Space Science Reviews

, 141:5 | Cite as

The THEMIS Mission

Article

Abstract

The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (∼10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ∼25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.

Keywords

THEMIS Magnetosphere Substorms Radiation belts Magnetopause 

PACS

94.30.-d 94.30.cl 94.30.cb 94.30.ch 94.30.cj 94.30.C- 94.30.cp 94.30.Lr 94.30.Va 94.30.Xy 96.50.Fm 

References

  1. A.T. Aikio et al., Characteristics of pseudobreakups and substorms observed in the ionosphere, at the geosynchronous orbit, and in the midtail. J. Geophys. Res. 104, 12263 (1999) CrossRefADSGoogle Scholar
  2. S.-I. Akasofu, Physics of Magnetospheric Substorms (Reidel, Dordrecht, 1976) Google Scholar
  3. V. Angelopoulos et al., Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257 (1994) CrossRefADSGoogle Scholar
  4. V. Angelopoulos et al., Magnetotail flow bursts: association to global magnetospheric circulation, relationship to ionospheric activity and direct evidence for localization. Geophys. Res. Lett. 24, 2271 (1997a) CrossRefADSGoogle Scholar
  5. V. Angelopoulos et al., Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101, 4967 (1997b); also see correction: J. Geophys. Res., 102, 211 (1997b) CrossRefADSGoogle Scholar
  6. V. Angelopoulos et al., On the relationship between bursty flows, current disruption and substorms. Geophys. Res. Lett. 26, 2841 (1999) CrossRefADSGoogle Scholar
  7. V. Angelopoulos et al., Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res. (2001, in press) Google Scholar
  8. G. Atkinson, The current system of geomagnetic bays. J. Geophys. Res. 23, 6063 (1967) CrossRefADSGoogle Scholar
  9. U. Auster et al., Space Sci. Rev. (2008, this issue) Google Scholar
  10. D.N. Baker et al., Neural line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975 (1996) CrossRefADSGoogle Scholar
  11. M. Bester et al., Space Sci. Rev. (2008, this issue) Google Scholar
  12. W. Baumjohann et al., Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597 (1989) CrossRefADSGoogle Scholar
  13. J. Birn et al., Flow braking and the substorm current wedge. J. Geophys. Res. 104, 19895 (1999) CrossRefADSGoogle Scholar
  14. Bonnell et al., Space Sci. Rev. (2008, this issue) Google Scholar
  15. J.E. Borovsky et al., The occurrence rate of magnetospheric-substorm onsets: random and periodic substorms. J. Geophys. Res. 98, 3807 (1993) CrossRefADSGoogle Scholar
  16. C.W. Carlson et al., Space Sci. Rev. (2008, this issue) Google Scholar
  17. M.R. Collier et al., Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind. Geophys. Res. Lett. 25, 2509 (1998) CrossRefADSGoogle Scholar
  18. N.U. Crooker et al., Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. J. Geophys. Res. 87, 2224 (1982) CrossRefADSGoogle Scholar
  19. C.M. Cully et al., Space Sci. Rev. (2008, this issue) Google Scholar
  20. I.A. Daglis et al., “Fine structure” of the storm-substorm relationship: ion injections during Dst decrease. Adv. Space Res. 25, 2369 (2000) CrossRefADSGoogle Scholar
  21. R.D. Elphinstone et al., Observations in the vicinity of substorm onset: implications for the substorm process. J. Geophys. Res. 100, 7937 (1995) CrossRefADSGoogle Scholar
  22. D.H. Fairfield et al., Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. J. Geophys. Res. 95, 3773–3786 (1990) CrossRefADSGoogle Scholar
  23. D.H. Fairfield et al., Advances in magnetospheric storm and substorm research, 1989–1991. J. Geophys. Res. 97(A7), 10865–10874 (1992) CrossRefADSGoogle Scholar
  24. D.H. Fairfield et al., Geotail abservations of substorm onset in the inner magnetotail. J. Geophys. Res. 103 (1998) Google Scholar
  25. C. Farrugia et al., Viscous-type processes in the solar wind–magnetosphere interaction. Space. Sci. Rev. 95(1/2), 443–456 (2001) CrossRefADSGoogle Scholar
  26. L.A. Frank, J.B. Sigwarth, Findings concerning the positions of substorm onsets with auroral images from the Polar spacecraft. J. Geophys. Res. 105, 12747 (2000) CrossRefADSGoogle Scholar
  27. L.A. Frank et al., in Proceedings of the International Conference on Substorms - 4 (ICS-4) (Terra Scientific, Tokyo, 1998), p. 3 Google Scholar
  28. S. Frey et al., Space Sci. Rev. (2008, this issue) Google Scholar
  29. Friedel et al., J. Atmospheric Sol. Terr. Phys. 64, 265–282 (2002) CrossRefADSGoogle Scholar
  30. E. Friedrich et al., Ground-based observations and plasma instabilities in auroral substorms. Phys. Plasmas 8, 1104 (2001) CrossRefADSGoogle Scholar
  31. S. Harris et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9294-2
  32. P.R. Harvey et al., Space Sci. Rev. (2008, this issue) Google Scholar
  33. M.G. Henderson et al., Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger. J. Geophys. Res. 101, 10773 (1996) CrossRefADSGoogle Scholar
  34. M.G. Henderson et al., Are north-south aligned auroral structures an ionospheric manifestation of bursty bulk flows? Geophys. Res. Lett. 25, 3737 (1998) CrossRefADSGoogle Scholar
  35. M. Hesse, J. Birn, On dipolarization and its relation to the substorm current wedge. J. Geophys. Res. 96, 19417 (1991) CrossRefADSGoogle Scholar
  36. E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams, AGU, vol. 558, 1976 Google Scholar
  37. E.W. Hones Jr. et al., Detailed examination of a plasmoid in the distant magnetotail with ISEE 3. Geophys. Res. Lett. 11, 1046 (1984) CrossRefADSGoogle Scholar
  38. C. Jacquey et al., Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys. Res. Lett. 3, 389 (1991) CrossRefADSGoogle Scholar
  39. J.R. Kan, A globally integrated substorm model: tail reconnection and magnetosphere-ionosphere coupling. J. Geophys. Res. 103, 11787 (1998) CrossRefADSGoogle Scholar
  40. R.L. Kaufmann, Substorm currents: growth phase and onset. J. Geophys. Res. 92, 7471 (1987) CrossRefADSGoogle Scholar
  41. Kennel, 1992, The Kiruna conjecture: The strong version, in ICS-1 Proceedings. ESA SP-335, 1992, p. 599 Google Scholar
  42. Larson et al., Space Sci. Rev. (2008, this issue) Google Scholar
  43. G. Le, C.T. Russell, H. Kuo, Flux transfer events–Spontaneous or driven? Geophys. Res. Lett. 20, 791 (1993) CrossRefADSGoogle Scholar
  44. X. Li et al., Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. J. Geophys. Res. 102, 14123 (1997) CrossRefADSGoogle Scholar
  45. Li et al., Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett. 28, 1887 (2001) CrossRefADSGoogle Scholar
  46. Y. Lin, D.W. Swift, L.C. Lee, Simulation of pressure pulses in the bow shock and magnetosheath driven by variations in interplanetary magnetic field direction. J. Geophys. Res. 101, 27251 (1996) CrossRefADSGoogle Scholar
  47. M. Lockwood, M.N. Wild, On the quasi-periodic nature of magnetopause flux transfer events. J. Geophys. Res. 98, 5935 (1993) CrossRefADSGoogle Scholar
  48. M. Ludlam et al., The THEMIS magnetic cleanliness program. Space Sci. Rev. (2008, this issue) Google Scholar
  49. A.T.Y. Lui, Extended consideration of a synthesis model for magnetospheric substorms. AGU Mon. Ser., vol. 64, 1991, p. 43 Google Scholar
  50. A.T.Y. Lui, Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Res. 101, 13067 (1996) CrossRefADSGoogle Scholar
  51. A.T.Y. Lui et al., A multiscale model for substorms. Space Sci. Rev. 95, 325 (2001) CrossRefADSGoogle Scholar
  52. A.T.Y. Lui, J.R. Burrows, On the location of auroral arcs near substorm onsets. J. Geophys. Res. 83, 3342 (1978) CrossRefADSGoogle Scholar
  53. A.T.Y. Lui et al., A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 7, 721 (1988) CrossRefADSGoogle Scholar
  54. L.R. Lyons, A new theory for magnetospheric substorms. J. Geophys. Res. 100, 19069 (1995) CrossRefADSGoogle Scholar
  55. L.R. Lyons, Substorms: Fundamental observational features, distiction from other disturbances, and external triggering. J. Geophys. Res. 101, 13011 (1996) CrossRefADSGoogle Scholar
  56. J.P. McFadden et al., Space Sci. Rev. (2008, this issue) Google Scholar
  57. R. McPherron et al., Satellite studies of magnetospheric substorms on Aug 15th, 1968. J. Geophys. Res. 78, 3131 (1973) CrossRefADSGoogle Scholar
  58. R.L. McPherron et al., Solar wind triggering of substorm onset. J. Geomagn. Geoelectr. 38, 1089 (1986) ADSGoogle Scholar
  59. S. Mende et al., Space Sci. Rev. (2008, this issue) Google Scholar
  60. Millan, Thorne, J. Atmos. Solar Terr. Phys. 69, 362–377 (2007) CrossRefADSGoogle Scholar
  61. D.G. Mitchell et al., Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583 (1990) CrossRefADSGoogle Scholar
  62. T. Nagai, Observed magnetic substorm signatures at synchronous altitudes. J. Geophys. Res. 87, 4405 (1982) CrossRefADSGoogle Scholar
  63. T. Nagai et al., Substorm, tail flows, and plasmoids. Adv. Space Res. 20, 961 (1997) CrossRefADSGoogle Scholar
  64. T. Nagai et al., Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res. 103, 4419 (1998) CrossRefADSGoogle Scholar
  65. R. Nakamura et al., Flow bursts and auroral activations: Onset timing and foot point location. J. Geophys. Res. 106, 10777 (2001a) CrossRefADSGoogle Scholar
  66. R. Nakamura et al., Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791 (2001b) CrossRefADSGoogle Scholar
  67. S.-I. Ohtani, Earthward expansion of tail current disruption: dual-satellite study. J. Geophys. Res. 103, 6815 (1998) CrossRefADSGoogle Scholar
  68. S.-I. Ohtani, Substorm trigger processes in the magnetotail: recent observations and outstanding issues. Space Sci. Rev. 95, 347 (2001) CrossRefADSGoogle Scholar
  69. S.-I. Ohtani et al., Tail current disruption in the geosynchronous region, in Magnetospheric Substorms. AGU Mongr. Ser., vol. 64, 1991, p. 131 Google Scholar
  70. S. Ohtani et al., Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region. J. Geophys. Res. 97, 3129 (1992a) CrossRefADSGoogle Scholar
  71. S.-I. Ohtani et al., Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration: explosive growth phase. J. Geophys. Res. 97, 19311 (1992b) CrossRefADSGoogle Scholar
  72. Pankow et al., Space Sci. Rev. (2008, this issue) Google Scholar
  73. G. Paschmann, G. Haerendel, N. Sckopke, E. Möbius, H. Lühr, C.W. Carlson, Three-dimensional plasma structures with anomalous flow direction near the Earth’s bow shock. J. Geophys. Res. 93, 11279 (1988) CrossRefADSGoogle Scholar
  74. Paschmann et al., Plasma acceleration at the magnetopause: evidence for reconnection. Nature 282, 243 (1979) CrossRefADSGoogle Scholar
  75. K.I. Paularena et al., Solar wind plasma correlations between IMP 8, INTERBALL-1, and WIND. J. Geophys. Res. 103, 14601 (1998) CrossRefADSGoogle Scholar
  76. Peticolas et al., Space Sci. Rev. (2008, this issue) Google Scholar
  77. A.A. Petrukovich et al., Two spacecraft observations of a reconnection pulse during an auroral breakup. J. Geophys. Res. 103, 47 (1998) CrossRefADSGoogle Scholar
  78. T. Phan et al., Space Sci. Rev. (2008, this issue) Google Scholar
  79. T.D. Phan, G. Paschmann, The magnetosheath region adjacent to the dayside magnetopause, in Physics of the Magnetopause. AGU Monograph, vol. 90 (1995) Google Scholar
  80. I.G. Richardson, S.W.H. Cowley, Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of the boundary layer. J. Geophys. Res. 90, 12133 (1985) CrossRefADSGoogle Scholar
  81. I.G. Richardson et al., Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of plasmoids and the postplasmoid plasma sheet. J. Geophys. Res. 92, 9997 (1987) CrossRefADSGoogle Scholar
  82. Roux et al., Space Sci. Rev. (2008, this issue) Google Scholar
  83. Russell et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9337-0
  84. C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results: magnetopause observations. Space Sci. Rev. 22, 681 (1978) CrossRefADSGoogle Scholar
  85. J.C. Samson, Proton aurora and substorm intensifications. Geophys. Res. Lett. 19, 2171 (1992) CrossRefADSGoogle Scholar
  86. E.T. Sarris et al., Location of the source of magnetospheric energetic particle bursts by multispacecraft observations. Geophys. Res. Lett. 3, 437 (1976) CrossRefADSGoogle Scholar
  87. E.T. Sarris et al., Detailed observations of a burst of energetic particles in the deep magnetotail by Geotail. J. Geomagn. Geoelectr. 48, 649 (1996) Google Scholar
  88. R. Schodel et al., Rapid flux transport in the central plasma sheet. J. Geophys. Res. 106, 301 (2001) CrossRefADSGoogle Scholar
  89. V.A. Sergeev et al., Triggering of substorm expansion by the IMF directional discontinuities: Time delay analysis. Planet. Space Sci. 38, 231 (1990) CrossRefADSGoogle Scholar
  90. V.A. Sergeev et al., In situ observations of magnetic reconnection prior to the onset of a small substorm. J. Geophys. Res. 100, 19121 (1995) CrossRefADSGoogle Scholar
  91. V.A. Sergeev et al., Steady magnetospheric convection: a review of recent results. Space Science Reviews 75, 551 (1996a) CrossRefADSGoogle Scholar
  92. V.A. Sergeev et al., Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817 (1996b) CrossRefADSGoogle Scholar
  93. V.A. Sergeev et al., Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet. Geophys. Res. Lett. 27, 851 (2000) CrossRefADSGoogle Scholar
  94. I. Shinohara et al., Rapid large-scale magnetic field dissipation in a collisionless current sheet via coupling between Kelvin-Helmholtz and lower-hybrid instabilities. Phys. Rev. Lett. 87, 095001 (2001) CrossRefADSGoogle Scholar
  95. K. Shiokawa et al., Azimuthal pressure gradient as driving force of substorm currents. Geophys. Res. Lett. 25, 959 (1998a) CrossRefADSMathSciNetGoogle Scholar
  96. K. Shiokawa et al., High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations. J. Geophys. Res. 103, 4491 (1998b) CrossRefADSGoogle Scholar
  97. D.G. Sibeck et al., The magnetospheric response to 8-minute period strong-amplitude upstream pressure variations. J. Geophys. Res. 94, 2505–2519 (1989) CrossRefADSGoogle Scholar
  98. D.G. Sibeck, K. Takahashi, S. Kokubun, T. Mukai, K.W. Ogilvie, A. Szabo, A case study of oppositely propagating Alfvén fluctuations in the solar wind and magnetosheath. Geophys. Res. Lett. 24, 3133 (1997) CrossRefADSGoogle Scholar
  99. D.G. Sibeck et al., Space Sci. Rev. (2008, this issue) Google Scholar
  100. G.L. Siscoe, H.E. Petschek, On storm weakening during substorm expansion phase. Ann. Geophys. 15, 211 (1997) CrossRefADSGoogle Scholar
  101. J.A. Slavin et al., CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. J. Geophys. Res. 97, 8495 (1992) CrossRefADSGoogle Scholar
  102. P. Song, C.T. Russell, M.F. Thomsen, Slow mode transition in the frontside magnetosheath. J. Geophys. Res. 97, 8295 (1992) CrossRefADSGoogle Scholar
  103. D.J. Southwood, M.G. Kivelson, Magnetosheath flow near the subsolar magnetopause: Zwan-Wolf and Southwood-Kivelson theories reconciled. Geophys. Res. Lett. 22, 3275 (1995) CrossRefADSGoogle Scholar
  104. H.E. Spence, The what, where, when and why of magnetospheric substorm triggers. EOS 77, 81 (1996) CrossRefADSGoogle Scholar
  105. Taylor et al., Space Sci. Rev. (2008, this issue) Google Scholar
  106. V.A. Thomas, S.H. Brecht, Evolution of diamagnetic cavities in the solar wind. J. Geophys. Res. 93, 11341–11353 (1988) CrossRefADSGoogle Scholar
  107. H.J. Völk, R.-D. Auer, Motions of the bow shock induced by interplanetary disturbances. J. Geophys. Res., 40-48, 1974 Google Scholar
  108. I. Voronkov et al., Shear flow instability in the dipolar magnetosphere. J. Geophys. Res. 104, 17323 (1999) CrossRefADSGoogle Scholar
  109. J.R. Wygant et al., Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: an energy source for the aurora. J. Geophys. Res. 105, 18675 (2000) CrossRefADSGoogle Scholar
  110. Y. Yamade et al., Field-aligned currents generated in magnetotail reconnection: 3D Hall-MHD simulations. J. Geophys. Res. 27, 1091 (2000) Google Scholar
  111. E. Zesta et al., The auroral signature of earthward flow bursts observed in the magnetotail. Geophys. Res. Lett. 27, 3241 (2000) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.IGPP/ESS UCLALos AngelesUSA

Personalised recommendations