Abstract
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences.
Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.
This is a preview of subscription content, access via your institution.
References
S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., Geophys. Res. Lett. 29, 2217 (2002)
S.V. Anisimov, E.A. Mareev, N.M. Shikhova et al., in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 33
K.L. Aplin, R.A. McPheat, J. Atmos. Sol.-Terr. Phys. 67, 775 (2005)
K.L. Aplin, R.G. Harrison, M.J. Rycroft, Space. Sci. Rev. (2008, this issue)
K. Bahr, F. Simpson, Practical Magnetotellurics (Cambridge University Press, Cambridge, 2005), pp. 270
G.A. Bazilevskaya, M.B. Krainev, V.S. Makhmutov, J. Atmos. Sol.-Terr. Phys. 62, 1577 (2000)
G.A. Bazilevskaya, I.G. Usoskin, E. Flückiger et al., Space. Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9339-y
E.A. Bering, R.H. Holzworth, B.D. Reddell et al., Adv. Space Res. 35, 1434 (2005)
P.A. Bedrosian, Surv. Geophys. 28, 121 (2007)
P.A. Bespalov, Yu.V. Chugunov, J. Atmos. Terr. Phys. 58, 601 (1996)
P.A. Bespalov, Yu.V. Chugunov, S.S. Davydenko, J. Atmos. Terr. Phys. 58, 605 (1996)
K.G. Budden, The Propagation of Radio Waves (Cambridge University Press, Cambridge, 1985), pp. 669
K.S. Carslaw, R.G. Harrison, J. Kirkby, Science 298, 1732 (2002)
J.A. Chalmers, Atmospheric Electricity, 2nd edn. (Pergamon Press, 1967)
W.E. Cobb, H.J. Wells, J. Atmos. Sci. 27, 814 (1970)
S.S. Davydenko, E.A. Mareev, T.C. Marshall, M. Stolzenburg, J. Geophys. Res. 109 (2004). doi:10.1029/2003JD003832
W.H. Evans, J. Geophys. Res. 74, 939 (1969)
W.M. Farrell, M.D. Desch, Geophys. Res. Lett. 29 (2002). doi:10.1029/2001GL013908
M. Fullekrug, E.A. Mareev, M.J. Rycroft (eds.), Sprites, Elves and Intense Lightning Discharges (Springer, New York, 2006), pp. 398
O.H. Gish, Terr. Magn. Atmos. Electr. 49, 15 (1944)
R. Gunn, J. Meteor. 11, 339 (1954)
L.C. Hale, Adv. Space Res. 4, 175 (1984)
R.G. Harrison, Surv. Geophys. 25, 441 (2004a)
R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 66, 1127 (2004b)
R.G. Harrison, J. Atmos. Sol.-Terr. Phys. 67, 763 (2005)
R.G. Harrison, Atmos. Environ. 40, 3327 (2006)
R.G. Harrison, Atmos. Res. 84, 182 (2007)
R.G. Harrison, K.L. Aplin, Atmos. Res. 79 (2007). doi:10.1016/j.atmosres.2006.12.006
R.G. Harrison, A.J. Bennett, J. Atmos. Sol.-Terr. Phys. 69, 515 (2007a)
R.G. Harrison, A.J. Bennett, Adv. Geosci. 13, 17 (2007b)
R.G. Harrison, K.S. Carslaw, Rev. Geophys. 41 (2003). doi:10.1029/2002RG000114
R.G. Harrison, W.J. Ingram, Atmos. Res. 76(1–4), 49 (2005)
S. Israelsson, E. Knudsen, S.V. Anisimov, J. Atmos. Terr. Phys. 56, 1545 (1994)
S. Israelsson, H. Tammet, J. Atmos. Sol.-Terr. Phys. 63, 1693 (2001)
J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 641
B. Karlsson, H. Kornich, J. Gumbel, Geophys. Res. Lett. 34(L16806) (2007). doi:10.1029/2007GL030282
M. Kokorowski, J.G. Sample, R.H. Holzworth et al., Geophys. Res. Lett. 33(L20105) (2006). doi:10.1029/2006GL027718
T. Korja, Surv. Geophys. 28, 239 (2007)
W. Lowrie, Fundamentals of Geophysics, 2nd edn. (Cambridge University Press, Cambridge, 2007)
M. Makino, T. Ogawa, J. Geophys. Res. 90(D4), 431 (1985)
E.A. Mareev, S.V. Anisimov, in Proc. 13th Int. Conf. on Atmos. Electr. (Beijing, China, 2007), p. 21
E.A. Mareev, S.A. Yashunin, S.S. Davydenko et al., Geophys. Res. Lett. (2007, in press)
D.R. MacGorman, W.D. Rust, The Electrical Nature of Storms (Oxford University Press, New York, 1998), pp. 422
R. Markson, Bull. Am. Met. Soc. 88 (2007). doi:10.1175/BAMS-88-2-223
R.P. Mülheisen, Pure Appl. Geophys. 84, 112 (1971)
T. Ogawa, Y. Tanaka, T. Miura et al., J. Geomag. Geoelectr. 19, 115 (1967)
N. Olsen, A. Kuvshinov, Earth Planets Space 56, 525 (2004)
V.P. Pasko, J.J. George, J. Geophys. Res. 107 (2002). doi:10.1029/2002JA009473
B.B. Phillips, Mon. Weather Rev. 95, 854 (1967)
V.A. Rakov, M.A. Uman, Lightning. Physics and Effects (Cambridge University Press, Cambridge, 2003), pp. 687
H. Rishbeth, O.K. Garriott, Introduction to Ionospheric Physics (Academic Press, New York, 1969), pp. 331
W.D. Rust, C.B. Moore, Quart. J. R. Met. Soc. 100, 450 (1974)
L.H. Ruhnke, H.F. Tammet, M. Arold, in Proc. Atmospheric Electricity, ed. by L.H. Ruhnke, J. Latham (Hampton, Virginia, A. Deepak, 1983), p. 6
M.J. Rycroft, in The Standard Handbook for Aeronautical and Astronautical Engineers, ed. by M. Davies (McGraw Hill, New York, 2003), pp. 16.1–16.23
M.J. Rycroft, J. Atmos. Sol.-Terr. Phys. 68, 445 (2006)
M.J. Rycroft, S. Israelsson, C. Price, J. Atmos. Sol.-Terr. Phys. 62, 1563 (2000)
M.J. Rycroft, A. Odzimek, N.F. Arnold et al., J. Atmos. Sol.-Terr. Phys. 69 (2007). doi:10.1016/j.jastp.2007.09.004
W.O. Schumann, Naturforsch. Z. A 7, 149 (1952)
R.W. Schunk, A.F. Nagy, Ionospheres: Physics, Plasma Physics and Chemistry (Cambridge University Press, Cambridge, 2000), pp. 554
F. Simoes, M. Rycroft, N. Renno et al., Space Sci. Rev. (2008, this issue)
V.V. Smirnov, Izv. RAN, Atmos. Ocean. Phys. 51, 750 (2005)
V.V. Smirnov, A.V. Savchenko, Atmos. Res. 82, 554 (2006)
T.H. Stix, The Theory of Plasma Waves (McGraw-Hill, New York, 1962), pp. 283
R.B. Stull, An Introduction to Boundary Layer Meteorology (Kluwer, London, 1988), p. 22
B.A. Tinsley, L. Zhou, J. Geophys. Res. 111(D16205) (2006). doi:10.1029/2005JD006988
I.G. Usoskin, O.G. Gladysheva, G.A. Kovaltsov, J. Atmos. Sol.-Terr. Phys. 66, 1791 (2004)
M. Uyeshima, Surv. Geophys. 28, 199 (2007)
H. Volland, in Handbook of Atmospherics, ed. by H. Volland, vol. 1 (CRC Press, Boca Raton, 1995), pp. 65–109
G.R. Wait, J.W. Mauchly, Transactions of the AGU, 18th Annual Meeting, 1937
F.J. Whipple, F.J. Scrase, Geophys Mem. 7, Meteorol. Off., London, 1936
E.R. Williams, in Encyclopedia of Atmospheric Sciences, ed. by J.R. Holton, J.A. Pyle, J.A. Curry (Academic Press, New York, 2002), p. 724
F. Yu, R.P. Turco, J. Geophys. Res. 106(D5), 4797 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rycroft, M.J., Harrison, R.G., Nicoll, K.A. et al. An Overview of Earth’s Global Electric Circuit and Atmospheric Conductivity. Space Sci Rev 137, 83–105 (2008). https://doi.org/10.1007/s11214-008-9368-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11214-008-9368-6
Keywords
- Atmospheric electric circuit
- Conductivity models
- Fair weather observations
- Electrostatic modelling