Skip to main content

The MESSENGER Gamma-Ray and Neutron Spectrometer

Abstract

A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.

This is a preview of subscription content, access via your institution.

References

  1. B.J. Anderson et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9246-7

    Google Scholar 

  2. J.D. Anderson, G. Colombo, P.B. Esposito, L.E. Lau, G.B. Trager, Icarus 71, 337–349 (1987)

    Article  ADS  Google Scholar 

  3. G.B. Andrews et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9272-5

    Google Scholar 

  4. M.J. Bielefeld, R.C. Reedy, A.E. Metzger, J.I. Trombka, J.A. Arnold, Proc. lunar sci. conf. 7th. Geochim. Cosmochim. Acta, Suppl. 7, 2662–2676 (1976)

    ADS  Google Scholar 

  5. W.V. Boynton et al., Space Sci. Rev. 110, 37–83 (2004)

    Article  ADS  Google Scholar 

  6. W.V. Boynton et al., J. Geophys. Res. (2007a, in press)

  7. W.V. Boynton et al., Space Sci. Rev. (2007b, this issue). doi:10.1007/s11214-007-9258-3

    Google Scholar 

  8. J. Brückner, J. Masarik, Planet. Space Sci. 45, 39–48 (1997)

    Article  ADS  Google Scholar 

  9. J. Brückner et al., IEEE Trans. Nucl. Sci. 38, 209–217 (1991)

    Article  ADS  Google Scholar 

  10. M. Burks et al., Proc. IEEE Nucl. Sci. Symposium Conference Record, vol. 1 (2004), pp. 390–394

  11. B.J. Butler, J. Geophys. Res. 102, 19283–19291 (1997)

    Article  ADS  Google Scholar 

  12. B.J. Butler, D.O. Muhleman, M.A. Slade, J. Geophys. Res. 98, 15003–15023 (1993)

    ADS  Google Scholar 

  13. R.C. Byrd, W.T. Urban, Technical Report LA-12833-MS, Los Alamos National Laboratory, Los Alamos, NM, 1994, 52 pp

  14. A.G. Cameron, Icarus 64, 285–294 (1985)

    Article  ADS  Google Scholar 

  15. A.G.W. Cameron, W. Benz, B. Fegley Jr., W.L. Slattery, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 692–708

    Google Scholar 

  16. B.A. Campbell, D.B. Campbell, J.F. Chandler, A.A. Hine, M.C. Nolan, P.J. Perillat, Nature 426, 137–138 (2003)

    Article  ADS  Google Scholar 

  17. D.B. Campbell, B.A. Campbell, L.M. Carter, J.-L. Margot, N.J.S. Stacy, Nature 443, 835–837 (2006)

    Article  ADS  Google Scholar 

  18. J.F. Cavanaugh et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9273-4

    Google Scholar 

  19. D.M. Drake, W.C. Feldman, C. Hurlbut, Nucl. Instr. Meth. Phys. Res. A247, 576–582 (1986)

    ADS  Google Scholar 

  20. R.C. Elphic et al., J. Geophys. Res. 105, 20333–20345 (2000)

    Article  ADS  Google Scholar 

  21. L.G. Evans, S.W. Squyres, J. Geophys. Res. 92, 9153–9167 (1987)

    ADS  Google Scholar 

  22. L.G. Evans, W.V. Boynton, R.C. Reedy, R.D. Starr, J.I. Trombka, in Proceedings of SPIE 4784, X-Ray and Gamma-Ray Detectors and Applications IV, ed. by R.B. James, L.A. Franks, A. Burger, E.M. Westbrook, R.D. Durst (SPIE, Seattle, 2002), pp. 31–44

    Google Scholar 

  23. L.G. Evans, R.C. Reedy, R.D. Starr, K.E. Kerry, W.V. Boynton, J. Geophys. Res. 111, E03S04 (2006). doi:10.1029/2005JE002657

    Article  Google Scholar 

  24. W.C. Feldman, D.M. Drake, Nucl. Instrum. Meth. Phys. Res. A245, 182–190 (1986)

    ADS  Google Scholar 

  25. W.C. Feldman, G.F. Auchampaugh, R.C. Byrd, Nucl. Instrum. Meth. Phys. Res. A306, 350–365 (1991)

    ADS  Google Scholar 

  26. W.C. Feldman, B.L. Barraclough, B.L. Hansen, A.L. Sprague, J. Geophys. Res. 102, 25565–25574 (1997)

    Article  ADS  Google Scholar 

  27. W.C. Feldman et al., Nucl. Instrum. Meth. Phys. Res. A422, 562–566 (1999)

    ADS  Google Scholar 

  28. W.C. Feldman et al., J. Geophys. Res. 107, 5016 (2002a). doi:10.1029/2001JE001506

    Article  Google Scholar 

  29. W.C. Feldman et al., J. Geophys. Res 107, 1083 (2002b). doi:10.1029/2001JA000295

    Article  Google Scholar 

  30. W.C. Feldman et al., J. Geophys. Res. 109, E07S06 (2004). doi:10.1029/2003JE002207

    Article  Google Scholar 

  31. O. Gasnault et al., Geophys. Res. Lett. 28, 3797–3800 (2001)

    Article  ADS  Google Scholar 

  32. K.A. Goettel, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 613–621

    Google Scholar 

  33. J.K. Harmon, Adv. Space Res. 19, 1487–1496 (1997)

    Article  ADS  Google Scholar 

  34. J.K. Harmon, M.A. Slade, Science 258, 640–643 (1992)

    Article  ADS  Google Scholar 

  35. J.K. Harmon, M.A. Slade, R.A. Vélez, A. Crespo, M.J. Dryer, J.M. Johnson, Nature 369, 213–215 (1994)

    Article  ADS  Google Scholar 

  36. J.K. Harmon, P.J. Perillat, M.A. Slade, Icarus 149, 1–15 (2001)

    Article  ADS  Google Scholar 

  37. S.E. Hawkins, III et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9266-3

    Google Scholar 

  38. A.P. Ingersoll, T. Svitek, B.C. Murray, Icarus 100, 40–47 (1992)

    Article  ADS  Google Scholar 

  39. D.A. Landis, C.P. Cork, N.W. Madden, F.S. Goulding, IEEE Trans. Nucl. Sci. 29, 619–624 (1982)

    Article  Google Scholar 

  40. D.J. Lawrence et al., J. Geophys. Res. 107, 5130 (2002). doi:10.1029/2002JE001530

    Article  Google Scholar 

  41. D.J. Lawrence, R.C. Elphic, W.C. Feldman, T.H. Prettyman, O. Gasnault, S. Maurice, J. Geophys. Res. 108, 5102 (2003). doi:1010.1029/2003JE002050

    Article  Google Scholar 

  42. D.J. Lawrence et al., J. Geophys. Res 111, E08001 (2006). doi:10.1029/2005JE002637

    Article  Google Scholar 

  43. J.C. Leary et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9269-0

    Google Scholar 

  44. S. Maurice, D.J. Lawrence, W.C. Feldman, R.C. Elphic, O. Gasnault, J. Geophys. Res. 109, E07S04 (2004). doi:10.1029/2003JE002208

    Article  Google Scholar 

  45. J.V. McAdams, Astrodynamics 2003, Adv. Astronaut. Sci. 116 (part III), 643–662 (2004)

  46. W.E. McClintock, M.R. Lankton, Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9264-5

    Google Scholar 

  47. J.I. Moses, K. Rawlins, K. Zahnle, L. Dones, Icarus 137, 197–221 (1999)

    Article  ADS  Google Scholar 

  48. D.A. Paige, S.E. Wood, A.R. Vasavada, Science 258, 643–646 (1992)

    Article  ADS  Google Scholar 

  49. T.H. Prettyman et al., J. Geophys. Res. 111, E12007 (2006). doi:10.1029/2005JE002656

    Article  ADS  Google Scholar 

  50. J.R. Salvail, F.P. Fanale, Icarus 111, 441–455 (1994)

    Article  ADS  Google Scholar 

  51. C.E. Schlemm II et al. (2007, this issue). doi:10.1007/s11214-007-9248-5

  52. M.A. Slade, B.J. Butler, D.O. Muhleman, Science 258, 635–640 (1992)

    Article  ADS  Google Scholar 

  53. S.C. Solomon et al., Planet. Space Sci. 49, 1445–1465 (2001)

    Article  ADS  Google Scholar 

  54. A.L. Sprague, D.M. Hunten, K. Lodders, Icarus 118, 211–215 (1995)

    Article  ADS  Google Scholar 

  55. R.G. Strom, Mercury: The Elusive Planet (Smithsonian Institution Press, Washington, 1987), 197 pp

    Google Scholar 

  56. A.R. Vasavada, D.A. Paige, S.E. Wood, Icarus 141, 179–193 (1999)

    Article  ADS  Google Scholar 

  57. H. Wänke, T. Gold, Phil. Trans. R. Soc. Lond. 303, 287–302 (1981)

    Article  Google Scholar 

  58. G.W. Wetherill, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 670–691

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John O. Goldsten.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldsten, J.O., Rhodes, E.A., Boynton, W.V. et al. The MESSENGER Gamma-Ray and Neutron Spectrometer. Space Sci Rev 131, 339–391 (2007). https://doi.org/10.1007/s11214-007-9262-7

Download citation

Keywords

  • MESSENGER
  • Mercury
  • Gamma-ray spectrometry
  • X-ray spectrometry
  • Surface composition