ADS  Google Scholar 

  • R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 67, 763 (2005)

    Article  ADS  Google Scholar 

  • R.G. Harrison, Atmos. Environ. 40, 3327 (2006)

    Article  Google Scholar 

  • R.G. Harrison, Atmos. Res. 84, 182 (2007)

    Article  Google Scholar 

  • R.G. Harrison, K.L. Aplin, Atmos. Res. 79 (2007). doi:10.1016/j.atmosres.2006.12.006

  • R.G. Harrison, A.J. Bennett, J. Atmos. Sol.-Terr. Phys. 69, 515 (2007a)

    Article  ADS  Google Scholar 

  • R.G. Harrison, A.J. Bennett, Adv. Geosci. 13, 17 (2007b)

    Article  Google Scholar 

  • R.G. Harrison, K.S. Carslaw, Rev. Geophys. 41 (2003). doi:10.1029/2002RG000114

  • R.G. Harrison, W.J. Ingram, Atmos. Res. 76(1–4), 49 (2005)

    Article  Google Scholar 

  • S. Israelsson, E. Knudsen, S.V. Anisimov, J. Atmos. Terr. Phys. 56, 1545 (1994)

    Article  Google Scholar 

  • S. Israelsson, H. Tammet, J. Atmos. Sol.-Terr. Phys. 63, 1693 (2001)

    Article  ADS  Google Scholar 

  • J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 641

    Google Scholar 

  • B. Karlsson, H. Kornich, J. Gumbel, Geophys. Res. Lett. 34(L16806) (2007). doi:10.1029/2007GL030282

  • M. Kokorowski, J.G. Sample, R.H. Holzworth et al., Geophys. Res. Lett. 33(L20105) (2006). doi:10.1029/2006GL027718

  • T. Korja, Surv. Geophys. 28, 239 (2007)

    Article  ADS  Google Scholar 

  • W. Lowrie, Fundamentals of Geophysics, 2nd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  • M. Makino, T. Ogawa, J. Geophys. Res. 90(D4), 431 (1985)

    Article  Google Scholar 

  • E.A. Mareev, S.V. Anisimov, in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 21

  • E.A. Mareev, S.A. Yashunin, S.S. Davydenko et al., Geophys. Res. Lett. (2007, in press)

  • D.R. MacGorman, W.D. Rust, The Electrical Nature of Storms (Oxford University Press, New York, 1998), pp. 422

    Google Scholar 

  • R. Markson, Bull. Am. Met. Soc. 88 (2007). doi:10.1175/BAMS-88-2-223

  • R.P. Mülheisen, Pure Appl. Geophys. 84, 112 (1971)

    Article  ADS  Google Scholar 

  • T. Ogawa, Y. Tanaka, T. Miura et al., J. Geomag. Geoelectr. 19, 115 (1967)

    Google Scholar 

  • N. Olsen, A. Kuvshinov, Earth Planets Space 56, 525 (2004)

    ADS  Google Scholar 

  • V.P. Pasko, J.J. George, J. Geophys. Res. 107 (2002). doi:10.1029/2002JA009473

  • B.B. Phillips, Mon. Weather Rev. 95, 854 (1967)

    Article  ADS  Google Scholar 

  • V.A. Rakov, M.A. Uman, Lightning. Physics and Effects (Cambridge University Press, Cambridge, 2003), pp. 687

    Google Scholar 

  • H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (Academic Press, New York, 1969), pp. 331

    Google Scholar 

  • W.D. Rust, C.B. Moore, Quart. J. R. Met. Soc. 100, 450 (1974)

    Article  ADS  Google Scholar 

  • L.H. Ruhnke, H.F. Tammet, M. Arold, in Proc. Atmospheric Electricity, ed. by L.H. Ruhnke, J. Latham (Hampton, Virginia, A. Deepak, 1983), p. 6

  • M.J. Rycroft, in The Standard Handbook for Aeronautical and Astronautical Engineers, ed. by M. Davies (McGraw Hill, New York, 2003), pp. 16.1–16.23

    Google Scholar 

  • M.J. Rycroft, J. Atmos. Sol.-Terr. Phys. 68, 445 (2006)

    Article  ADS  Google Scholar 

  • M.J. Rycroft, S. Israelsson, C. Price, J. Atmos. Sol.-Terr. Phys. 62, 1563 (2000)

    Article  ADS  Google Scholar 

  • M.J. Rycroft, A. Odzimek, N.F. Arnold et al., J. Atmos. Sol.-Terr. Phys. 69 (2007). doi:10.1016/j.jastp.2007.09.004

  • W.O. Schumann, Naturforsch. Z. A 7, 149 (1952)

    MATH  ADS  MathSciNet  Google Scholar 

  • R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry (Cambridge University Press, Cambridge, 2000), pp. 554

    Google Scholar 

  • F. Simoes, M. Rycroft, N. Renno et al., Space Sci. Rev. (2008, this issue)

  • V.V. Smirnov, Izv. RAN, Atmos. Ocean. Phys. 51, 750 (2005)

    Google Scholar 

  • V.V. Smirnov, A.V. Savchenko, Atmos. Res. 82, 554 (2006)

    Article  Google Scholar 

  • T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962), pp. 283

    MATH  Google Scholar 

  • R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, London, 1988), p. 22

    MATH  Google Scholar 

  • B.A. Tinsley, L. Zhou, J. Geophys. Res. 111(D16205) (2006). doi:10.1029/2005JD006988

  • I.G. Usoskin, O.G. Gladysheva, G.A. Kovaltsov, J. Atmos. Sol.-Terr. Phys. 66, 1791 (2004)

    Article  ADS  Google Scholar 

  • M. Uyeshima, Surv. Geophys. 28, 199 (2007)

    Article  ADS  Google Scholar 

  • H. Volland, in Handbook of Atmospherics, ed. by H. Volland, vol. 1 (CRC Press, Boca Raton, 1995), pp. 65–109

    Google Scholar 

  • G.R. Wait, J.W. Mauchly, Transactions of the AGU, 18th Annual Meeting, 1937

  • F.J. Whipple, F.J. Scrase, Geophys Mem. 7, Meteorol. Off., London, 1936

  • E.R. Williams, in Encyclopedia of Atmospheric Sciences, ed. by J.R. Holton, J.A. Pyle, J.A. Curry (Academic Press, New York, 2002), p. 724

    Google Scholar 

  • F. Yu, R.P. Turco, J. Geophys. Res. 106(D5), 4797 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rycroft.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rycroft, M.J., Harrison, R.G., Nicoll, K.A. et al. An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity. Space Sci Rev 137, 83–105 (2008). https://doi.org/10.1007/s11214-008-9368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-008-9368-6

Keywords

  • Atmospheric electric circuit
  • Conductivity models
  • Fair weather observations
  • Electrostatic modelling