Skip to main content
Log in

Earth-Based Visible and Near-IR Imaging of Mercury

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

New planned orbiter missions to Mercury have prompted renewed efforts to investigate the surface of Mercury via ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g., HST) cannot be used at angular distances close to the Sun, advanced ground-based astronomical techniques and modern analytical and software can be used to obtain the resolved images of the poorly known or unknown part of Mercury. Our observations of the planet presented here were carried out in many observatories at morning and evening elongation of the planet. Stacking the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974–1975), is presented. Huge features found there change radically the existing hypothesis that the “continental” character of a surface may be attributed to the whole planet. We present the observational method, the data analysis approach, the resulting images and obtained properties of the Mercury’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.H. Acuna, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Reme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment. Science 284(5415), 790 (1999)

    Article  ADS  Google Scholar 

  • L.A. Akimov, On the brightness distribution across the lunar disk and planets. Astron. Zh. 56, 412–418 (1979) (in Russian)

    ADS  Google Scholar 

  • L.A. Akimov, Reflection of light by the Moon I. Kinematika Fiz. Nebesnikh Tel. 4(1), 3–10 (1988) (in Russian)

    ADS  MathSciNet  Google Scholar 

  • L.A. Akimov, Y.V. Kornienko, Light scattering by the lunar surface. Kinematika Fiz. Nebesnikh Tel. 10(2), 15–22 (1994) (in Russian)

    ADS  Google Scholar 

  • N. Artemieva, L. Hood, B.A. Ivanov, Impact demagnetization of the Martian crust: Primaries versus secondaries. Geophys. Res. Lett. 32(22) (2005). doi:10.1029/2005GL024385

  • A. Balogh, G. Giampieri, The origin of Mercury’s magnetic field and its multipolar structure. EGS XXVII General Assembly, Nice, 21–26 April 2002, abstract #5959

  • J. Baumgardner, M. Mendillo, J.K. Wilson, Digital high-definition imaging system for spectral studies of extended planetary atmospheres. 1. Initial results in white light showing features on the hemisphere of Mercury unimaged by Mariner 10. Astron. J. 119, 2458–2464 (2000)

    Article  ADS  Google Scholar 

  • W. Benz, Space Sci. Rev. (2007, this issue)

  • W. Benz, W.L. Slattery, A.G.W. Cameron, Collisional stripping of Mercury’s mantle. Icarus 74, 516–528 (1988)

    Article  ADS  Google Scholar 

  • B.J. Buratti, J. Veverka, Voyager photometry of Europa. Icarus 55, 93–110 (1983)

    Article  ADS  Google Scholar 

  • B.J. Butler, D.O. Muhleman, M.A. Slade, Mercury – Full-disk radar images and the detection and stability of ice at the North Pole. J. Geophys. Res. 98, 15003–15023 (1993)

    ADS  Google Scholar 

  • S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960)

    Google Scholar 

  • S.C. Chase, E.D. Miner, D. Morrison et al., Preliminary infrared radiometry of the night side of Mercury from Mariner 10. Science 185, 142–145 (1974)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, N.F. Ness, Mercury’s magnetic field and interior, in Mercury (University of Arizona Press, Tucson, 1988), pp. 494–513

    Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28(21), 4015–4018 (2001). doi:10.1029/2001GL013619

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuña, N.F. Ness, T. Spohn, G. Schubert, Mars crustal magnetism. Space Sci. Rev. 111(1), 1–32 (2004a)

    Article  ADS  Google Scholar 

  • J.E.P. Connerney, M.H. Acuna, N.F. Ness, D.L. Mitchell, R.P. Lin, H. Reme, A magnetic perspective on the Martian crustal dichotomy. Hemispheres Apart: the Origin and Modification of the Martian Crustal Dichotomy. LPI Contribution No. 1213. Proceedings of the conference held September 30–October 1, 2004, in Houston, TX, USA, 2004b, pp. 11–12

  • A.C. Cook, M.S. Robinson, Mariner 10 stereo image coverage of Mercury. J. Geophys. Res. 105(E4), 9429–9443 (2000)

    Article  ADS  Google Scholar 

  • A. Danjon, Photometrie et colorimetrie des planetes Mercure et Venus. Bull. Astron. 14, 315 (1949)

    Google Scholar 

  • R.F. Dantowitz, S.W. Teare, M.J. Kozubal, Ground based-based high-resolution imaging of Mercury. Astron. J. 119, 2455–2457 (2000)

    Article  ADS  Google Scholar 

  • M.E. Davies, S.E. Dwornik, D.E. Gault, R.G. Strom, Atlas of Mercury, in NASA Scientific and Technical Report, ed. by J. Dunn, NASA SP-42 (US Government Printing Office, Washington, 1978)

    Google Scholar 

  • A.Z. Dolginov, Magnetic fields and nonuniform structures of the Moon. Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F, 1993, pp. 411–412

  • A. Dollfus, Pic-du-Midi visual and photographic observations of planets, in Planets and Satellites, ed. by G.P. Kuiper, B.M. Middlehurst (The University of Chicago Press, Chicago, 1961), pp. 482–485

    Google Scholar 

  • A. Dollfus, M. Auriere, Optical polarimetry of planet Mercury. Icarus 23, 465 (1974)

    Article  ADS  Google Scholar 

  • D. Domingue, B. Hapke, Fitting theoretical photometric functions to asteroid phase curves. The scattering properties of natural terrestrial snows versus icy satellite surfaces. Icarus 78, 330–336 (1989)

    Article  ADS  Google Scholar 

  • D. Domingue, B. Hartman, A. Verbiscer, The scattering properties of natural terrestrial snows versus icy satellite surfaces. Icarus 128, 28–48 (1997)

    Article  ADS  Google Scholar 

  • J.P. Emery, A.L. Sprague, F.C. Witteborn, J.E. Colwell, D.H. Kozlowski, R.W.H. Wooden, Mercury: Thermal modeling and mid-infrared (5–12 μm) observations. Icarus 136, 104 (1998)

    Article  ADS  Google Scholar 

  • D.L. Fried, Probability of getting a lucky short-exposure image through turbulence. J. Opt. Soc. Am. 68, 1651–1658 (1978)

    Article  ADS  Google Scholar 

  • P.E. Geissler, A. McEwen, L. Keszthelyi, R. Lopes-Gautier, J. Granahan, D.P. Simonelli, Global color variations on Io. Icarus 140, 265–282 (1999)

    Article  ADS  Google Scholar 

  • G. Giampieri, A. Balogh, Modelling of magnetic field measurements at Mercury. Planet. Space Sci. 49(14–15), 1637–1642 (2001)

    Article  ADS  Google Scholar 

  • G. Giampieri, A. Balogh, Mercury’s thermoelectric dynamo model revisited. Planet. Space Sci. 50(7–8), 757–762 (2002)

    Article  ADS  Google Scholar 

  • G. Giampieri, J. Scuffham, A. Balogh, BepiColombo measurements of Mercury’s internal field. 35th COSPAR Scientific Assembly. Held 18–25 July 2004, in Paris, France, 2004, p. 2726

  • J. Gradie, J. Veverka, Photometric properties of powered sulfur. Icarus 58, 227–245 (1984)

    Article  ADS  Google Scholar 

  • J. Grosser, K.-H. Glassmeier, A. Stadelmann, Magnetic field effects at planet Mercury. Planet. Space Sci. 52(14), 1251–1260 (2004)

    Article  ADS  Google Scholar 

  • E.W. Guinness, R.E. Arvidson, I. Clark, M.K. Shepard, Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites. J. Geophys. Res. 102, 28687–28703 (1997)

    Article  ADS  Google Scholar 

  • K. Gunderson, J.A. Whitby, N. Thomas, Visible and NIR BRDF Measurements of Lunar Soil Simulant, 36th Annual Lunar and Planetary Science Conference, abstract no. 1781, 2005

  • K. Gunderson, N. Thomas, J.A. Whitby, First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet. Space Sci. 54(11), 1046–1056 (2006)

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981)

    ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy. 3. Correction for macroscopic roughness. Icarus 59, 41–59 (1984)

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy. 4. The extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986)

    Article  ADS  Google Scholar 

  • B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, New York, 1993)

    Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002)

    Article  ADS  Google Scholar 

  • J.K. Harmon, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9234-y

    Google Scholar 

  • J.K. Harmon, D.B. Campbell, Radar observations of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (Univ. of Arizona, Tucson, 1988), pp. 101–117

    Google Scholar 

  • J.K. Harmon, M.A. Slade, Radar mapping of Mercury: Full-disk images and polar anomalies. Science 258, 640–642 (1992)

    Article  ADS  Google Scholar 

  • J.K. Harmon, P.J. Perillat, M.A. Slade, High-resolution radar imaging of Mercury’s North Pole. Icarus 149, 1–15 (2001)

    Article  ADS  Google Scholar 

  • J.K. Harmon, M.A. Slade, B.J. Butler, J.W. Head, M.S. Rice, D.B. Campbell, Mercury: Radar images of the equatorial and mid-latitude zones. Icarus 187, 374 (2007)

    Article  ADS  Google Scholar 

  • W.K. Hartmann, Moons and Planets (Wadsworth Publishing Co., Belmont, 1983), Chap. 5, 510 p

    Google Scholar 

  • J.W. Head, III, Surfaces of the terrestrial planets, in The New Solar System, ed. by J.K. Beatty et al. (Sky Publishing Corporation, London, 1981), pp. 45–56

    Google Scholar 

  • I.V. Holin, Space–time coherence of signal scattered by diffuse moving surface in case of arbitrary motion and monochromatic illumination. Radiophys. Quantum Electron. 31, 515–518 (1988) (in Russian)

    Google Scholar 

  • P. Helfenstein, J. Veverka, Photometric properties of lunar terrains derived from Hapke’s equation. Icarus 72, 342–357 (1987)

    Article  ADS  Google Scholar 

  • J.K. Hillier, J. Veverka, P. Helfenstein, P. Lee, Photometric diversity of terrains on Triton. Icarus 109, 296–312 (1994)

    Article  ADS  Google Scholar 

  • R.E. Hufnagel, Restoration of atmospherically degraded images. Proc. Nat. Acad. Sci. 3, App. 2, 11 (1966)

  • J.R. Johnson, W.M. Grundy, M.T. Lemmon, J.F. Bell III, M.J. Johnson, R. Deen, R.E. Arvidson, W.H. Farrand, E. Guinness, A.G. Hayes, K.E. Herkenhoff, F. Seelos IV, J. Soderblom, S. Squyres, Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers. 1. Spirit. J. Geophys. Res. 111(E02S14) (2006). doi:10.1029/2005JE002494

  • V.O. Kakhiani, Astronomical image processor AIMAP (2003, unpublished)

  • G. Kletetschka, N.F. Ness, J.E.P. Connerney, M.H. Acuna, P.J. Wasilewski, Grain size dependent potential for self-generation of magnetic anomalies on Mars via thermoremanent magnetic acquisition and magnetic interaction of hematite and magnetite. Phys. Earth Planet. Interiors 148(2–4), 149–156 (2005)

    Article  ADS  Google Scholar 

  • H. Korth, J.B. Anderson, M.H. Acuna, J.A. Slavin, N.A. Tsyganenko, S.C. Solomon, R.L. McNutt, Determination of the properties of Mercury’s magnetic field by the MESSENGER mission. Planet. Space Sci. 52(8), 733–746 (2004)

    Article  ADS  Google Scholar 

  • M.A. Kreslavsky, Y.G. Shkuratov, Y.I. Velikodsky, V.G. Kaydash, D.G. Stankevich, Photometric properties of the lunar surface derived from Clementine observations. J. Geophys. Res. 105(E8), 20281–20295 (2000)

    Article  ADS  Google Scholar 

  • L.V. Ksanfomality, Proper magnetic fields of planets and satellites (a review). Sol. Syst. Res. 32(1), 31–41 (1998a)

    ADS  Google Scholar 

  • L.V. Ksanfomality, The magnetic field of Mercury: A revision of the Mariner 10 results. Sol. Syst. Res. 32(2), 115–121 (1998b)

    ADS  Google Scholar 

  • L.V. Ksanfomality, Physical properties of the Hermean surface (a review). Sol. Syst. Res. 35(5), 339–353 (2001)

    Article  ADS  Google Scholar 

  • L.V. Ksanfomality, High-resolution imaging of Mercury using Earth-based facilities. Sol. Syst. Res. 36, 267–277 (2002)

    Article  ADS  Google Scholar 

  • L.V. Ksanfomality, Mercury: Image of the planet in the longitude interval 210–285°W obtained by method of short expositions. Sol. Syst. Res. 37, 514–525 (2003)

    Google Scholar 

  • L.V. Ksanfomality, A huge basin in the unknown portion of Mercury in the 250–290°W longitude range. Sol. Syst. Res. 38, 21–27 (2004)

    Article  ADS  Google Scholar 

  • L.V. Ksanfomality, Global asymmetry of large forms of Hermean relief. The 2nd AOGS session, 2005, June, Singapore, Paper ID: 58-PS-A0974, 2005

  • L.V. Ksanfomality, Earth-based optical imaging of Mercury. Adv. Space Res. 38, 594–598 (2006)

    Article  ADS  Google Scholar 

  • L. Ksanfomality, A.L. Sprague, New images of Mercury’s surface from 210° to 290°W longitudes with implications for Mercury’s global asymmetry. Icarus (2007). doi:10.1016/j.icarus.2006.12.009

    Google Scholar 

  • L.V. Ksanfomality, V.P. Dzhapiashvili, V.O. Kakhiani, A.K. Mayer, Experiment on obtaining of Mercury’s images by the short exposure method. Sol. Syst. Res. 35, 190–194 (2001)

    Article  ADS  Google Scholar 

  • L. Ksanfomality, G. Papamastorakis, N. Thomas, The planet Mercury: Synthesis of resolved images of unknown part in the longitude range 250–290°W. Planet. Space Sci. 53, 849–859 (2005)

    Article  ADS  Google Scholar 

  • J.H. Lambert, Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Detleffsen, Augsburg, 1760

  • B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars, J. Geophys. Res. 109(E2) (2004). doi:10.1029/2003JE002048

  • P.G. Lucey, D.T. Blewett, B.L. Joliff, Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. 105(20), 297 (2000a)

    Google Scholar 

  • P.G. Lucey, D.T. Blewett, G.J. Taylor, B.R. Hapke, Imaging of lunar surface maturity. J. Geophys. Res. 105(20), 377 (2000b)

    Google Scholar 

  • A. Mallama, D. Wang, R.A. Howard, Photometry of Mercury from SOHO/LASCO and Earth. The Phase Function from 2 to 170 deg. Icarus 155, 253 (2002)

    Article  ADS  Google Scholar 

  • Red Shift 4. Maris Multimedia Ltd, 2000. www.cinegram.com

  • A.S. McEwen, Photometric functions for photoclinometry and other applications. Icarus 92, 298–311 (1991)

    Article  ADS  Google Scholar 

  • M. Mendillo, J. Warell, S.S. Limaye, J. Baumgardner, A. Sprague, J.K. Wilson, Imaging the surface of Mercury using ground-based telescopes. Planet. Space Sci. 49, 1501 (2001)

    Article  ADS  Google Scholar 

  • M. Minnaert, The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410 (1941)

    Article  ADS  Google Scholar 

  • D.L. Mitchell, I. de Pater, Microwave imaging of Mercury’s thermal emission at wavelengths from 0.3 to 20.5 cm. Icarus 110, 2 (1994)

    Article  ADS  Google Scholar 

  • J. Murray, A. Dollfus, B. Smith, Cartography of the surface markings of Mercury. Icarus 17, 576–584 (1972)

    Article  ADS  Google Scholar 

  • N.F. Ness, Mercury—Magnetic field and interior. Space Sci. Rev. 21, 527–553 (1978)

    Article  ADS  Google Scholar 

  • N.F. Ness, The magnetic field of Mercury. Phys. Earth Planet. Interiors 20, 209–217 (1979)

    Article  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Magnetic field of Mercury confirmed. Nature 255, 204–205 (1975a)

    Article  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, The magnetic field of Mercury. I. J. Geophys. Res. 80, 2708–2716 (1975b)

    ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, Observations of Mercury’s magnetic field. Icarus 28, 479–488 (1976)

    Article  ADS  Google Scholar 

  • R.T. Pappalardo, J.W. Head, G.C. Collins, R.L. Kirk, G. Neukum, J. Oberst, B. Giese, R. Greeley, C.R. Chapman, P. Helfenstein, J.M. Moore, A. McEwen, B.R. Tufts, D.A. Senske, H.H. Breneman, K. Klaasen, Grooved terrain on Ganymede: First results from Galileo highresolution imaging. Icarus 135, 276–302 (1998)

    Article  ADS  Google Scholar 

  • N.C. Richmond, L.L. Hood, J.S. Halekas, D.L. Mitchell, R.P. Lin, M. Acuña, A.B. Binder, Correlation of a strong lunar magnetic anomaly with a high-albedo region of the Descartes mountains. Geophys. Res. Lett. 30(7), 48–51 (2003). doi:10.1029/2003GLO16938

    Article  Google Scholar 

  • S.K. Runcorn, An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975a)

    Article  ADS  Google Scholar 

  • S.K. Runcorn, On the interpretation of lunar magnetism. Phys. Earth Planet. Interiors 10(4), 327–335 (1975b)

    Article  ADS  Google Scholar 

  • C.T. Russell, J.G. Luhmann, Mercury: Magnetic field and magnetosphere, in Enciclopedia of Planetary Sciences, ed. by J.H. Shirley, R.W. Fairbridge (Chapman & Hall, London, 1997), pp. 476–478

    Chapter  Google Scholar 

  • G. Schubert, M.N. Ross, D.J. Stevenson, T. Spohn, Mercury’s thermal history and the generation of its magnetic field Mercury, in Mercury (University of Arizona Press, Tucson, 1988), pp. 429–460

    Google Scholar 

  • J. Scuffham, A. Balogh, A new model of Mercury’s magnetospheric magnetic field. Adv. Space Res. 38, 616–626 (2006)

    Article  ADS  Google Scholar 

  • M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging—Evidence for polar ice. Science 258, 635 (1992)

    Article  ADS  Google Scholar 

  • W.R. Smythe, Static and Dynamic Electricity (McGraw-Hill, 1950)

  • T. Spohn, D. Breuer, Core composition and the magnetic field of Mercury, American Geophysical Union, Spring Meeting 2005, abstract #P23A-01

  • A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, Caloris Basin: An enhanced source for potassium in Mercury’s atmosphere. Science 249, 1140–1143 (1990)

    Article  ADS  Google Scholar 

  • A.L. Sprague, L.K. Deutsch, J. Hora, G.G. Fazio, B. Ludwig, J. Emery, W.F. Hoffmann, Mid-infrared (8.1–12.5 μm) imaging of Mercury. Icarus 147, 421 (2000)

    Article  ADS  Google Scholar 

  • A.L. Sprague, J.P. Emery, K.L. Donaldson, R.W. Russell, D.K. Lynch, A.L. Mazuk, Mercury: Mid-infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene. Meteorit. Planet. Sci. 37, 1255 (2002)

    Article  ADS  Google Scholar 

  • A.L. Sprague, J. Warell, J. Emery, A. Long, R.W.H. Kozlowski, Mercury: First spectra from 0.7 to 5.5 μm support low FeO and feldspathic composition. 35th Lunar and Planetary Science Conference, 2004, abstract no. 1630

  • S.W. Squyres, J. Veverka, Voyager photometry of surface features on Ganymede and Callisto. Icarus 46, 137–155 (1981)

    Article  ADS  Google Scholar 

  • L.J. Srnka, Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. Phys. Earth Planet. Interiors 11(3), 184–190 (1976)

    Article  ADS  Google Scholar 

  • R. Stekelenburg, AstroStack manual (v. 0.90 beta), 1999, 2000. http://www.astrostack.com/

  • A. Stephenson, Crustal remanence and the magnetic moment of Mercury. Earth Planet. Sci. Lett. 28(3), 454–458 (1976)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Mercury’s magnetic field—A thermoelectric dynamo? Earth Planet. Sci. Lett. 82(1–2), 114–120 (1987)

    Article  ADS  Google Scholar 

  • J.A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941)

  • R.G. Strom, A.L. Sprague, Exploring Mercury: The Iron Planet (Springer, Chichester, 2003), 216 pp

  • F. Takahashi, M. Matsushima, Dipolar and non-dipolar dynamos in a thin shell geometry with implications for the magnetic field of Mercury. Geophys. Res. Lett. 33(10) (2006), CiteID L10202

  • T. Van Hoolst et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9202-6

    Google Scholar 

  • J. Veverka, P. Helfenstein, B. Hapke, J. Goguen, Photometry and polarimetry of Mercury, in Mercury, ed. by F. Vilas, C. Chapman, M. Matthews (Univ. of Arizona Press, Tucson, 1988), pp. 37–58

    Google Scholar 

  • F. Vilas, P.S. Cobian, N.G. Barlow, S.M. Lederer, How much material do the radar-bright craters at the mercurian poles contain? Planet. Space Sci. 53, 1496–1500 (2005)

    Article  ADS  Google Scholar 

  • J. Warell, Properties of the Hermean regolith: II. Disk-resolved multicolor photometry and color variations of the “unknown” hemisphere. Icarus 156, 303 (2002)

    Article  ADS  Google Scholar 

  • J. Warell, Properties of the Hermean regolith: III. Disk-resolved vis–NIR reflectance spectra and implications for the abundance of iron. Icarus 161, 199–222 (2003)

    Article  ADS  Google Scholar 

  • J. Warell, Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus 167, 271 (2004)

    Article  ADS  Google Scholar 

  • J. Warell, D.T. Blewett, Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling. Icarus 168, 257 (2004)

    Article  ADS  Google Scholar 

  • J. Warell, S.S. Limaye, Properties of the Hermean regolith: I. Global regolith albedo variation at 200 km scale from multicolor CCD imaging. Planet. Space Sci. 49, 1531 (2001)

    Article  ADS  Google Scholar 

  • J. Warell, P.-G. Valegård, Albedo–color distribution on Mercury: A study of the poorly known hemisphere. Astron. Astrophys. 460, 625 (2006)

    Article  ADS  Google Scholar 

  • J. Wicht et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9280-5

    Google Scholar 

  • M.S. Zhdanov, Geophysical Inverse Theory and Regularization Problems (Elsevier, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Ksanfomality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ksanfomality, L., Harmon, J., Petrova, E. et al. Earth-Based Visible and Near-IR Imaging of Mercury. Space Sci Rev 132, 351–397 (2007). https://doi.org/10.1007/s11214-007-9290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9290-3

Keywords

Navigation